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Abstract 

Background: Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) account for a 
significant proportion of gynecological malignancies and represent a major global health concern. Globally, 
CESC is ranked as the fourth most common cancer among women. Conventional treatment of this disease has 
a less favorable prognosis for most patients. However, the discovery of early molecular biomarkers is therefore 
important for the diagnosis of CESC, as well as for slowing down their progression process. 
Methods: To identify differentially expressed genes strongly associated with prognosis, univariate Cox 
proportional hazard analysis and least absolute shrinkage and selection operator (LASSO) regression analysis 
were used. Using multiple Cox proportional hazard regression, a multifactorial model for prognostic risk 
assessment was then created. 
Results: The expression of biological clock-related genes, which varied considerably among distinct subtypes 
and were associated with significantly diverse prognoses, was used to categorize CESC patients. These findings 
demonstrate how the nomogram developed based on the 7-CRGs signature may assist physicians in creating 
more precise, accurate, and successful treatment plans that can aid CESC patients at 1, 3, and 5 years.  
Conclusions: By using machine learning techniques, we thoroughly investigated the impact of CRGs on the 
prognosis of CESC patients in this study. By creating a unique nomogram, we were able to accurately predict 
patient prognosis. At the same time, we showed new perspectives on the development of CESC and its 
treatment by analyzing the associations of the prognostic model with immunity, enrichment pathways, 
chemotherapy sensitivity, and so on. This research provides a new direction for clinical treatment. 

Keywords: cervical squamous cell carcinoma and endocervical adenocarcinoma, circadian clock genes, tumor microenvironment, 
prognostic markers, immunotherapy response, chemotherapy sensitivity 

Introduction 
Cervical squamous cell carcinoma (SCC) and 

endocervical adenocarcinoma (EAC) are the two 
major histological subtypes of cervical cancer and are 

collectively known as CESC. CESC accounts for a 
significant proportion of gynecological malignancies 
and represents a major global health concern. The 
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development of these subtypes is primarily associated 
with persistent infection by high-risk human 
papillomavirus (HPV). As the infection is usually 
asymptomatic [1], it can take 10 to 15 years for 
changes in the cervix to become apparent [2]. 
According to statistics from 2018, cervical cancer is the 
second most prevalent cancer in women worldwide 
and the fourth most common cancer overall among 
women in nations with poor human development 
indices. It is crucial to identify early molecular 
indicators to diagnose CESC and to stop its 
progression. Although the different etiologies and 
clinical behaviors of CESC have been well studied 
[3-6], the specific underlying molecular processes are 
not entirely understood. 

The human body exhibits 24-hour rhythmic 
variations in its physiological processes and 
behaviors, which are governed by an autonomous 
biological pacemaker called the circadian clock [7]. 
Disruptions in these rhythms have been linked to the 
initiation and progression of cancer [8-11]. 
Epidemiological investigations of individuals 
working night shifts have revealed the critical role of 
circadian rhythm disturbances in the development of 
breast cancer [12], skin cancer [13], colorectal cancer 
[14], prostate cancer [15], and endometrial cancer [16]. 
The CLOCK and BMAL1 proteins form heterodimers 
and activate the expression of CRY and PER genes 
[17], which, upon translation, inhibit the activity of 
CLOCK/BMAL1 and consequently repress their 
transcription [7]. The levels of BMAL1 are further 
modulated by the transcription factors REV-ERBA/b 
[18] and RORA(1) [19], resulting in negative and 
positive regulation, respectively. Circadian clock 
mechanisms and clock gene expression are present in 
all nucleated cells [20]. Remarkably, approximately 
40% of the genome undergoes circadian regulation 
[21], underscoring the critical role of the circadian 
clock in cellular biology [22, 23]. Dysregulation of this 
system has been implicated in various disease states, 
including cancer [24-28]. Although circadian 
disruptions have been elucidated in certain cancer 
types, the relationship between clock genes and the 
CESC has yet to be definitively established [29-32]. To 
date, there is a paucity of literature documenting the 
mechanisms underlying the circadian rhythm in 
cervical cancer, a concern given the increasing 
prevalence of these malignancies in developing 
countries, necessitating further scientific inquiry. 

Therefore, in this study, we aimed to investigate 
the expression of circadian clock genes in CESC, with 
the overarching objective of unraveling the potential 
interplay between circadian rhythm alterations and 
the pathogenesis of CESC. Moreover, we sought to 
evaluate the efficacy of these genes as biomarkers for 

prognosticating disease severity and treatment 
outcomes. Our findings unveiled a downregulation of 
multiple clock genes in cervical cancer cells. 
Nonetheless, it is noteworthy that these cells exhibited 
preserved functional circadian oscillations. 
Additionally, our study demonstrated the inhibitory 
effects on cancer biology stemming from interference 
with clock gene expression activity. Dysregulation of 
clock genes in cancer cells has been postulated to be 
an attractive avenue for therapeutic intervention, as 
these genes are considered "druggable" targets [23]. 
Collectively, our research substantiates the necessity 
for further investigation into the potential utility of 
the circadian clock as an innovative anticancer 
strategy. 

