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Abstract 

Glioblastoma multiform (GBM) is categorized as the most malignant subtype of gliomas, which comprise nearly 
75% of malignant brain tumors in adults. Increasing evidence suggests that network pharmacology will be a 
novel method for identifying the systemic mechanism of therapeutic compounds in diseases like cancer. The 
present study aimed to use a network pharmacology approach to establish the predictive targets of 
sciadopitysin against GBM and elucidate its biological mechanisms. Firstly, targets of sciadopitysin were 
obtained from the SwissTargetPrediction database, and genes associated with the pathogenesis of GBM were 
identified from the DiGeNET database. Sixty-four correlative hits were identified as anti-glioblastoma targets of 
sciadopitysin. Functional enrichment and pathway analysis revealed significant biological mechanisms of the 
targets. Interaction of protein network and cluster analysis using STRING resulted in two crucial interacting 
hub genes, namely, HSP90 and AKT1. Additionally, the in vitro cytotoxic potential of sciadopitysin was assessed 
on GBM U87 cells. The findings indicate that the pharmacological action of sciadopitysin against GBM might be 
associated with the regulation of two core targets: HSP90 and AKT1. Thus, the network pharmacology 
undertaken in the current study established the core active targets of sciadopitysin, which may be extensively 
applied with further validations for treatment in GBM. 
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Introduction 
Adult glioblastoma (GBM) is the most common 

malignant primary brain tumor, representing 
approximately 57% of all gliomas and 48% of all 
primary malignant central nervous system (CNS) 
tumors [1]. It is also one of the most deadly and 
recalcitrant of all malignant solid tumors. Despite 
recent advances that have been made in 
multimodality therapy for glioblastoma incorporating 
surgery, radiotherapy, systemic therapy (chemo-
therapy, targeted therapy), and supportive care, the 
overall prognosis is still poor, and long-term survival 
is rare. The latest research shows that in the United 
States alone, the annual incidence of glioblastoma is 

about 34 cases per 1 million people, with a median 
survival of about 8 months, and more than 7,000 
people die from glioblastoma each year [2]. For most 
patients with GBM, there is no known cause of the 
disease. It may occur at any age and originate by 
genetic alterations affecting neuroglial stem or 
progenitor cells [3]. Incidence increases steadily with 
age. The therapeutic efficacy of glioblastoma could be 
improved by figuring out molecular pathways and 
alterations in the signaling mechanisms of the tumor 
cells. 

Sciadopitysin (SP), a biflavonoid compound that 
is common in gymnosperms such as Cyperus 
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roxburghii, Cryptomeria fortunei, Podocarpus, Taxus 
chinensis, and Ginkgo biloba, exhibits various biological 
properties [4]. In recent years, the biological activity of 
SP has been gradually investigated. Studies have 
shown that SP has various pharmacological effects, 
such as anti-tumor, antioxidation, reducing blood 
glucose and blood lipid, etc. Bioflavonoids show 
potential proteins or enzymes related to metabolism, 
growth, and survival, which are related to tumor 
growth, tumor metastasis, and angiogenesis [5]. 
Glioblastoma is a kind of heterogeneous disease, 
meaning a distinct understanding of its mechanism is 
required for significant treatment preferences. 
However, due to limitations in research techniques 
and economic considerations, it is difficult to reveal 
the synergy between multiple targets in disease 
treatment. Currently, the precise antitumor 
mechanisms of SP are unknown. 

Network pharmacology, as an emerging 
discipline, has been developed very well in recent 
years by integrating bioinformatics and pharmaco-
logy. It is a kind of method that predicts targets 
against a particular disease by the available 
biomedical data in system biology and poly- 
pharmacology [6]. By establishing a pharmaceutical 
chemistry database, researchers can discover the 
relationship between drugs and targets, targets and 
target diseases, systematically mine the existing 
biological data, abstract these data into a network 
relation model, and then systematically explain the 
role of drugs in disease treatment [7]. Network 
pharmacology can describe the complex relationship 
between biological systems in targeted therapy and 
determine the synergistic effect in tumor therapy 
through network component analysis [8].  

