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Abstract 

Mitochondria participate in varieties of cellular events. It is widely accepted that human mitochondrial 
genome encodes 13 proteins, 2 rRNAs, and 22 tRNAs. Gene variation derived from human nuclear 
genome cannot completely explain mitochondrial diseases. The advent of high-throughput sequencing 
coupled with novel bioinformatic analyses decode the complexity of mitochondria-derived transcripts. 
Recently, circular RNAs (circRNAs) from both human mitochondrial genome and nuclear genome have 
been found to be located at mitochondria. Studies about the roles and molecular mechanisms underlying 
trafficking of the nucleus encoded circRNAs to mitochondria and mitochondria encoded circRNAs to the 
nucleus or cytoplasm in mammals are only beginning to emerge. These circRNAs have been associated 
with a variety of diseases, especially cancers. Here, we discuss the emerging field of mitochondria-located 
circRNAs by reviewing their identification, expression patterns, regulatory roles, and functional 
mechanisms. Mitochondria-located circRNAs have regulatory roles in cellular physiology and pathology. 
We also highlight future perspectives and challenges in studying mitochondria-located circRNAs, as well 
as their potential biomedical applications. 
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Introduction 
Mitochondria are ancient organelles and are the 

power factory of cells, producing adenosine 
triphosphate (ATP) via the electron-transport chain 
(ETC) and oxidative phosphorylation system 
(OXPHOS). Mitochondria are involved in many 
biological functions, such as ATP transport, cell cycle, 
cell signaling, development, and neuronal function[1, 
2]. Different from other subcellular organelles, such as 
Golgi, lysosomes, and endosomes, mitochondria have 
their own genome. Human mitochondrial genome 
(mitochondrial DNA, mtDNA) is a double-stranded, 
16 569 base pairs (bp) long circular DNA, which is 
lack of introns and resides within the mitochondrial 
matrix. Human mtDNA is present in most cells and is 
conventionally considered to encode 13 protein 
subunits of the OXPHOS, 2 rRNAs, and 22 tRNAs[3] 

(Figure 1). Noncoding RNAs transcribed from the 
mtDNA are located at the cytosol, nucleus, and 
plasma[4]. In per diploid cell, the mtDNA copy 
number is maintained at approximately 1000 to 10 000 

copies[5]. The division of mitochondrial genetic 
information between the nucleus and the 
mitochondria occurred with gene transfer events 
during evolution[6]. Gene variation derived from 
human nuclear genome (nuDNA) cannot completely 
explain mitochondrial diseases in maternally 
inherited diabetes and deafness[7], aging[8], renal 
disease[9], cardiomyopathies[10], inflammation and 
immunity[11], and cancers[12]. This may be resulted 
from the difference between human mtDNA and 
nuDNA. Human mtDNA differs from human 
nuDNA in many aspects, such as non-Mendelian 
genetics[13], transcriptional machinery[14], repair 
pathways[15], and the polyploid nature of the 
genome[16]. Human mtDNAs are packaged into 
nucleoids. Nucleoids are chromosome-like organellar 
nuclei[17], that exhibit a discrete macromolecular 
assembly that determines mitochondrial genetics and 
dysfunction[18] and cardiac homeostasis[19].  

Noncoding RNAs, mainly including long 
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noncoding RNAs (lncRNA), microRNAs (miRNAs), 
and circular RNAs (circRNAs), play important roles 
in physiology and pathology[20, 21]. CircRNAs are a 
class of single-stranded noncoding RNAs that are 
formed in a circular conformation via non-canonical 
splicing or back-splicing event[22]. CircRNAs were 
first reported in Sendai virus in 1976, and reported as 
by-products of abnormal splicing[23, 24]. The advent 
of high-throughput sequencing makes circRNAs 
shine[25-27]. Recently, the roles of circRNAs are 
deeply explored in cancers[28], immune responses 
and immune diseases[29], brain development and 
central nervous system diseases[30], and 
cardiovascular system[31]. Mechanically, circRNAs 
can regulate transcription, splicing and chromatin 
interactions, act as miRNA decoys, sequester 
proteins[27] and translate proteins, and function as 
protein scaffolds[32]. CircRNAs are mainly located in 
the cytoplasm and nucleus[25], while they are also 
found in mitochondria[33]. It was briefly reported 
that 118 mitochondria-located circRNAs were derived 
from a human cell line HepG2[33]. To classify 
circRNAs related with the mitochondria clearly, we 
adopt the term “mecciRNAs” for mitochondrial 
genome encoded circRNAs which was previously 
used by Ren BB[34], and the term “mt-circRNAs” for 