Methods 
Patient data source 

From the tumor-associated gene database 
(https://portal.gdc.cancer.gov/), we were able to 
gather clinical information on 307 tumor patients as 
well as tumor-related gene expression patterns. 
TPMn=FPKMn*106/(FPKM0+...+FPKMm), where n 
stands for gene n and m for the total number of genes, 
was used to convert the third level HTSeq-Fragments 
per kilobase of transcript per million mapped reads 
(FPKM) data from TCGA-CESC to transcripts per 
million (TPM). The TPM readings were then subjected 
to a log2-based modification. The GSE44001 database's 
gene profiles and clinical information for 300 CESC 
patients were retrieved from the GEO database 
(https://www.ncbi.nlm.nih.gov/geo/). The dataset 
used for external validation was GSE44001. 

Differential gene expression analysis 
The "limma" tool in R was used to perform 

correction, normalization, and log2 transformation on 
the three original datasets. The GeneCards website 
(https://www.genecards.org/) provided us with a 
total of 1471 CRGs. Differential levels of CRGs 
expression were discovered. All the samples were 
divided into various clusters [33] using the 
"ConensusClusterPlus" method to further clarify the 
features of CRGs in CESC. The "pheatmap" tool in R 
was used to visualize the differential expression of 
CRGs and clinicopathological markers within various 
clusters. The "c2.cp.kegg.v7.5.1.symbols" gene set, 
which was obtained from the MSigDB database, was 
used for gene set variation analysis (GSVA). The 
"GSVA" approach was used to examine the variations 
in pathways between clusters [34]. The ssGSEA 
algorithm [35] was used to perform immune cell 
infiltration analysis and immune checkpoint 
expression analysis on several clusters.  
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Model construction and validation 
We identified 33 genes linked to survival using 

univariate Cox regression analysis. The penalty 
regularization parameter lambda was then 
determined by LASSO regression analysis using the 
"glmnet" R package [36]. We discovered a group of 
seven genes as a result of our investigation. The 
coefficients of the core genes were then determined 
and calculated using a stepwise multivariate Cox 
regression model. A risk signature for the CRGs was 
subsequently created. The CRGs risk score for each 
patient was determined as follows: Expression 
mRNA1CoefmRNA1+Expression 
mRNA2CoefmRNA2+...Expression 
mRNAnCoefmRNAn are the components of the risk 
score. 

Independent predictive analysis and 
Nomogram construction 

Based on the obtained model equation, risk 
scores were produced for all CESC patients, and the 
median was estimated using the "Survminer" package 
in R. The CESC patients were then split into low-risk 
and high-risk groups, and survival curves for each 
grouping were drawn. To evaluate the genetic 
signature's prediction power, the C-index was 
calculated in R using the "pec" package. Utilizing the 
"Time-ROC" R package, receiver operating 
characteristic (ROC) curve analysis was done to assess 
the genetic signature's ability to predict outcomes. 

The risk score was evaluated as an independent 
prognostic factor using univariate and multivariate 
Cox regression models. Histograms were created 
using the "RMS" R package to estimate the survival of 
patients in the TCGA-CESC cohort based on the risk 
score and clinicopathological parameters. 

Functional concentration analysis 
To investigate the functional annotations and 

enriched pathways of differentially expressed genes 
linked to CRGs in CESC, functional enrichment 
analysis was conducted. The "ClusterProfiler" R 
program was used to analyze the Gene Ontology 
(GO) pathways, and a significance threshold of P 0.05 
was used to denote statistical significance. Using the 
"c2.cp.kegg.v7.5.1.symbols.gmt" dataset from 
MSigDB, the "GSVA" R package was used to perform 
GSVA. Heatmaps were produced using the "hotmap" 
R package. For subgroup comparisons, adjusted 
P-values of 0.05 based on the "limma" R program were 
regarded as statistically significant. 

Immunological analysis of risk characteristics 
A variety of methods, including XCELL [37, 38], 

TIMER [39, 40], QUANTISEQ [40, 41], MCPCOUNT 

[41], EPIC [42], CIBERSORT [43], and 
CIBERSORT-abs [44], have been employed for 
quantifying immune infiltration scores. The link 
between immune cells and risk ratings was evaluated 
using Spearman correlation analysis. Based on the 
immune cell characteristics of people with CESC, the 
ssGSEA technique was used to distinguish between 
low-risk and high-risk patients. A prepared list of 20 
immune checkpoint inhibitors taken from Auslander 
et al. [45] was used to compare immune checkpoint 
inhibition between high-risk and low-risk groups. The 
"estimate" R program was used to calculate 
immunological and stromal scores from RNA-seq 
data to assess tumor purity. The "limma" and 
"ggpubr" R packages were used to measure and 
visualize the immune treatment response in CESC 
patients. The "ggcor" R program was used to examine 
the relationship between risk scores and these two 
genetic features. 

Drug sensitivity 
Based on the half-maximal inhibitory 

concentration (IC50) from the Genomics of Drug 
Sensitivity in Cancer (GDSC) dataset (https:// 
www.cancerrxgene.org) [46], the "prediction" R 
package was used to evaluate the treatment response 
of patients in the high-risk and low-risk groups.  