So, we used network pharmacology to study 
multi-target drugs, exploring target sites and action 
pathways to provide evidence for the clinical 
application of SP in GBM treatment. The study was 
divided into the following stages: (1) Identification of 
the potential targets of SP based on its association 
with GBM through retrieval from databases; (2) Using 
gene ontology (GO) terms to study the key role of 
identified targets through functional enrichment and 
pathway analysis; (3) Determining the core indicators 
based on interaction through network analysis; (4) 
Validation of potential targets by molecular docking 
verification and in vitro assessment. 

Materials and Methods 
Identification of potential targets of 
sciadopitysin and glioblastoma-related targets 

SwissTargetPrediction 
(http://www.swisstargetprediction.ch/, accessed on 

20 July 2023) was utilized to screen the potential 
targets of sciadopitysin [9].  The molecular structure is 
displayed in Figure S1, and SMILES of sciadopitysin 
is COC1=CC=C(C=C1)C2OC3C(=C(O)C=C(O)C= 
3C(=O)C=2)C4=C(OC)C=CC(=C4)C5OC6C(=C(O)C=
C(OC)C=6)C(=O)C=5. 

The glioblastoma-related targets were screened 
from the DisGeNET database (http://www.disgenet 
.org/, accessed on 20 July 2023) using the keyword 
search “glioblastoma multiforme” [10]. The 
overlapped targets of sciadopitysin potential targets 
and glioblastoma-related targets were considered as 
candidate anti-glioblastoma cancer sciadopitysin 
targets, which were subjected to further analysis. 

Gene ontology and signaling pathway 
enrichment analysis of the drug-disease 
targets 

To investigate the biological characteristics of 
drug-disease targets, Gene Ontology (GO) 
enrichment, and Kyoto Encyclopedia of Genes and 
Genome (KEGG) pathway analyses were carried out 
using the clusterProfiler package. The enrichment 
terms with adjusted p-value <0.05 were deemed to be 
significantly different. The genes with significant 
regulatory pathways were chosen for subsequent 
gene-pathway network analysis. 

Establishment of the PPI network and module 
construction of glioblastoma targets 

Based on the Search Tool for the Retrieval of 
Interacting Genes (STRING), the protein-protein 
interaction network was constructed by the candidate 
64 anti-glioblastoma targets of sciadopitysin, with a 
lowest confidence score of 0.4. 

Network construction and analysis 

To elucidate the therapeutic mechanism of 
sciadopitysin on GBM, the ingredient-target network 
was built through Cytoscape 3.7.2 software. The 
drug-disease targets' protein-protein interaction (PPI) 
network was established by the plugin Bisogenet of 
Cytoscape version 3.7.2 [11]. Subsequently, topology 
analysis was conducted using the Cytoscape plugin 
CytoNCA to calculate the Betweenness Centrality 
(BC) and Degree Centrality (DC). The nodes with BC 
and DC were identified as the key nodes. Next, the 
gene-pathway network was built to identify the key 
target genes responsible for sciadopitysin-treated 
GBM. Lastly, the crossover genes between the key 
nodes and the key target genes were considered the 
core molecular targets of sciadopitysin for treating 
GBM and were selected to perform further in vitro 
experiments. 
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Molecular docking analysis 
To assess the putative targets identified through 

network analysis, we conducted a molecular docking 
analysis using the Auto-Dock Vina software [12]. 
Initially, the three-dimensional (3D) structure of 
sciadopitysin was retrieved from PubChem (accessed 
on 9 October 2023) and optimized. Additionally, the 
3D structures of the potential targets were 
downloaded from the Protein Data Bank (PDB) 
database (accessed on 9 October 2023). We then 
utilized AutoDockTools to generate a two- 
dimensional map of sciadopitysin with the potential 
targets, which enabled us to visualize the direct 
interactions between the compound and the targets. 
Finally, PyMol software was used to observe the 
three-dimensional structure of sciadopitysin-target 
complex [13]. 

