
Journal of Cancer 2024, Vol. 15 
 

 
https://www.jcancer.org 

3975 

Journal of Cancer 
2024; 15(12): 3975-3983. doi: 10.7150/jca.96579 

Research Paper 

Exploring the Mediation Effect of Metabolite Levels on 
the Association Between Gut Microbiota and HCC: A 
two-step, two-sample bidirectional Mendelian 
Randomization 
Bingchen Xu1,5†; Lianxin Zhu2†; Pan Hu1†; Wang Yao3†; Miaola Ke4; Zhihua Zhu5 

1. State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Department of Minimally Invasive Intervention, Guangdong 
Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, P. R. China. 

2. Medical College of Nanchang University, Nanchang 330088, P.R. China; Queen Mary University of London, London, United Kingdom. 
3. The First Affiliated Hospital of Sun Yat-sen University, Department of Interventional Oncology, Guangzhou 510080, P.R. China. 
4. State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Department of Blood Transfusion, Guangdong Provincial Clinical 

Research Center for Cancer, Guangzhou 510080, P.R. China. 
5. State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Department of Thoracic Surgery, Guangdong Provincial Clinical 

Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, P. R. China. 

†These authors contributed equally to this work.  

 Corresponding authors: Miaola Ke* keml@sysucc.org.cn; Zhihua Zhu* zhuzhh@sysucc.org.cn. 

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). 
See http://ivyspring.com/terms for full terms and conditions. 

Received: 2024.03.24; Accepted: 2024.05.19; Published: 2024.05.30 

Abstract 

Background: Although the gut microbiota is one of the risk factors for liver cancer, it remains unclear 
whether the level of metabolites mediates this association.  
Methods: Utilizing summary data from genome-wide association studies (GWAS), we conducted a 
two-sample Mendelian Randomization (MR) analysis to explore the causal links between GM, 
metabolites, and HCC. A two-step MR analysis quantitatively assessed the effect of metabolite-mediated 
GM on HCC.  
Results: In our study, we demonstrated that Clostridium leptum was identified as a protective factor 
against HCC, with no evidence of reverse causality (Inverse-variance weighted [IVW], OR: 0.62 [95% CI, 
0.42–0.91]; p = 0.016). Our study also found that the potential connection between the GM and HCC 
may be mediated by the level of metabolites. An increase of one standard deviation in C. leptum 
abundance led to a 38% decrease in HCC risk (OR: 0.62 [95% CI, 0.42–0.91]), with a 9% reduction in 
phosphoethanolamine (PE) levels (OR: 0.91 [95% CI: 0.84–0.99]). PE's mediation proportion was 
established as -6.725% (95% CI, 12.96% to -26.41%).  
Conclusion: Our results demonstrate that increasing specific GM abundance can lower HCC risk, 
mediated by PE levels. We offer new prevention and treatment targets for HCC by adjusting GM. 
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1. Introduction 
According to GLOBOCAN 2020 data, liver 

cancer ranks sixth in terms of malignant tumor 
incidence and third in mortality rates [1]. With a 
continuous rise in liver cancer incidence, its global 
burden is substantial. By 2040, there will be 1.4 million 
new cases of liver cancer, resulting in 1.3 million 

deaths globally [2]. Late-stage diagnosis, 
postoperative recurrence, and limited treatment 
options contribute significantly to the poor prognosis 
of liver cancer patients. Therefore, researching early 
intervention and prevention strategies for liver cancer 
is crucial to mitigate the societal health burden [3, 4]. 
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Extensive research had revealed the imbalance of 
gut microbiota can lead to the occurrence of liver 
cancer, as the gut microbiota and their metabolites can 
influence the liver environment via the portal vein 
system [5]. Grat et al. [6] found that the abundance of 
Escherichia coli in the feces of HCC patients was 
significantly higher than that in the feces of healthy 
controls. Meanwhile, some Mendelian randomization 
studies have also provided evidence of a causal 
relationship between gut microbiota and 
hepatocellular carcinoma (HCC) [7, 8]. 