TISCH analysis 
A single-cell RNA sequencing database on the 

tumor microenvironment (TME) was made available 
at the Tumor Immune Single Cell Hub (TISCH, 
http://tisch.comp-genomics.org), which also offered 
thorough single-cell level cell type annotations. This 
made it possible to examine gene expression in 
particular cell types in more detail. The TME 
variations among different CESC patients were 
discovered by looking at the expression of cell 
type-specific genes in various cell types, partially 
explaining the variety of CESC. 

Statistical analysis 
Statistical analysis was performed using R 

software version 4.2.1. Kaplan-Meier (KM) survival 
curves and log-rank tests were used to compare the 
overall survival (OS) of the high-risk and low-risk 
groups. The use of LASSO regression analysis was 
used to choose the candidate CRGs. Then, to create 
the CRGs features, a stepwise multivariate Cox 
regression analysis was performed. Using 
time-dependent ROC analysis, the model's prediction 
abilities were assessed. Using Spearman correlation 
analysis, the relationship between risk score and 
immune cell infiltration was evaluated. The Wilcoxon 
test was used to assess the proportion of tumor 
immune infiltrating cells (TIICs), immunological 
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checkpoints, and immune function between the two 
groups. A p-value < 0.05 was considered statistically 
significant, and an FDR (false discovery rate) < 0.05 
was also considered statistically significant.   

Results 
Identification of candidate CRGs and 
identification of molecular subtypes of CRGs 
by consensus clustering 

Using the "limma" package in R, a univariate 
Cox regression analysis was performed on 1471 
differentially expressed CRGs to identify 43 CRGs 
associated with OS (P<0.05) (FIGURE 1A). 
Subsequent prognostic analysis was conducted on 
these 43 CRGs (FIGURE 1B). 

Clustering was suggested by the cumulative 
distribution function's (CDF) rising tendency as 
compared to the consensus index. The CDF curve and 
delta area were used to estimate the best point for 
creating unique clusters, which was found to be k=2. 
The disparities between groups were greatest as the 
clustering index "k" rose from 2 to 9. To categorize 
CESC patients, two subgroups were created (FIGURE 
1C-D). The consensus matrix also provided a better 
visualization tool to evaluate the composition and 
quantity of clusters. When k=2, we created a heatmap 
with colors that matched the consensus matrix. This 
heatmap showed high intra-group correlation and 
low inter-group correlation. This provided 
compelling evidence that categorizing CESC patients 
into Cluster A and Cluster B subtypes (FIGURE 1E) 
was appropriate. Patients in Cluster A were shown to 
have a better chance of surviving than those in Cluster 
B (P 0.001) (FIGURE 1E). Risk distribution in various 
populations is frequently visualized using PCA. 
When depicted using alternative clusters, patients 
from Cluster A and Cluster B revealed appreciable 
differences (FIGURE 1G). 

Molecular subtype enrichment and 
immunoassay for CRGs 

In addition, we conducted further investigations 
into the metabolic disparities among Cluster A, 
Cluster B, and CRGs. The utilization of a heatmap 
unveiled that Cluster A demonstrated greater 
variations in expression and clinical attributes within 
the CRGs (FIGURE 2A). To unravel the underlying 
biological pathways, we conducted enrichment 
analysis on distinct cluster samples employing the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway database. This analysis established 
connections with diverse pathways linked to cancer, 
including HISTIDINE METABOLISM, BASAI 
TRANSCRIPTION FACTORS, CELL CYCLE, and 

NUCLEOTIDE EXCISION REPAIR (FIGURE 2B). 
Considering the indispensable role of immune 

therapy in cancer treatment, our focus was to 
comprehend the distribution and correlations of 23 
TIICs in this cohort. By employing the ssGSEA 
algorithm, we accurately determined the levels of 
immune cell infiltration and subsequently classified 
them into distinct clusters. The outcomes revealed 
higher levels of infiltration in immune cells such as 
Activated B cells, Activated CD4 T cells, Eosinophils, 
MDSCs, Mast cells, Plasmacytoid dendritic cells, and 
T follicular helper cells within Cluster B as compared 
to Cluster A. Conversely, CD56bright natural killer 
cells, Gamma delta T cells, Neutrophils, Regulatory T 
cells, and Type 2 T helper cells exhibited lower levels 
of infiltration in Cluster B (FIGURE 2C). 

These findings empower the CRGs risk-scoring 
model, enabling the categorization of diverse immune 
subtypes, which, in turn, have the potential to 
influence the response to immune therapy. 
Furthermore, considering the profound significance 
of immune checkpoints in the effectiveness of tumor 
immunotherapy and their pivotal role as a hallmark 
of the TME, we investigated the differential 
expression of immune checkpoint genes between the 
two clusters. Ultimately, we observed a substantial 
upregulation in the expression of immune checkpoint 
genes in patients belonging to Cluster A. Based on 
these comprehensive analyses, we concluded that 
Cluster A and Cluster B exhibit distinct expression 
profiles in the immune milieu, with Cluster A 
showcasing heightened effectiveness and sensitivity 
toward immune therapy (FIGURE 2D). 