mitochondria-located circRNAs which was 
previously used by Liang HX[4]. CircRNAs encoded 
by nuclear genome were termed “nuc-circRNA”. 
Mt-circRNAs include both a part of mecciRNAs and a 
part of nuc-circRNAs. Therefore, circRNAs related 
with the mitochondria can be classified into three 
types based on their location and genome origin: 
circRNAs encoded by mitochondrial genome and 
located at mitochondria, circRNAs encoded by 
mitochondrial genome and located at cytoplasm or 
secreted out of the cells, and circRNAs encoded by 
nuclear genome and located at mitochondria.  

The question arises as to why nuclear genome 
encoded the same circRNAs are located at 
mitochondria, despite their crucial roles when located 
at the cytoplasm and nucleus. Since the discovery of 
mecciRNAs, their biological roles remain an enigma. 
The roles of mitochondria-located mecciRNAs are 
beyond our understanding too. A deeper 
understanding of mitochondria-located mecciRNAs 
will bring a new direction. In this review, we 
highlight the identification, expression patterns, 
regulatory roles, and functional mechanisms of 
mt-circRNAs, as well as their potential biomedical 
applications.  

 

 
Figure 1. Human mitochondrial DNA composition. Heavy strand in red and light strand in blue. The rRNAs, mRNAs, and tRNAs were separately labeled in black, white, and 
purple. HSP and LSP are the promoters of heavy and light strands seperately. The validated mecciRNAs were marked in black. The figure was generated by using BioRender 
(https://app.biorender.com/). 
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Historical perspective of mitochondria  
Over the past 130 years, the discovery of 

mitochondrial genome and its roles has gone through 
the discovery of genetic functions, the discovery of 
mitochondria DNA, and the discovery and 
implication of mitochondrial genome. In the 1890s, 
Richard Altmann first proposed that mitochondria are 
organelles of eukaryotes, and speculated that 
mitochondria have genetic autonomy[35]. In Nass 
MM and Nass S’ work, they found mitochondria 
contain DNA by electron microscope[36]. In the 1960s, 
the existence of DNA in mitochondria was confirmed 
and widely accepted. In 1976, Trembath MK and his 
collogues first completed mapping the genetic and 
physical map of yeast mtDNA[37]. The human 
mtDNA sequence currently in use is modified from 
the portrait of mitochondrial genome by Grivell 
LA[38]. The studies conducted by Wallace DC’s team 
had opened up a new field of medical research——
mitochondrial disease[39]. In 2016, the advance of 
mitochondrial replacement therapy (MRT) made it 
possible that mother with a defective mtDNA could 
give birth to a healthy child[40]. The studies of 
circRNA blossomed in recent ten years. However, the 
discovery of circRNA located at mitochondria is just 
the beginning. 

Mitochondrial function and disfunction 
The most famous role of mitochondria is 

“powerhouse” of cell[41, 42]. The OXPHOS system is 
composed of several multi-protein complexes, which 
constitute of the electron transport chain within the 
extensive inner membrane of the mitochondria[43]. 
Mitochondrial ATP generation is intimately linked 
through the function of the ETC, and thus efficient 
measurement of ETC function can provide insight 
into mechanisms of physiology and disease. A 
consequence of electron transfer is the generation of 
reactive oxygen species (ROS)[44]. There are two main 
antioxidant systems in the mitochondrial matrix, the 
glutathione and thioredoxin/peroxiredoxin systems, 
which regulate the concentration and redox species in 
the organelle[45]. The overproduction of ROS can 
promote cancer development by inducing genomic 
instability, modifying gene expression, participating 
in signaling pathways, and leading to mtDNA and 
nuDNA mutate[46]. 