Metabolites, as intermediate or end products of 
metabolic reactions, are influenced by various factors 
such as genetics, diet, and GM [9, 10]. Conversely, 
they can also influence the development of HCC [11]. 
Chen et al. found gut flora disequilibrium promotes 
liver cancer initiation by modulating tryptophan 
metabolism and up-regulating elevated sterol 
regulatory element-binding protein 2 [12]. Research 
by Greten and colleagues established that the GM 
controlled anti-tumor immunity in liver cancer by 
modulating bile acid metabolism [13]. 

These studies suggest that the GM may influence 
the development of HCC, and that the level of 
metabolites can also impact HCC. However, there 
have been no studies exploring the causal relationship 
between gut microbiota, HCC, and metabolites 
currently. Therefore, determining whether the levels 
of metabolites interact with the GM in the process of 
HCC occurrence is crucial. To ensure causality 
between these three factors, in this study, we utilized 
the data from the latest, large-scale genome-wide 
association study (GWAS) for Mendelian 
randomization (MR) analysis [14-16]. 

MR is a powerful method for causal inference in 
which randomly allocated genetic variants are used as 
instrumental variables (IV) for a phenotype [17]. 
Given the random allocation of genetic variants at 
conception, MR can be used to overcome some of the 
biases inherent in causal inference in other analyses. 
For example, estimates are not biased owing to 
unmeasured confounding between an exposure, 
mediator, or outcome [18]. The primary objective of 
this study is to explore the causal relationship 
between GM and HCC, as well as the regulatory role 
of metabolites. We aim to translate clinically relevant 
findings related to the GM, holding significant 
implications for the prevention and treatment of liver 
cancer. 

2. Methods 
2.1 Study design 

Genetic variants serving as effective 
instrumental variables (IVs) must satisfy three core 

assumptions: i) the relevance assumption—the 
selected IV directly correlates with the exposure; ii) 
the independence assumption—the chosen IV is 
unrelated to any confounding variables between the 
exposure and the outcome; and iii) the exclusion 
restriction assumption—the selected IV exclusively 
influences the occurrence of the outcome through the 
exposure and not through alternative pathways. 

Mediation analysis typically estimates three 
parameters: i) the total effect (the effect of the 
exposure on the outcome through all potential 
pathways); ii) the direct effect (the remaining effect of 
the exposure on the outcome that operates through 
pathways other than the specified mediator or set of 
mediators); and iii) the indirect effect, also known as 
the mediating effect (the path from exposure to 
outcome that operates through the mediators) [18-20]. 

First, we employed a two-sample bidirectional 
MR analysis to determine the causal relationship 
between GM and HCC, identifying GM highly 
associated with HCC risk as SNP1 and obtaining Total 
effect. Next, we conducted a two-step MR for 
mediation analysis. The first step involved a 
two-sample MR between the selected gut microbiota 
SNP1 and plasma metabolites, screening for 
metabolites associated with GM as SNP2 and 
obtaining Beta1. The second step involved a 
two-sample MR between the selected metabolite 
SNP2 and HCC, resulting in Beta2. The study design 
was illustrated in Figure 1. 

2.2 GWAS summary data sources 
The GWAS data for GM were obtained from the 

Dutch Microbiome Project (DMP), published in 
2022[14]. The study utilized shotgun metagenomic 
sequencing on fecal samples from 7,738 individuals 
enrolled in the DMP, matching their imputed 
genotypes to differences in taxa and pathway 
abundances. This effort identified 207 taxa and 205 
GM metabolic pathways, representing the 
composition and function of the GM. All volunteers 
were from the northern Netherlands. 

The GWAS data for metabolites were sourced 
from a study published by Chen et al. in 2023. The 
researchers conducted GWAS on 1,091 blood 
metabolites and 309 metabolite ratios in 8,299 
individuals from the Canadian Longitudinal Study on 
Aging (CLSA) cohort [15]. This investigation revealed 
associations with 690 metabolites at 248 loci and 
associations with 143 metabolite ratios at 69 loci. 