Construction and validation of CRG signatures 
Using univariate Cox regression analysis, we 

have identified a total of 33 CRGs that exhibit 
significant associations with OS in patients diagnosed 
with CESC. For candidate CRG identification, the 
LASSO machine learning method was implemented. 
Through the utilization of LASSO regression analysis, 
we meticulously selected nine candidate model genes, 
subsequently employing multifactor Cox 
proportional hazards regression modeling to further 
refine the data's dimensionality, ultimately narrowing 
down the selection to seven CRGs (FIGURE 3A-B). 
These seven CRGs, namely TNF, HLF, PGK1, PSMA4, 
LY96, LDHC, and TDO2, have been conclusively 
established as independent prognostic factors. The 
prognostic index (PI) was computed as follows: (PI) = 
(0.388 *TNF exp) + (-0.254 *HLF exp) + (0.595 *PGK1 
exp) + (-0.528 *PSMA4 exp) + (-0.574 *LY96 exp) + 
(-0.369 *LDHC exp) + (0.322*TDO2 exp). Moreover, 
prognostic risk scores were computed for each 
patient, and based on the median score, CESC patients 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

2792 

were dichotomized into high-risk and low-risk 
groups. The distribution of these seven CRGs within 
the high-risk and low-risk groups was illustrated, 
with HLF, LDHC, PSMA4, and LY96 exhibiting 

diminished expression levels in the high-risk group, 
while TDO2, TNF, and PGK1 displayed elevated 
expression levels among high-risk patients (FIGURE 
3C).  

 

 
Figure 1. Univariate Cox regression analysis was conducted to assess the prognosis of 43 CRGs in the CESC cohort. The molecular subtypes of CRGs were determined using 
the consensus clustering method. (A) Prognostic analysis of the 43 CRGs. (B) Correlation analysis of the prognostic outcomes associated with the 43 CRGs. (C) Cumulative 
distribution function (CDF) of the consensus clustering when k ranged from 2 to 9. (D) Relative changes in the area under the cumulative CDF curve as k varied from 2 to 9. (E) 
Consensus matrix at k=2. (F) Differential overall survival (OS) between Cluster A and Cluster B. (G) Principal component analysis plot between Cluster A and Cluster B. 
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Figure 2. Enrichment and immune analysis of CRG molecular subtypes. (A) Associations between CRG expression and clinicopathological parameters. (B) KEGG enrichment 
analysis of different Clusters. (C) Immune cell scores comparison between Cluster A and Cluster B. (D) Differential expression of immune checkpoints between Cluster A and 
Cluster B. * P < 0.05, ** P < 0.01, *** P < 0.001, ns>0.05. 

 
Subsequently, these findings were employed to 

conduct survival analysis, thus corroborating their 
prognostic value. In the TCGA-CESC cohort, the 
mortality rate of all CESC patients exhibited an 
increase commensurate with elevated risk, whereas 
the low-risk group demonstrated a more favorable 
prognosis (P<0.001) (FIGURE 3D). To evaluate the 
efficacy of the created model for predicting OS in 
CESC patients, time-dependent ROC curves were 
used. AUC values of 0.741 at 1 year, 0.753 at 3 years, 
and 0.748 at 5 years were shown by the full 
time-dependent ROC curve (FIGURE 3G). In the 
training set, the mortality rate for CESC patients 
showed an increase consistent with higher risk 
(FIGURE 3E). Patients with low risk in the training set 
had a better prognosis than patients with high risk, 
according to KM survival analysis (P = 0.005). The 
AUC on the time-dependent ROC curve was 0.755 
after one year, 0.756 after three years, and 0.797 after 
five years (FIGURE 3H). Patients with low risk 
showed a superior prognosis compared to patients 
with high risk in the testing set, according to KM 
survival analysis of CESC patients (FIGURE 3F). For 
the testing set, the time-dependent ROC curve 

showed AUC values of 0.726 at 1 year, 0.753 at 3 years, 
and 0.701 at 5 years (FIGURE 3I). We can conclude 
that our prognostic model effectively displays higher 
performance in light of these results. 

Constructing a column plot incorporating 
clinical features 

Given the robust association observed between 
the constructed risk model and unfavorable 
prognosis, we conducted univariate and multivariate 
Cox analyses integrating the OS data of CESC patients 
alongside their clinical characteristics. We aimed to 
investigate whether the prognostic features derived 
from the 7-CRGs could function as independent 
prognostic predictors. Univariate analysis incorpo-
rating variables such as age, T stage, N stage, and risk 
score unveiled a notable correlation between the risk 
score and the prognosis of CESC patients (P<0.001) 
(FIGURE 4A). Remarkably, even after performing 
multivariate analysis, the risk score persisted as the 
most robust and autonomous prognostic factor in the 
cohort (P<0.001) (FIGURE 4B). We developed a 
nomogram incorporating age, T stage, N stage, and 
risk score as prognostic indicators for 1-year, 3-year, 
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and 5-year survival probability in CESC patients to 
increase the clinical application and usability of the 
constructed risk model (FIGURE 4C). The results 
highlighted the risk model based on the 7-CRGs' 
improved prognostic capability for predicting the 
course of CESC patients. Furthermore, the 1-year, 
3-year, and 5-year OS probability calibration curves 
showed a more positive concordance between 
projected and actual values (FIGURE 4D). 
Additionally, (FIGURE 4E) comparison of the column 
plot, risk, and common clinicopathological feature 
column plots showed that the 7-CRGs-based risk 
model had greater predictive power compared to 
models that only used age, T stage, N stage, and risk 
score (AUC=0.752). This supports the strong 
predictive ability displayed by our developed 7-CRGs 
characteristics when compared to other clinical 
parameters. Further evidence of good agreement 