Cell and cell culture  
Human glioblastoma cell line U87 was 

purchased from the Chinese Academy of Sciences Cell 
Bank. These cells were incubated at 37°C, 5% CO2 
concentration, and high humidity. They were 
regularly cultured in Dulbecco’s modified Eagle’s 
medium (HyClone), which were supplemented with 
10 % fetal bovine serum (HyClone).  

Active cell apoptosis 
Cell apoptosis was measured by the Caspase 

3/7Activity Assay Kit (Absin, China). In brief, cells 
were collected and centrifuged at 600 g at 4°C for 5 
minutes, the supernatant was removed, and after 
washing with PBS, the lysate was added at a ratio of 
100 microliters per 2 million cells. The lysate was 
dissolved in an ice bath for 15 minutes. Then we 
centrifuged at 16,000 g and 4°C for 10 minutes and 
transferred the supernatant to a centrifuge tube 
pre-cooled by an ice bath. The reaction system was as 
follows: 40 µL buffer, 50 µL experimental cells, 10 µL 
Ac-DEVD-pNA (2mM). After incubation at 37°C for 
one hour, A405 was determined when the color 
change was noticeable. 

Flow cytometry 
The apoptosis of cells was detected by the 

Annexin V-fluorescein isothiocyanate/propidium 
iodide (Annexin V-FITC/PI) apoptosis detection kit 
(abs50001; Absin Biotechnology Co. Ltd., Shanghai, 
China) staining. U87 cells were incubated in 6-well 
plates and treated with 100 μΜ sciadopitysin for 72 h. 
Cells were collected and washed with cold 
phosphate-buffered brine, resuspended with 5 µL 
Annexin V-FITC and 5 µL PI staining solution in 300 
µL 1×binding buffer, and incubated at room 
temperature for 15 min under darkness. Next, we 

added 300 µL 1×binding buffer and mixed. Finally, 
cell apoptosis was detected by flow cytometry 
(Bio-Rad, State of California, USA). 

Western blot 
Total protein extraction of cell lines was 

conducted by applying RIPA buffer (Beyotime, 
Shanghai, China). The proteins were separated on a 
10-12% sodium dodecyl sulfate-polyacrylamide gel 
and then transferred onto polyvinylidene fluoride 
membranes (Millipore, Billerica, MA, USA).  Next, the 
membrane was incubated with primary antibodies 
overnight at 4°C. AKT1 (1:1000, rabbit, Cell Signaling 
Technology, Cat#75692), HSP90α (1:1000, mouse, 
Abcam, Cat#ab79849), Actin (1:1000, rabbit, Abcam, 
Cat# ab179467). After the membrane was washed, 
HRP-labeled Goat Anti-Rabbit IgG (1:1000, Beyotime, 
Cat# A0208, RRID: AB_2892644) or HRP-labeled Goat 
anti-mouse IgG (1:1000, Beyotime, A0216, RRID: 
AB_2860575) were incubated at 25°C for 1 hour. 
Finally, the enhanced chemiluminescence detection 
system (Applygen Technology, Beijing, China) was 
used to detect the signal. The protein expression level 
was detected by ImageJ software. 

Statistical analysis 
SPSS version 23.0 was employed to conduct the 

statistical test. All experiments were performed in 
triplicate. All data were presented as mean ± SD. 
Comparisons among different groups were done with 
one-way ANOVA followed by Dunnett or Bonferroni 
post hoc analysis. A p-value of <0.01 or <0.05 was 
deemed statistically significant. The statistical column 
charts were drawn with Prism 8.0. 

Results 
Prediction and screening of drug target 
proteins and glioblastoma-related targets 

One hundred potential targets of sciadopitysin 
were screened from the SwissTargetPrediction 
database. The classes of these potential targets were 
primarily kinase, enzyme, oxidoreductase (Figure S2). 
3197 hits of glioblastoma-related targets were 
predicted from the DisGeNET database. There were 
64 targets overlapped in the drug and disease targets 
(Figure 1 and Table 1). 