The other main function of mitochondria is Ca2+ 

dynamics. The uptake of Ca2+ by mitochondria was 
first observed by Slater EC and his colleagues[47]. 
There are three pathways of Ca2+ entry into 
mitochondrial matrix: mitochondrial calcium 
uniporter (MCU)[48], the “rapid mode” (RaM) 
mechanism[49], and the mitochondrial ryanodine 

receptor (RyR)[50]. Ca2+ were excluded mainly by the 
mitochondrial Na+/ Ca2+/Li+ exchanger (NCLX) 
exchange for sodium (NaC1)[51] or lithium (LiC1)[52] 
or H+[53]. However, the capacity for Ca2+ of 
mitochondria is finite. The overload of Ca2+ may lead 
to produce reactive oxygen species and ultimately 
lead to cell death[54]. 

Mitochondria also have metabolism and 
synthesis roles, such as amino acid[55] and ascorbate 
[56]. GOT1 can consume aspartate to transfer 
electrons into mitochondria, however, upon ETC 
inhibition, it reverses to generate aspartate in the 
cytosol. Aspartate supplementation or overexpression 
of an aspartate transporter allows cells without ETC 
activity to proliferate[55]. Mitochondria can regene-
rate ascorbic acid from its oxidized forms, which may 
help to maintain the vitamin both in mitochondria 
and in the cytoplasm. This recycling of ascorbic acid is 
mitochondrial complex III depended[57].  
Cross-talk between mitochondria and the 
nucleus 

The realization of mitochondrial roles relies on 
the genetic information both in mtDNA and nuDNA. 
Proteins that participate in mitochondrial transcrip-
tion are nuDNA encoded[14]. Proteins encoded by 
human nuDNA were imported into mitochondria 
through several pathways, the presequence pathway, 
the carrier protein pathway, the redox-regulated 
import pathway, and the β-barrel pathway[58]. The 
presequence pathway directs proteins to matrix and 
inner membrane, the carrier protein pathway directs 
proteins to the inner membrane, the redox-regulated 
import pathway directs proteins to intermembrane 
space, and the β-barrel pathway directs proteins to the 
outer membrane[58]. TOM, TIM23, TIM22, and SAM 
complexes are embedded in the outer and inner 
membranes of mitochondria, and participate in 
protein transport into mitochondria[59, 60]. The 
import of proteins was finely regulated[61]. It is 
reported that mecciRNAs facilitate the mitochondria 
entry of nuclear-encoded proteins by serving as 
molecular chaperones in the folding of imported 
proteins[62]. 

MiRNAs are located at cytosol, nucleus[63], and 
exosomes[64]. Besides, miRNAs were found in human 
mitochondria[65, 66]. Blanchette M and his collogues 
developed a computational tool, miRdup, which can 
predict the location of miRNAs[67]. Other RNA were 
also imported into mitochondria, such as tRNA[68] 
and pre-miRNAs[69]. The import of nuclear DNA into 
mitochondria was reviewed by Konstantinov YM[70] 
and Verechshagina NA[71]. The import process 
includes: before cross-membrane translocation, 
translocation across the mitochondrial outer mem-
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brane, and translocation across the mitochondrial 
inner membrane[72]. Though, it is suggested that 
PNPASE mediates the import of most lncRNAs and 
miRNA-378 into mitochondrial matrix, the 
mitochondrial translocation mechanisms of human 
RNAs and DNA are largely unclear[73, 74]. 

Mitochondria also export RNAs[75] and 
mtDNA[76]. The miRNAs encoded by mtDNA seem 
to be located within mitochondria[77]. It is reported 
that the export of double-stranded RNAs (dsRNAs) 
into the cytosol is in a PNPASE-dependent 
manner[78]. The export of mtDNA is related with 
mitochondrial permeability transition pore (mPTP) 
and the outer membrane pore formed by VDAC 
oligomerization[76]. 