between projected and observed probabilities of 
1-year, 3-year, and 5-year OS was provided by the 
calibration curves (FIGURE 4F). Additionally, the 
column plot's cumulative risk curve showed that the 
risk of overall survival rose gradually for CESC 
patients with higher scores (FIGURE 4G). 
Additionally, the analysis of risk scores revealed a 
significant divergence in prognosis between CRGs 
cluster A and cluster B (p < 2.22e−16) (FIGURE 4H), 
providing further corroboration of the commendable 
properties of our model. Subsequently, the forest plot 
displayed within the nomogram underscored the 
prominent influence of risk score and T stage as major 
contributing factors (FIGURE 4I). These findings 
collectively endorse the column plot of risk scores 
derived from the 7-CRGs as an effective approach for 
prognostic prediction in clinical practice. 

 

 
Figure 3. Building and verifying the 7-CRGs Signature. (A) Ten-fold cross-validation for choosing LASSO model tuning parameters. (B) profiles of LASSO coefficients. The risk 
factors in high-risk and low-risk patients are shown in a heatmap in (C). Kaplan-Meier curves (D) overall, (E) training set, and (F) validation set displaying the status of low-risk and 
high-risk UVM patients in the TCGA cohort. Time-dependent ROC curves for OS at 1 year, 3 years, and 5 years (G) overall, (H) training set, and (I) validation set. 
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Figure 4. CESC created a nomogram by combining clinical features. (A-B) Analysis of the signature and distinct clinical features using univariate and multivariate COX regression. 
Univariate Cox analysis of the HR values for each variable is shown in green squares. Multivariate Cox analysis of the HR values for each variable is shown in red squares. (C) A 
nomogram made up of CRGs, Age, T stage, and N stage is an option. (D) Analysis of time-dependent ROC curves. (E) The time-dependent ROC curves for the nomogram. (F)The 
generated nomogram of 1-year, 3-year, and 5-year survival calibration curves. (G) The cumulative hazard curve showed how the likelihood of survival changed over time. (H) 
Prognostic variations in risk scores according to subtype. (I) A summary of the multivariable Cox regression analysis of the clinical characteristics and risk score in CESC patients 
using a forest plot. 
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Figure 5. Functional enrichment analysis of CRGs. (A-B) The top 30 significant terms of GO, include MF, CC, and BP. (C-D) The top 30 significant pathways in KEGG enriched.  

 

Functional enrichment analysis of CRGs 
We performed GO functional analysis and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) 
enrichment analysis to assess the differential gene 
expression in CESC, aiming to elucidate the interplay 
between biological activities, signaling pathways, and 
risk scores. The enrichment items were filtered using a 
significance threshold of p < 0.05, with a corrected 
p-value of <0.05 (FIGURE 5A-B). From the GO 
database, we identified 1615 relevant items, with a 
focus on biological processes (BP) such as lymphocyte 
and T-cell differentiation, as well as leukocyte 
adhesion, among others. Regarding cellular 
components (CC), the analysis encompassed various 
entities, including plasma membrane signaling 
receptor complexes, synaptic membrane constituents, 
and plasma membrane signaling receptor complexes. 
In terms of molecular functions (MF), the analysis 
highlighted receptor ligand activity, immune receptor 
activity, cytokine binding, and signaling receptor 
agonist activity. Furthermore, we identified the top 30 
significant enrichment clusters derived from the GO 

functional analysis, which encompassed diverse 
processes such as circadian rhythm, regulation of the 
apoptotic signaling pathway, and rhythmic processes. 
In the context of KEGG enrichment analysis, the 
pathways primarily involved in CESC included the 
Cell Cycle, Cellular senescence, HIF-1 signaling 
pathway, and Human T-cell leukemia virus 1 
infection (FIGURE 5C-D). These findings underscore 
the pivotal role of differentially expressed CRGs in the 
progression of CESC. 

CRGs risk score predicts TME and immune 
cell infiltration 

The tumor microenvironment (TME) is 
composed of different cells that can influence the 
survival and metastasis of tumor cells (PMID: 
34302814). In recent years, tumor therapeutic 
strategies targeting TME have demonstrated 
surprising potential (PMID: 33811125). It has been 
established that the interaction between cancer cells 
and the TME is critical for the development and 
spread of tumors [47]. An essential part of the TME is 
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TIICs, whose distribution and composition are 
intimately linked to tumor growth [46,48]. Using the 
XCELL, TIMER, QUANTISEQ, MCPCOUNTER, 
CIBERSORT, CIBERSORT-ABS, and EPIC algorithms, 
we first investigated the relationship between risk 
ratings and the quantity of invading immune cells. 