Gene ontology analysis of the candidate 
targets 

Three categories of anti-glioblastoma targets of 
sciadopitysin: cellular component, biological process, 
and molecular function, were classified by gene 
ontology (GO) analysis (Figure 2). The top 10 
significantly enriched GO terms among the 64 core 
targets were listed in Tables 2-4. Among these GO 
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functions, the enriched GO terms of cellular 
component were nucleus (GO:0005634), cytosol 
(GO:0005829), and plasma membrane (GO:0005886). 
The significant GO terms of the biological process 
included a response to drug (GO:0042493) and 
oxidation-reduction process (GO:0055114). The 
enriched GO terms of molecular function were 
associated with protein binding (GO:0005515) and 
ATP binding (GO:0005524). 

 

Table 1. List of 64 potential anti‐glioblastoma targets of 
sciadopitysin. 

Gene 
Name 

Uniprot 
ID  

Protein Name 

BACE1 P56817 Beta-site APP cleaving enzyme 1 
PTPN1 P18031 Tyrosine-protein phosphatase non-receptor type 1 
VCP P55072 Valosin-containing protein 
PGF P49763 Placenta growth factor  
VEGFA P15692 Vascular endothelial growth factor A 
ABCG2 Q9UNQ

0 
ATP-binding cassette sub-family G member 2 

MCL1 Q07820 Induced myeloid leukemia cell differentiation protein Mcl-1 
ABCB1 P08183 ATP-dependent translocase ABCB1 
AKR1B1 P15121 Aldo-keto reductase family 1 member B1 
PRKCB P05771 Protein kinase C beta type 
CYP19A
1 

P11511 Cytochrome P450 19A1 

NOX4 Q9NPH
5 

NADPH oxidase 4 

KDM1A O60341 Lysine-specific histone demethylase 1A 
RELA Q04206 Transcription factor p65 
PTGS2 P35354 Prostaglandin G/H synthase 2 
TNKS O95271 Poly [ADP-ribose] polymerase tankyrase-1 
ESR1 P03372 Estrogen receptor (ER) (ER-alpha) 
PRKCG P05129 Protein kinase C gamma type (PKC-gamma) 
ABCC1 P33527 Multidrug resistance-associated protein 1 
ODC1 P11926 Ornithine decarboxylase (ODC) 
LDHA P00338 L-lactate dehydrogenase A chain (LDH-A) 
IDH1 O75874 Isocitrate dehydrogenase [NADP] cytoplasmic (IDH) 
HSP90A
A1 

P07900 Heat shock protein HSP 90-alpha 

FASN P49327 Fatty acid synthase 
BCHE P06276 Cholinesterase 
MAOA P21397 Amine oxidase [flavin-containing] A 
ESR2 Q92731 Estrogen receptor beta (ER-beta) 
CDK6 Q00534 Cyclin-dependent kinase 6 
CSNK2A
1 

P68400 Casein kinase II subunit alpha (CK II alpha) 

AKR1B1
0 

O60218 Aldo-keto reductase family 1 member B10 

MPG P29372 DNA-3-methyladenine glycosylase 
MELK Q14680 Maternal embryonic leucine zipper kinase (hMELK) 
CA2 P00918 Carbonic anhydrase 2 
CA12 O43570 Carbonic anhydrase 12 
KCNH2 Q12809 Potassium voltage-gated channel subfamily H member 2 
CCR1 P32246 C-C chemokine receptor type 1 
TYR P14679 Tyrosinase 
AHR P35869 Aryl hydrocarbon receptor 
PDK1 Q15118 [Pyruvate dehydrogenase (acetyl-transferring)] kinase 

isozyme 1, mitochondrial 
NOS2 P35228 Nitric oxide synthase, inducible 
TRAP1 Q12931 Heat shock protein 75 kDa, mitochondrial 
AKT1 P31749 RAC-alpha serine/threonine-protein kinase (Protein kinase B 

alpha)  
SRC P12931 Proto-oncogene tyrosine-protein kinase Src 
DAPK1 P53355 Death-associated protein kinase 1 
MTOR P42345 Serine/threonine-protein kinase mTOR 
PIK3CA P42336 Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic 

subunit alpha isoform 
CHEK1 O14757 Serine/threonine-protein kinase Chk1 
WEE1 P30291 Wee1-like protein kinase 