Isolation and identification of nuclear- 
encoded and mitochondria-encoded 
circRNAs  

CircRNAs arising from linear precursor RNAs 
and the 5′ and 3′ ends were covalently ligated, 
therefore the traditionally used biochemical and 
computational approaches for linear RNA studies 
cannot perfectly fit for the studies of circRNAs. 
CircRNAs are resistant to degradation by 
exonucleases, so the 3'-5' exonuclease RNase R is used 
to improve their circularity as well as enrichment. 
Xiao MS and his colleagues improved this standard 
procedure, thus improving the purification efficiency 
of RNase R[79]. For the annotation of nuclear-encoded 
circRNA, the pipeline for predicting circRNAs from 
ribominus sequencing data was applied as mentioned 
in this work[80]. The start and end positions of 
circRNAs in the chromosome can be predicted, but 
the full-length sequences of circRNAs cannot be 
identified. Hossain MT and his colleagues solved this 
problem, they presented an R package FcircSEC (Full 
Length circRNA Sequence Extraction and Classifi-
cation), which can extract the full-length circRNA 
sequences based on gene annotation and the output of 
any circRNA prediction tools[81]. To acquire more 
information on mecciRNAs, the enrichment of 
mecciRNAs is needed. Liu X and his colleagues 
developed a method for mitochondrial RNA isolation 
to enrich mecciRNAs, so that more information of 
mecciRNAs could be acquired from RNA-seq, and 
provide a brief description of the computational 
method for mecciRNA identification[82]. To identify 
circRNAs more reliably, the detection tool constantly 
advancing[83]. It is well known that mRNAs have 
isogenous. It has been reported that alternative 
back-splicing also occurs in circRNAs, similar to 
linear RNAs, generating isogenous circRNAs (ISO 
circRNAs)[33, 84]. A novel algorithm, CIRI-long, is 
proposed for circRNA characterization and isoform 

quantification, also identified including 156 
mecciRNAs with GT/AG signals[85].  

There are many datasets which can predict 
circRNAs and their roles or have collected many 
information of circRNAs which have been validated, 
such as circBank (http://www.circbank.cn/ 
help.html)[86], CIRCpedia v2 (http://yang- 
laboratory.com/circpedia/)[87], circBase (http:// 
www.circbase.org/)[88], CSCD (http://gb.whu.edu 
.cn/CSCD/)[89], circRNADb (http://reprod.njmu 
.edu.cn/cgi-bin/circrnadb/circRNADb.php)[90], 
CircNet 2.0 (http://circnet.mbc.nctu.edu.tw/)[91]. 
But there are different naming systems of circRNAs 
among them, which may lead to confusion of the 
same circRNAs. But, the annotation of mecciRNA is 
limited. Until now, there don’t have a specific 
database for mecciRNAs prediction and function 
annotation. 

Mitochondria-located circRNAs derived 
from nuclear genome and their roles 

Recently, the mechanisms of circRNA biogenesis 
have been fully elucidated[25]. Exons, introns, and a 
combination of both can generate circRNAs, which 
are respectively named ecircRNAs, ciRNAs, and 
eiciRNAs[25]. The circularization can be mediated by 
RNA-binding proteins (RBPs) and spliceosome[92, 
93], and reverse complementary motifs rely on 
intron-pairing and lariat-driven circularization[94, 
95]. After the formation of circRNAs, commonly they 
are distributed to nucleus and cytoplasm or secreted 
out of the cells, but recent studies have found that 
they are also distributed in mitochondria[33]. Maybe 
this is resulted from the limited proteins or RNAs 
encoded by mtDNA[3]. Proteins and RNAs derived 
from mtDNA are limited. To sustain the homeostasis 
and duplication of mitochondria, proteins and RNAs 
encoded by the nuDNA are transported into 
mitochondria[61]. However, less is known about the 
biological role and molecular mechanism underlying 
import of circRNA into human mitochondria in 
contrast with that of proteins, DNA, and miRNAs.  