The findings revealed an inverse relationship 
between risk scores and resting mast cells, 
neutrophils, and macrophage M1 (FIGURE 6A). The 
links between the various immune activities were 
shown by the correlation heatmap (FIGURE 6B). 
Immune cell infiltration is strongly associated with 
tumor therapy and patient prognosis. However, the 
role played by immune cell infiltration in CESC has 
not yet been investigated. So, using the CIBERSORT 
method, we independently assessed immune cell 
infiltration in CESC between the high-risk and 
low-risk groups. In contrast, the expression of T cells 
CD8, T cells CD4 memory activated, Macrophages 
M1, Mast cells resting, and Neutrophils was 
significantly higher in the low-risk group (FIGURE 
6C). The expression of T cells CD4 naive, T cells 
regulatory (Tregs), and activated mast cells was 
significantly higher in the high-risk group. We 
examined the expression of immune checkpoint genes 
in the high-risk and low-risk groups in light of the 
significance of checkpoint-based immunotherapy. 

Immune checkpoint genes CD44 and CD276 
were found to be highly elevated in the high-risk 
group (FIGURE 6D), indicating that patients in this 
group may experience greater benefits from immune 
checkpoint blockade (ICB) therapy. Additionally, the 
risk score derived from our 7-CRGs model displayed 
a significant positive correlation with T cells CD4 
naive, Neutrophils, and Mast cells activated, while it 
displayed a significant negative correlation with T 
cells regulatory (Tregs), T cells CD8, T cells CD4 
memory activated, Mast cells resting, Macrophages 
M1, and B cells naive (FIGURE 6E). The infiltration of 
important immune cells was substantially correlated 
with the 7 CRGs, notably with HLF, PGK1, PSMA4, 
and LY96. 

We examined the ssGSEA scores of immune 
functions because immune cells with checkpoint 
molecules can greatly affect immune activities. 
Several immune function scores in the high-risk 
group demonstrated significant variations when 
compared to the low-risk group (FIGURE 6F). 
Changes in the expression of immune cell types result 
in changes in the composition of the TME since 
infiltrating immune cells are a crucial component and 
characteristic of the TME. So, we looked at the TME 
components of the CESC samples. The results showed 
that the low-risk group's stromal score, immune score, 
and estimate score were all lower than those in the 

high-risk group, indicating greater immune levels and 
immunogenicity in the high-risk group's TME 
(FIGURE 6G). 

We also examined the relationship between risk 
scores and ICB response characteristics in light of the 
crucial role that ICB response plays in immune 
checkpoint treatment (FIGURE 6H, J). It was 
discovered that there was a substantial positive link 
between homologous recombination and oocyte 
meiosis, but there was a significant negative 
correlation with the IFN-Gamma signature. A good 
association was found between risk scores and the 
immune cycle steps of MDSC recruitment, Neutrophil 
recruitment, and TH22 cell recruitment in the 
high-risk group (FIGURE 6I, K). We also performed 
correlation studies between risk scores and the phases 
of the tumor immune cycle. 

CRGs characteristics predict chemotherapy 
sensitivity 

Employing the risk score as a foundation, we 
conducted a comprehensive assessment of the 
prospective utility of 7-CRGs in prognosticating 
chemotherapy sensitivity within the GDSC database. 
Our objective was to augment the precision of 
pharmacological interventions. The dissimilarities in 
chemotherapy responsiveness between cohorts 
classified as high-risk and low-risk were meticulously 
scrutinized via utilization of the "pRophetic" R 
package, which facilitated a thorough exploration of 
this subject. Notably, a repertoire of twelve conven-
tional inhibitors or medications was examined, 
thereby enriching our analysis. Within the high-risk 
group, discernible elevation in IC50 values was 
observed for AMG-319, AZD1208, AZD6482, 
AZD8055, Olaparib, Palbociclib, PCI-34051, Pevone-
distat, Ribociclib, Sabutoclax, and SB216763(FIGURE 
7A-K). Conversely, among the high-risk cohort, 
Sepantronium bromide demonstrated a reduced IC50 
value, signifying a distinct pattern (FIGURE 7L). The 
integration of the risk score provides a framework for 
further exploration of immune therapy response in 
patients afflicted with CESC, thus bolstering the 
precision of pharmaceutical interventions and 
furnishing invaluable scientific insights for clinical 
investigations. 