Gene 
Name 

Uniprot 
ID  

Protein Name 

CA9 Q16790 Carbonic anhydrase 9 
PLG P00747 Plasminogen 
HDAC1 Q13547 Histone deacetylase 1 
AR P10275 Androgen receptor 
CBR1 P16152 Carbonyl reductase [NADPH] 1 
HSP90B1 P14625 Endoplasmin (Heat shock protein 90 kDa beta member 1) 
CXCR2 P25025 C-X-C chemokine receptor type 2 
ALOX15 P16050 Polyunsaturated fatty acid lipoxygenase ALOX15 
PARP1 P09874 Poly [ADP-ribose] polymerase 1 
MMP9 P14780 Matrix metalloproteinase-9 
MMP2 P08253 72 kDa type IV collagenase 
MMP12 P39900 Macrophage metalloelastase 
CD38 P28907 ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 1 
TOP1 P11387 DNA topoisomerase 1 
ARG1 P05089 Arginase-1 
PRKCI P41743 Protein kinase C iota type 

 
 

 
Figure 1. Venn diagram showing the 64 overlapped targets of sciadopitysin potential 
targets and glioblastoma-related targets. 

 

Signaling pathway enrichment analysis of the 
candidate targets 

Based on the Reactome database, the top 10 
enriched pathways of the 64 candidate targets were 
found to be Interleukin-4 and Interleukin-13 
signaling, Extra-nuclear estrogen signaling, PIP3 
activates AKT signaling, ESR-mediated signaling, 
Reversible hydration of carbon dioxide, Signaling by 
SCF-KIT, Response to elevated platelet cytosolic 
Ca2+, Biosynthesis of DHA-derived SPMs, VEGFR2 
mediated cell proliferation and CD28 dependent 
PI3K/Akt signaling (Figure 3A and Table 5). Based on 
the interaction network constructed by the STRING 
database, the targets among the pathway enrichment 
were grouped into four most significant clusters that 
include ESR-mediated signaling string, extra-nuclear 
estrogen signaling string, interleukin-4 and 
Interleukin-13 signaling string, and PIP3 activates 
AKT signaling string, respectively (Figure 3B). 
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Table 2. Top 10 significantly enriched GO terms of cellular component associated with the identified anti‐glioblastoma targets of 
sciadopitysin 

Term Name Description Count % of Genes Fold Enrichment p-value 
GO:0005829 cytosol 31 48.4375 2.66282051 8.72E-08 
GO:0048471 perinuclear region of cytoplasm 12 18.75 5.50241546 8.09E-06 
GO:0005886 plasma membrane 29 45.3125 2.00382189 9.85E-05 
GO:0016020 membrane 20 31.25 2.58863636 1.05E-04 
GO:0005654 nucleoplasm 22 34.375 2.2501796 2.80E-04 
GO:0043234 protein complex 8 12.5 5.52912621 5.33E-04 
GO:0005634 nucleus 32 50 1.68273315 8.74E-04 
GO:0070062 extracellular exosome 20 31.25 2.02596941 0.00232391 
GO:0009986 cell surface 8 12.5 4.20295203 0.00259475 
GO:0000790 nuclear chromatin 5 7.8125 7.37694301 0.00446334 

 

 
Figure 2. Gene Ontology analysis of candidate targets. GO analysis classified into 3 groups: molecular function, biological process and cellular component. 