CircPUM1 is a circRNA generated from the 
PUM1 gene on human chromosome 1. And multiple 
confocal assays found that circPUM1 and UQCRC2 
co-localized in the mitochondria[2] (Figure 2). 
CircPUM1 is positively correlated with HIF1α 
accumulation under CoCl2-induced intracellular 
hypoxic-like condition in esophageal squamous cell 
carcinoma (ESCC) cell lines. Mechanically, circPUM1 
acts as a scaffold for the interaction between UQCRC1 
and UQCRC2, and circPUM1 depletion induces 
dysfunction of the mitochondrial complex III and the 
cleavage of caspase3, thus circPUM1 plays a critical 
role in maintaining the stability of mitochondrial 
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complex III to enhance oxidative phosphorylation for 
ATP production of ESCC cells[2]. CircSamd4 was 
supposed as a biomarker for predicting vascular 
calcification[96]. CircSamd4 was also found to be 
mitochondria-located[97] (Figure 2). CircSamd4 can 
induce the mitochondrial translocation of the Vcp 
protein, resulting in the downregulation of Vdac1 and 
preventing the open of mitochondrial permeability 
transition pore, thus reducing oxidative stress 
generation and maintaining mitochondrial dyna-
mics[97]. CircPTEN-MT is another circRNA encoded 
by nuDNA and located at mitochondria[98]. 

There are many circRNAs located outside of 
mitochondria but can regulate the function of 
mitochondria, such as circHIPK3[99], circ-CBFB[100], 
circ_0004463[101], and circFAM160A2[102]. However, 
it is not reported whether these circRNAs were 
imported into mitochondria. Exogenous mRNAs, 
antireplicative RNAs, and single-stranded DNAs 
were imported into mitochondria[103-105], which 
occurs without the use of any carriers[58]. The import 
of proteins into mitochondria is supervised through 
mitochondrial protein quality control system[106], 
however, it is not reported whether the import of 
circRNAs was supervised or not. Because of the 
presence of double mitochondrial membranes and the 
lack of studies about mitochondrial specific circRNA 
delivery systems, the transfer of nuDNA encoded 
circRNAs to mitochondria is largely unknown. It is 
difficult to decode the roles of mitochondria-located 
circRNAs encoded by nuclear genome now and the 
regulation of circRNAs import into mitochondria 
needs further investigation. 

Mitochondria-located circRNAs derived 
from mitochondrial genome and their 
roles 

The existing hypotheses of circularization 
mechanisms of circRNAs are mainly based on the 
studies of nuclear genome derived circRNAs, but the 
mechanism of mecciRNAs back-splicing has not been 
proposed until now. Our understanding of the 
circularization mechanism of mecciRNAs lags behind 
our knowledge of nuc-circRNAs. MecciRNAs were 
encoded by both the light and heavy strands of the 
mtDNA, and the heavy strand of mtDNA encoded the 
majority[62]. In human HEK cell line, mitochondrial 
mRNA fragments can be circularized[107]. An earlier 
study found that in the cells without mitochondria 
(rho0 MEF cells), no mecciRNAs were identified, 
whereas mecciRNAs were found in wild-type MEF 
cells[62]. Despite located at mitochondria, mecciRNAs 
were also present outside of the mitochondria[62]. In 
recent years, it has been found that hundreds of 
mecciRNAs are critical for the adaption of 

mitochondria to physiological conditions and 
diseases[62]. The discovery of mecciRNAs may shine 
a novel light on the communication between 
mitochondria and the nucleus.  

In the plasma samples from chronic lymphocytic 
leukemia (CLL) patients, 51 circRNAs were 
remarkably and abnormally expressed. Among the 28 
upregulated circRNAs, the top four circRNAs 
(hsa_circ_0089763, hsa_circ_0008882, hsa_circ_ 
0002363, and hsa_circ_0089762) were all mecciRNAs. 
Hsa_circ_0089762 is derived by back-splicing from 
gene COX2, which is located at mtDNA, so termed 
mc-COX2[108] (Figure 2). Mc-COX2 is less stable than 
ciRS-7 and circRPL15 (both circRNAs were derived 
from nuclear genome), but is much more stable than 
linear RNAs[108, 109]. Mc-COX2 was highly 
expressed in CLL patients compared with age- and 
sex-matched healthy persons, and mc-COX2high CLL 
patients had a worse overall survival (OS) compared 
with the mc-COX2low group[108]. Functionally, knock 
down mc-COX2 by siRNAs resulted in a decrease of 
mitochondrial membrane potential and ATP 
production, while the proliferation and apoptosis of 
CLL cells were also regulated[108]. The separate use 
of crbonyl cyanide 3-chlorophenylhydrazone (CCCP), 
doxycycline and metformin, can dramatically 
downregulate the expression of mc-COX2, while the 
combination of siRNAs against mc-COX2 with CCCP, 
doxycycline or metformin enhanced the anti-leukemic 
activity of these drugs[108].  