The relevance of CRGs to the tumor 
microenvironment 

We performed an in-depth analysis of the 
expression profiles of the 7-CRGs within the complex 
immunological microenvironment using the 
CESC_GSE168652 single-cell dataset obtained from 
the TISCH database.  
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Figure 6. Prediction of CRGs risk scores for tumor microenvironment (TME) and immune cell infiltration. (A) Bubble plot of immune cells. (B) Correlation matrix of immune 
cells. Red indicates a positive correlation, blue indicates a negative correlation, and the color intensity represents the strength of the correlation. (C) Variations in immune cell 
infiltration between groups at high and low risk. (D) Immune checkpoint expression variations between high-risk and low-risk populations. (E) The relationship between immune 
cells and 7-CRGs. To determine correlation coefficients and p-values, Spearman correlation analysis was used. (F) Differences in immune cell and immunological function ssGSEA 
scores between groups at high and low risk. (G) Examination of TME subsystems. (H) Risk ratings and the ICB response signature have a positive correlation. (I) Correlation 
between each stage of the tumor immune cycle and risk ratings. (J) Disparities between high-risk and low-risk groups in the enrichment scores of immune treatment prediction 
pathways. (K) Differences between high-risk and low-risk groups at each stage of the cancer immune cycle. * P < 0.05; ** P < 0.01; *** P < 0.001. 
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Figure 7. 7-CRGs characteristics predict chemotherapy sensitivity. (A) AMG−319. (B) AZD1208. (C) AZD6482. (D) AZD8055. (E) Olaparib. (F) Palbociclib. (G) PCI−34051. 
(H) Pevonedistat. (I) Ribociclib. (J) Sabutoclax. (K) SB216763. (L) Sepantronium bromide. 

 
This comprehensive dataset encompasses a 

diverse range of 22 distinct cell clusters and 
encompasses 7 unique immune cell subtypes, 
facilitating a detailed depiction of the spatial 

distribution and relative abundance of each cell 
population (FIGURE 8A-D). Interestingly, the 
expression levels of the individual CRGs within the 
immunological microenvironment are notably absent 
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in the HLF and LDHC populations (FIGURE 8E, F). In 
contrast, the expression of PGK1 and PSMA4 is 
observed across multiple immune cell subsets 
(FIGURE 8G, H), with TNF predominantly exhibiting 
expression within the Mono/Marco subpopulation 
(FIGURE 8I). 

Immunohistochemical staining and PCR 
confirm expression of biological clock gene 
proteins 

The protein expression patterns of the five 
7-CRGs we chose were subsequently examined in 
CESC tissues. PGK1 and LDHC protein expression 
levels were equivalent in carcinogenic and non- 
cancerous tissues, according to immunohisto-
chemistry (IHC) analyses, showing no appreciable 
changes (FIGURE 9A-B). In contrast, it was 
discovered that CESC tissues had considerably higher 
levels of PSMA4, TDO2, and TNF expression 
(FIGURE 9C-E). The malignant development of CESC 
may be influenced by the overexpression of these 
genes. These findings offer new opportunities for 
immunotherapeutic approaches in CESC by 
validating the differential expression patterns of the 
7-CRGs inside the immunological tissues of CESC 
patients, as predicted by our computational model. 

Discussion 
CESC is the most common disease in the world 

and has a significant impact on women's health. 
Although early CESC has a favorable prognosis, the 
majority of cases are detected in the middle or late 
stages and have a less favorable prognosis. Therefore, 
the key to improving the prognosis of CESC is early 
diagnosis and monitoring. Finding new molecular 
markers is crucial for early diagnosis, determining 
prognosis, and improving the prognosis of CESC, 
particularly for the detection and treatment of 
advanced-stage malignancies. 

Changes in the expression of circadian clock 
genes, whether they are up-regulated or down- 
regulated, contribute to tumor cell proliferation by 
upsetting the delicate balance of cell division [14, 
49-52]. The CRGs control a wide range of 
immunological activities in cancer, including immune 
infiltration, according to several lines of research 
[53-55]. In solid tumors, CRGs control several immune 
procedures [56, 57]. As an illustration, Kinker et al. 
[58] discovered a significant association between 
CESC and the proportions of various lymphocyte 
subsets, including CD4+ T cells and BK cells. Another 
separate group asserts that BMAL1 might function as 
a biomarker for T cell-based immunotherapies for 
melanoma [59].  

 

 
Figure 8. Correlation of CRGs with the tumor microenvironment. (A-D) Annotation of all cell types in CESC_GSE168652 and the percentage of each cell type. (E) HLF. (F) 
LDHC. (G) PGK1. (H) PSMA4. (I) TNF. 
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Figure 9. Immunohistochemical staining confirms the expression of the biological clock gene protein, Immunohistochemical analysis of 5 circadian clock genes in 7-CRGs. (A) 
PGK1. (B) LDHC. (C) PSMA4. (D) TDO2. (E)TNF. 

 
The connection between the immunological 

infiltration in CESC and the circadian rhythm is still 
unclear, though. Therefore, analyzing tumor 
metastasis-related genes and establishing predictive 
models for tumor metastasis can provide an 
important basis for early intervention in CESC. 
However, there are not many known molecular 
markers that can be used in the clinical setting, and 
there is an urgent need to select molecular markers 
from these molecules that have high predictive power 
for the disease. The results of this project will provide 
an important theoretical basis for understanding the 
pathogenesis of the disease and finding new 
therapeutic approaches. we used multi-omics 
methods to investigate the relationship between the 
immune infiltration in CESC and the circadian clock. 