 
Figure 3. Signaling pathway enrichment analysis of the candidate targets of sciadopitysin. (A) Pie chart shows the top 10 enriched pathways of candidate targets of sciadopitysin 
identified by Reactome database. (B) The four most significant enriched pathways are based on the protein-protein interaction network. 

 

PPI network analysis 
The candidate 64 anti-glioblastoma targets of 

sciadopitysin were introduced into the STRING 
database to obtain the PPI network complex. The PPI 
network contained 64 nodes and 359 edges (Figure 
4A), obtained with a medium confidence score of 0.4 

and enriched p-value of < 1.0e-16. Using CFinder with 
a k-cliques value of >12, one module (Figure 4B) was 
extracted from the constructed PPI network. Based on 
the key module, HSP90AA1 and AKT1 were selected 
as the key genes of sciadopitysin targets in 
glioblastoma. 
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Table 3. Top 10 significantly enriched GO terms of biological process associated with the identified anti‐glioblastoma targets of 
sciadopitysin 

Term Name Description Count % of Genes Fold Enrichment p-value 
GO:0042493 response to drug 15 23.4375 12.9461349 5.08E-12 
GO:0001666 response to hypoxia 10 15.625 15.2543605 1.48E-08 
GO:0055114 oxidation-reduction process 13 20.3125 5.76161318 1.70E-06 
GO:0018105 peptidyl-serine phosphorylation 7 10.9375 14.693 7.24E-06 
GO:0045429 positive regulation of nitric oxide biosynthetic process 5 7.8125 30.5087209 1.99E-05 
GO:0043066 negative regulation of apoptotic process 10 15.625 5.76648352 4.70E-05 
GO:0006468 protein phosphorylation 10 15.625 5.75383772 4.78E-05 
GO:0006950 response to stress 5 7.8125 21.5061475 8.00E-05 
GO:0001938 positive regulation of endothelial cell proliferation 5 7.8125 19.0126812 1.30E-04 
GO:0048010 vascular endothelial growth factor receptor signaling pathway 5 7.8125 18.2204861 1.53E-04 

 

Table 4. Top 10 significantly enriched GO terms of molecular function associated with the identified anti‐glioblastoma targets of 
sciadopitysin 

Term Name Description Count % of Genes Fold Enrichment p-value 
GO:0019899 enzyme binding 12 18.75 9.505067568 3.68E-08 
GO:0004672 protein kinase activity 12 18.75 8.816678273 7.91E-08 
GO:0005524 ATP binding 21 32.8125 3.70506898 2.55E-07 
GO:0016301 kinase activity 9 14.0625 9.850168568 3.02E-06 
GO:0005515 protein binding 51 79.6875 1.531251779 6.43E-06 
GO:0042803 protein homodimerization activity 13 20.3125 4.697196062 1.37E-05 
GO:0004674 protein serine/threonine kinase activity 9 14.0625 6.313538896 7.47E-05 
GO:0042802 identical protein binding 12 18.75 4.225884513 9.10E-05 
GO:0008270 zinc ion binding 14 21.875 3.15886976 3.18E-04 
GO:0004879 RNA polymerase II transcription factor activity, ligand-activated sequence-specific DNA binding 4 6.25 29.30729167 3.24E-04 

 

Table 5. Top 10 significantly enriched pathways identified by Reactome database and associated anti‐glioblastoma targets of sciadopitysin 

Pathway name Count p-value Genes 
Interleukin-4 and Interleukin-13 signaling 11 2.98418E-11 VEGFA; MCL1; PTGS2; HSP90AA1; MAOA; NOS2; AKT1; HSP90B1; ALOX15; MMP9; MMP2;  
Extra-nuclear estrogen signaling 8 9.14128E-10 ESR1; HSP90AA1; ESR2; AKT1; SRC; PIK3CA; MMP9; MMP2;  
PIP3 activates AKT signaling 6 1.82899E-05 ESR1; ESR2; AKT1; SRC; MTOR; PIK3CA;  
ESR-mediated signaling 3 2.95625E-05 ESR1; HSP90AA1; ESR2;  
Reversible hydration of carbon dioxide 3 3.92538E-05 CA2; CA12; CA9;  
Signaling by SCF-KIT 4 5.84809E-05 SRC; PIK3CA; CHEK1; MMP9;  
Response to elevated platelet cytosolic Ca2+ 2 9.86843E-05 PRKCB; PRKCG;  
Biosynthesis of DHA-derived SPMs 2 9.86843E-05 PTGS2; ALOX15;  
VEGFR2 mediated cell proliferation 3 0.00016796 VEGFA; PRKCB; SRC;  
CD28 dependent PI3K/Akt signaling 3 0.000263645 AKT1; MTOR; PIK3CA;  