CircRNA SCAR/has-circ-0089762 (Figure 2), one 
of the four circRNAs (has-circ-0089736, has-circ- 
0089762, has-circ-0089763 and has-circ-0008882) 
derived from mitochondria, was found in liver fibro-
blasts from patients with nonalcoholic steatohepatitis 
(NASH). CircRNA SCAR is associated with 
steatosis-to-NASH progression[109]. Nuclear genome 
derived circRNAs are produced through a 
back-splicing mechanism mostly from repetitive 
elements, such as ALU elements and short intronic 
repeats (∼30- to 40-nt)[110]. However, different from 
this, the biogenesis of circRNA SCAR is regulated by 
hnRNPM, which was verified by siRNAs against 
hnRNPM and CLIP-seq data. Silencing RNase L 
increased the circRNA SCAR level in poly(I:C)-treated 
fibroblasts[109, 111]. In vitro, circRNA SCAR inhibits 
mitochondrial ROS (mROS) output and fibroblast 
activation. PGC-1α mediates circRNA SCAR binding 
to ATP5B and shuts down mPTP by blocking 
CypD-mPTP interaction. Furthermore, the effect of 
PGC-1α is inhibited by lipid overload through ER 
stress-induced CHOP. Targeting circRNA SCAR in 
vivo alleviates high fat diet-induced cirrhosis and 
insulin resistance. CircRNA SCAR is one of the 
molecular components that participate in ER-nucleus- 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

2764 

mitochondria-cytosol communication pathway which 
drives lipid-mediated inflammation[109]. 

MecciND1 and mecciND5 are mecciRNAs 
encoded by the mitochondrial genes ND1 and ND5 
respectively, and they are located at both 
mitochondria and cytosol. RPA70 and RPA32 proteins 
interact with mecciND1 through TOM40, and the 
overexpression of mecciND1 results in a higher 
protein level of RPA70 and RPA32 in the 
mitochondria, but doesn’t change the overall protein 
level of RPA70 and RPA32. HnRNPA1, hnRNPA2B1, 
and hnRNPA3 interact with mecciND5. The 
overexpression of mecciND5 results in a higher 
protein and mRNA level of hnRNPA1, hnRNPA2B1, 
and hnRNPA3 in the mitochondria, but the levels of 
all three hnRNPA proteins and mRNAs were much 
less affected. These results indicated that mecciRNAs 
promoted mitochondrial importation of specific 
protein partners. In hepatocellular carcinoma, the 
expression of mecciND1 and mecciND5 were 
upregulated. The use of UV and hydrogen peroxide 
increased mecciND1 levels, so as to RPA70 and 
RPA32 protein levels in mitochondria[62] (Figure 2). 

Another circRNA encoded by mitochondrial 
ND5 gene is circMTND5 (chrM: 14068-14413+)[112]. 
CircMTND5 sponge MIR6812 and colocalize in 
mitochondria, alleviating renal mitochondrial injury 
and kidney fibrosis[112] (Figure 2). McPGK1 
(mitochondrial circRNA for translocating phospho-
glycerate kinase 1) is highly expressed in liver 
tumour-initiating cells (TICs). Its overexpression can 
drive liver TIC self-renewal[113]. Mitochondria- 
located circRNAs are listed in Table 1. 