In this study, we explored in depth the role of 
CRGs on the prognosis of CESC patients through 
machine learning techniques. By constructing a 
specific nomogram, we were able to effectively 
predict the prognosis of individual patients and 
identify circadian clock-related genes that may play 
other roles in CESC through techniques such as 
pathway enrichment analysis and immunoassay. 
Ultimately, the findings of this project will provide a 
theoretical basis for the clinical treatment of CESC and 
new ideas for the treatment of CESCs, which will 
further advance the development of CESC treatment. 

First, we assessed the rhythm of 7 CRGs in 

Cervical squamous cell tissue. To assess the 
prognostic role of core biological clock gene 
expression in CESC, we used Kaplan-Meier survival 
analysis and Cox proportional risk regression analysis 
to assess the prognostic role of core biological clock 
gene expression in CESC. We found that core 
biological clock gene expression levels were 
associated with survival in CESC patients. To 
characterize the robust risk scores of seven genes as 
independent prognostic biomarkers, we identified 
TNF, HLF, PGK1, PSMA4, LY96, LDHC, and TDO2 as 
independent prognostic biomarkers. Previously 
investigators have described certain associations 
between independent prognostic biomarkers and 
cancer tumorigenesis and pathogenesis. For example, 
Balkwill, F demonstrated [60] that TNF-α is involved 
in pathological processes such as immune system 
maintenance and homeostasis, inflammation, host 
defense, chronic inflammation, and autoimmunity 
and that it is also involved in the development of 
malignant diseases. Similar to this, Hengyu Li et al. 
[61] discovered that TGF-1, a substance released by 
TAMs, controls HLF. Then, HLF promotes GGT1 to 
increase ferritin resistance, which fuels triple-negative 
breast cancer cell proliferation, metastasis, and 
cisplatin resistance. Furthermore, Yu He et al. [41] 
demonstrated that whereas high extracellular PGK1 
expression suppresses cancer malignancy by stifling 
angiogenesis, high intracellular PGK1 expression 
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promotes tumor cell proliferation. Additionally, 
PGK1 is linked to cancer patients' poor prognoses and 
resistance to chemotherapy and radiation therapy. 
According to Yushun Bai et al. [62], PSMA4 may 
influence lung cancer OS via cis-regulating the 
expression of the relevant genes. 

LY96 was shown to be considerably increased by 
Kechao Nie et al. [63] in the majority of cancers, and 
their findings revealed that LY96 was connected to 
cancer copy number, DNA methylation, somatic 
mutation, microsatellite instability, tumor mutation 
load, and tumor size. Through the activation of the 
PI3K/Akt/GSK-3 pathway, Liangyuan Chen et al. 
[64] 67 discovered that LDHC increased lung 
adenocarcinoma cell proliferation, migration, inva-
sion, and epithelial-mesenchymal transition. By 
activating the Wnt5a pathway, TDO2 has been shown 
by Hui Liu et al. [65] to influence the expression of 
cancer-related biomarkers such as matrix metallo-
proteinase 7 (MMP7) and cell adhesion receptor 
CD44, which facilitates the migration and invasion of 
cancer cells. As a result, our data is consistent with 
earlier research on different cancers. 

In light of this, categorizing samples based on 
already-created gene expression profiles is a useful 
strategy for solving this problem. Using this method, 
CRGs were used to categorize CESC patients. These 
genes' expression varied significantly across subtypes 
and was correlated with significantly different 
prognoses, indicating that our 7-CRGs markers could 
accurately predict a patient's prognosis. This makes it 
easier for clinicians to create various treatment plans. 
It demonstrates how the nomogram created based on 
the 7-CRG signature can assist physicians in creating 
more accurate, precise, and effective treatment plans 
that can benefit CESC patients at 1, 3, and 5 years. 

The effectiveness of targeted therapies and the 
tumor metastatic process are both significantly 
influenced by the TME. We conducted several studies 
to learn more about this, and by examining the ratios 
of 22 immune cell types in various subtypes, we 
discovered that the levels of infiltration of T cells CD4 
naive, T cells regulatory (Tregs), and Mast cells 
activated were significantly upregulated, indicating 
that they play a role in development. Additionally, 
each of the 7-CRGs was significantly linked to the 
invasion of important immune cells, including HLF, 
PGK1, PSMA4, and LY96, which are potential 
molecular targets for detecting and managing CESC. 
In conclusion, the nomogram based on the 7-CRGs 
model we created can assist doctors in creating 
individualized CESC treatment plans in clinical 
practice. It can also accurately predictt the survival of 
CESC patients. Future research on the molecular 
mechanisms underlying this trait will be clinically 

significant and may generate new concepts for 
precision medicine. 

However, there are still some issues with this 
paper's study, particularly with our developed 
7-CRGs model, which must be acknowledged and 
resolved in the subsequent research. First off, because 
our data analysis process is based on a public 
database, there may be differences between the results 
of our predictions and the real circumstances. We 
therefore tried to prevent this problem by obtaining 
additional data from CESC patients so that we could 
validate the model's usefulness and precision of 
immunotherapy predictions. Further experiments are 
needed to elucidate the underlying mechanisms of 
these characterized genes in this disease. 
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