 

 
Figure 4. Protein-protein interaction network complex and sub-network module construction of candidate targets. (A) Protein-protein interaction network of the 
anti-glioblastoma targets of sciadopitysin. A total of 64 targets was screened, containing 64 nodes and 359 edges. (B) One key sub-network of the core targets was constructed 
by module analysis. 
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Figure 5. Interaction of sciadopitysin with HSP90α (PDB ID:2VCJ) and AKT1 (PDB ID:4EKL).  (A) 3D docking molecule of HSP90α (cyan) and sciadopitysin. (B) 3D docking 
molecule of AKT1 (magenta) and sciadopitysin. 

 

Molecular docking 
Molecular docking was performed to validate 

the possible binding action mode between 
sciadopitysin and core targets. Among the two 
targets, the free binding energy of sciadopitysin with 
HSP90α -8.1kcal/mol, and with AKT1 was -9.3 
kcal/mol, shown in Table 6. In the visualized image, it 
can be clearly seen that there are docking groups 
between the cyan labeled HSP90α and sciadopitysin 
molecules. And magenta-labeled AKT1 and 
sciadopitysin molecules are identical (Figure 5). The 
docking diagram shows that HSP90α and AKT1 both 
interact directly with sciadopitysin. 

Sciadopitysin promoted apoptosis of GBM 
cells by inhibiting HSP90a and AKT1 

After treatment with 100µM sciadopitysin for 
72 h, the apoptosis of GBM cells was determined by 
flow cytometry, and results showed that the 
percentage of apoptotic cells was significantly 
increased after sciadopitysin treatment (Figure 6B). 
These results strongly suggest that sciadopitysin 
induces apoptosis of GBM cells. We further verified 
the molecular target of sciadopitysin involved in 
inducing apoptosis in U87 cells. According to the 
above analysis, we detected the HSP90α and AKT1 
proteins through western blotting. As shown in 
Figures 6C and 6D, compared with the control group, 
the protein expression levels of HSP90α and AKT1 in 
the treatment group were significantly decreased. The 
results confirmed that HSP90α and AKT1 were the 
molecular targets of sciadopitysin in inhibiting 
glioblastoma. 

Discussion 
In this study, bioinformatics investigation and 

network pharmacology were used to investigate the 
possibility of sciadopitysin in treating glioblastoma. 
To our knowledge, this is the first study to combine 
network pharmacology and molecular docking 

simulations to reveal the anti-glioblastoma effects of 
sciadopitysin. In the study, firstly, GBM-related genes 
were predicted from the public database prediction 
database, the target of sciadopitysin was found, and 
64 targets of sciadopitysin anti-glioblastoma were 
obtained. PPI network and STRING cluster analysis 
identified HSP90α and AKT1 as two key hubs of 
action. Finally, cell experiments confirmed that 
sciadopitysin could regulate GBM apoptosis through 
HSP90α and AKT1. 