Applications and future aspirations of 
mt-circRNAs  

Mt-circRNA can regulate the energy metabolism 
of mitochondria. It is reported that the level of PTEN 
is related with mitochondrial energy metabolism in 
cell lines[114]. The PTEN expression cells have a 
lower ATP content and higher ADP/ATP ratio, 
higher AMPK activating-phosphorylation evoking 
energy impairment, higher OXPHOS complexes and 
PGC1α-Sirt3-p53 protein abundance[114]. CircPTEN- 
MT is a circRNA encoded by exons 3, 4, and 5 of 
PTEN, which is localized at mitochondria and 
physically associated with leucine-rich pentatrico-
peptide repeat-containing protein (LRPPRC)[98]. The 
downregulation by siRNAs against circPTEN-MT can 
decrease the mRNA level of the mitochondrial 
complex Ι subunit and reduce mitochondrial 
membrane potential and ATP production[98]. It 
seems that PTEN and circPTEN-MT have an opposite 
role in regulating mitochondrial energy metabolism. 
However, these two studies were carried out in 
different labs and different disease models. The 
relative expression level and dynamics of PTEN and 
circPTEN-MT have not been elucidated. Whether 
PTEN and circPTEN-MT counteract with each other 
to balance the energy metabolism of mitochondria 
needs further study. It is reported that mcPGK1 
regulates metabolic reprogramming by inhibiting 
mitochondrial OXPHOS and promoting 
glycolysis[113]. Those studies indicate that targeting 
mt-circRNAs has the potential to regulate the energy 
metabolism of mitochondria and further a potential to 
regulate the chemoresistance of cancers. 

 

 
Figure 2. Mitochondria-located circRNAs derived from nuclear and mitochondrial genome. The figure was generated by using BioRender (https://app.biorender.com/). 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

2765 

Table 1. Mitochondria-located circRNAs 

CircRNA name Derived genome Validation Diseases Ref. 
circPUM1 Nuclear Yes Esophageal squamous cell carcinoma [2] 
circSmad4 Nuclear Yes Myocardial infarction [97] 
circPTEN-MT Nuclear Yes Hepatocellular carcinoma [98] 
mecciND1, mecciND5 Mitochondrial Yes, Yes Hepatocellular carcinoma [62] 
hsa_circ_0089763, hsa_circ_0008882, 
hsa_circ_0002363, hsa_circ_0089762 

Mitochondrial No, No,  
No, Yes 

Chronic lymphocytic leukemia [108] 

has-circ-0089761, has-circ-0089762, 
has-circ-0089763, has-circ-0008882 

Mitochondrial No, Yes,  
Yes, Yes 

Nonalcoholic steatohepatitis [109] 

circMTND5 Mitochondrial Yes Lupus nephritis [112] 
mcPGK1 Mitochondrial Yes Liver cancer [113] 

 
 
Mt-circRNA can assist the transport of proteins 

to mitochondria. TOM, TIM23, TIM22, and SAM 
complexes are embedded in the outer and inner 
membranes of mitochondria, and participate in 
protein transport into mitochondria[59, 60]. It is 
reported that mecciRNAs facilitate the mitochondrial 
entry of nuclear-encoded proteins by serving as 
molecular chaperones in the folding of imported 
proteins[62]. McPGK1 can promote PGK1 
mitochondrial import via TOM40 interactions at outer 
mitochondria membrane[113]. The most studied 
mechanism of circRNA is miRNA sponges and 
protein scaffolds, however, whether circRNAs can 
sponge or carry drugs or small-molecule inhibitors to 
assist the import of them to mitochondria has not 
been reported. It is worth to devote our efforts to 
figure out the mystery. 

Discussion 
Mitochondrial dysfunction is related with a 

series of diseases, such as neurodegenerative diseases 
[115], cancer[115], diabetic kidney disease[116], 
cardiovascular diseases[117], and rare diseases[118]. 
Mitochondrial genome is in small size but highly 
utilized. The advent of high-throughput sequencing 
has expanded our understanding of the known 
complexity of mitochondrial transcriptome. Besides 
the generally known mRNAs, rRNAs, and tRNAs, 
mtDNA also encodes a variety of noncoding RNAs 
such as lncRNAs, sncRNAs, dsRNAs, and circRNAs 
with diverse regulatory functions. So far, studies of 
circRNAs encoded by nuDNA have been performed 
widely, while the roles of mecciRNAs were less 
understood. MecciRNAs may reside in or shuttle out 
of the mitochondria and contribute to the 
nucleus-mitochondria communication, thus posing a 
difficulty in functional study, such as mecciND1 and 
mecciND5[62]. Despite the high utilization efficiency 
of mtDNA, the homeostasis and duplication of 
mitochondria is resort to proteins and noncoding 
RNAs encoded by the nuclear genome. CircPUM1 is 
mitochondria-located circRNA derived from nuDNA. 
CircPUM1 plays important roles in mitochondria.  

Recent studies have brought hints of circRNAs 

involved in maintaining mitochondrial function, 
indicating that the circRNAs located at mitochondria 
are of importance. Nevertheless, many aspects of 
circRNAs in mitochondria remain unsolved. Firstly, 
the import processing of nuclear genome encoded 
circRNAs into mitochondria is not clear. MtDNA 
encodes limited genes[3], not only the transcription of 
mtDNA needs the assistance of nuDNA encoded 
proteins but also the processing of mitochondrial 
RNA (mtRNA) needs[119]. NuDNA encoded proteins 
designated to mitochondria were imported into 
mitochondrial membrane and mitochondrial matrix 
by several pathways[58]. CircRNA is the new star of 
research, the majority of circRNAs encoded by 
nuclear genome are located at cytoplasm and 
nucleus[25]. However, recent studies found that in 
mitochondria there are nuc-circRNAs. But, none of 
them elucidate the import processing of 
nuc-circRNAs into mitochondria. Are there any 
carriers or chaperonins or portholes? Are the import 
pathways generally applicable or specialized? We 
need further studies in this field. Secondly, the 
mechanism of the dynamic regulation of mt-circRNAs 
has not been identified. CircRNAs are both 5’ and 3’ 
end lacking, so the major RNA decay pathways which 
are often initiated via exoribonucleases are 
unserviceable to decay circRNAs[120]. Endoribonuc-
leases are enzymes that can cleave RNA without a free 
5’ or 3’ end[121]. It is reported that circRNAs can be 
degraded by endoribonuclease with the binding of 
miRNAs and subsequent Ago2[122]. Upon poly(I:C) 
stimulation or viral infection, circRNAs are globally 
degraded by endoribonuclease RNase L[123]. Leung 
AKLand his collogues found that UPF1 and G3BP1 
regulate highly-structured circRNAs[124]. GW182 
regulate a subset of circRNAs degradation in 
Drosophila, three homologs of GW182-TNRC6A, 
TNRC6B, and TNRC6C in human control degradation 
of human circRNAs similarly[125]. These circRNAs 
decay pathways have not been verified in mito-
chondria, and it is unknown if there are other 
mechanisms that can dynamically regulate mt- 
circRNAs. Deeper investigations are needed to 
elucidate these questions. Thirdly, it is suggested that 
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nuDNA encoded spliceosomes can mediate the 
splicing of mtRNA[111], but it is unknown whether 
they are participated in regulating the splice of 
mecciRNAs. There are other questions to be solved, 
such as the modification of mt-circRNAs, the roles of 
the identified mecciRNAs, and the functions of 
mecciRNAs outside mitochondria. Besides, there is a 
lack of standard nomenclature for circRNAs, which 
may result in ambiguity in different circRNAs. Such 
as circRNA SCAR[108] and mc-COX2[109] were both 
named has-circ-0089762. Because of the organelle 
double membranes, there are still no efficient methods 
to directly modify the mtDNA in vivo. There are some 
circRNAs that are not located in mitochondria, but 
can interfere the function of mitochondria, such as 
circ_0004463[101], circEZH2[126], and circFoxO3[127]. 
The future focuses on isolation, identification, 
verification, and modification of mecciRNAs will 
enhance our understanding about the characters and 
roles of mecciRNAs. 

The expression of mt-circRNAs is correlated 
with mitochondrial function. The aberrant expression 
of diverse mt-circRNAs has been observed in various 
cancer cell types, as evidenced by multiple studies. 
The precise contribution of mt-circRNAs in different 
cancer development and its clinical implications 
remain to be elucidated. Further study on the 
mechanism and clinical significance of mt-circRNAs is 
conducive to the discovery of new targeted drugs and 
clinical markers for mitochondria-related diseases, 
especially cancer. 

We are just arrived at the gate of mt-circRNAs, 
the indoor world landscape of mt-circRNA is far 
beyond our understanding now. Much work is 
needed to unveil the circRNA world in mitochondria. 
Our future studies should concentrate on but not be 
limited to: the import mechanism of nuc-circRNA into 
mitochondria and their roles, the genesis of 
mecciRNA and their function in mitochondria, the 
dynamics regulation, and the clinical significance of 
mt-circRNAs.  
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