HSP90α, encoded by the HSP90AA1 gene, is an 
important chaperone protein that requires a variety of 
collaborators to function [14]. And the HSP90 protein 
plays an important role in basic cellular processes and 
regulatory pathways such as apoptosis, cell cycle 
control, and cell signaling [15]. Overexpression of 
HSP90 is strongly associated with various cancers; for 
example, in breast cancer, the expression level of 
HSP90 is closely related to the survival of patients, 
and the abnormally high expression level of HSP90 
reflects the poor treatment effect [16-18]. HSP90 is a 
promising marker for the diagnosis and prognosis of 
malignant tumors [14, 19]. In glioblastoma, the 
expression of HSP90α was abnormally high [20, 21]. 
Research shows the inhibitor of HSP90, 
17-Allylamino-17-deoxykygdanamycin (17-AAG), 
inhibits the growth of glioma cell lines by targeting 
intracellular EGFR, AKT, and MAPK proteins [22]. In 
addition, studies have also shown that inhibiting 
Hsp90 function in glioblastoma cell lines can reduce 
the expression level of cell division cycle 2 kinase 
(cdc2) and cell division cycle 25c (cdc25c), and the 
proliferation is blocked in G(2)/M [23]. In our study, 
sciadopitysin promotes apoptosis of U87 cells, which 
is closely related to the HSP90α protein. In normal 
tissues, HSP90α is present in the cytoplasm, whereas 
in glioma cell lines, HSP90α may be abnormally 
localized to the cell membrane [19, 24]. Sciadopitysin 
interacts with HSP90α to reduce the activity of 
intracellular cdc2 and cdc25c and block the cell cycle, 
thereby inducing apoptosis. 
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Figure 6. Sciadopitysin promoted apoptosis of U87 cells. (A) Apoptosis of U87 cells was detected by measuring the activity of Caspase 3/7. (B) Apoptosis was analyzed by flow 
cytometry after Annexin V-FITC/PI staining. (C) Representative Western blots showing the status of HSP90α, AKT1 in U87 cells. Actin was used as an internal control. (D) The 
expression levels of HSP90α and AKT1 proteins were statistically analyzed.  

 

Table 6. Molecular docking studies of sciadopitysin with target protein and their binding energies 

Target drug Binding energy/(kcal/mol) 
HSP90α Sciadopitysin -8.1 
AKT1 Sciadopitysin -9.3 

 
AKT is one of the main downstream effect 

targets of phosphatidylinositol 3-kinase, which is 
overexpressed and activated in various cancers, 
including glioblastoma [25]. The individual functions 
of the three isomers of AKT, AKT1, AKT2, and AKT3, 
remain controversial in GBM. AKT2 mRNA and 
protein levels are elevated in malignant gliomas, 
while AKT3 expression levels are decreased [26]. In 
glioma cell lines, AKT2 or AKT3 knockdown inhibited 
cell growth and induced apoptosis. In contrast, AKT1 
knockdown did not affect cell growth and apoptosis, 
suggesting that AKT2 and AKT3 may be the main 
contributors to GBM cell growth, and AKT1 may be 
unnecessary [26]. However, many studies have shown 
that AKT1 plays an important role in glioblastoma. 
For example, AKT1 is one of the key hub genes in the 
gene network of glioblastoma [27]. Overacting insulin 
receptor substrate 1 may promote GBM cell viability 
through AKT1 activation [28]. The inhibitory effect of 
SOX4 on the growth of GBM cells is related to the 
activation of the p53-p21 signal and the decrease of 
AKT1 activity [29]. In our experiment, AKT1 is 
another key target of sciadopitysin to promote 
apoptosis of glioma cell lines. After sciadopitysin 
treatment, AKT1 activity is reduced in U87 cells, 

which may lead to decreased expression levels of 
Cyclin D1 or p53 in the cells, thus affecting the cell 
cycle of glioblastoma. 

In conclusion, sciadopitysin could be one novel 
potential targeted medicine for malignant 
glioblastoma. HSP90α and AKT1 were the key targets 
that sciadopitysin plays anti-tumor effects. This study 
provides preliminary experimental evidence of 
sciadopitysin against glioblastoma to some extent; 
However, further research is needed to provide more 
experimental verifications including HSP90α and 
AKT1 downstream signaling cascades and animal 
experiments to explore in vivo anti-tumor effects of 
sciadopitysin. 
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