The outcome variable of HCC was obtained from 
GWAS summary data of the latest R10 version 
released by the FinnGen consortium on December 18, 
2023. This dataset comprises 500 cases, 314,193 
controls, and 21,303,829 single-nucleotide 
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polymorphisms (SNPs). The FinnGen study is a 
large-scale genomics initiative that has analyzed over 
500,000 Finnish biobank samples, correlating genetic 
variation with health data to understand disease 
mechanisms and predispositions [16]. 

Detailed information for the three databases is 
provided in Table 1. This study utilized publicly 
available published GWAS data, with all informed 
consent and ethical approvals previously obtained in 
the original studies. Therefore, no additional ethics 
approval or consent to participate was deemed 
necessary for this study. 

2.3 Two-step MR analysis 

2.3.1 Selection criteria for IVs 
The criteria for selecting instrumental variables 

are as follows. (1) We chose independent genetic 
variants at the genome-wide significant level (p < 
1×10−5) as instruments in our MR analyses. 
Additionally, we included all SNPs using a less 
stringent cut-off in our MR analyses to augment the 
number of SNPs available for sensitivity analyses. 
This approach aimed to enhance robustness [21, 22]. 
(2) Linkage disequilibrium (LD) between SNPs was 
assessed using the 1,000 Genomes Project European 
Sample data as a reference panel [23]. SNPs with an 
LD (r2) > 0.001 or LD < 1,000 kb were excluded. (3) 
The F-statistic was employed to assess the strength of 

instrumental variables. We excluded genetic variants 
with an F-statistic < 10 to mitigate bias introduced by 
weak instrumental variables. The formula for F is 
F = Beta2/SE2. (4) Liver cirrhosis, hepatitis B virus 
infection, and other factors are risk factors for HCC 
and could potentially act as confounding variables. 
Therefore, we utilized the PhenoScanner V2 database 
to identify and exclude instrumental variables directly 
related to hepatitis and liver cirrhosis. 

2.3.2 Outcome variable selection criteria 
The outcome variable was obtained by matching 

the corresponding instrumental variables in a 
database that includes the outcome variable. 

2.3.3 Main analysis methods 
The two-sample MR analysis employed various 

statistical methods to evaluate the causal relationship, 
including MR-Egger, Weighted Median (WM), 
Inverse-Variance Weighted (IVW), Simple Mode, and 
Bayesian weighted. The IVW method was designated 
as the primary MR analysis technique [24]. WM 
provides more reliable causal effect estimates when 
effective instruments are lacking [25]. A Bayesian 
approach allows incorporation of current knowledge 
into the analysis via informative prior distributions, 
minimizing the impact of confounding factors on the 
results to the greatest extent possible [26]. 

 

 
Figure 1: The design of a two-step MR analysis between GM and HCC mediated by plasma metabolites. SNP1: GM that is highly related to the risk of HCC; SNP2: metabolite 
that is associated with the GM; HCC: hepatocellular carcinoma. 
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Table 1. Data sources and information used in this study. 

Vairables ID Data sources Year Race SNPs Participants Web resource 
Gut 
microbiota 

PMID: 35115690 Dutch 
Microbiome 
Project 

2022 Northern Netherlands - 7,738 https://www.ebi.ac.uk/gwas/publications/35115690 

Metabolite PMID: 36635386 Canadian 
Longitudinal 
Study on Aging 

2023 Canadian - 8,299 https://www.ebi.ac.uk/gwas/publications/36635386 

HCC finngen_R10_C3_
HEPATOCELLU 

FinnGen 
Consortium 

2023 European 21, 303, 
829 

314,193 https://storage.googleapis.com/finngen-public-data-r
10/summary_stats/finngen_R10_C3_HEPATOCELLU
_CARC_EXALLC.gz 

SNPs: single nucleotide polymorphisms; HCC: hepatocellular carcinoma 
 

 
Figure 2: The steps of the mediation analysis. 

 
2.3.4 Sensitivity analysis 

To mitigate the potential impact of underlying 
pleiotropy on the final results, we employed various 
sensitivity analysis methods. (1) Cochran's Q test was 
utilized to examine heterogeneity among selected 
SNPs. If significant heterogeneity is present (p < 0.05), 
the random-effects IVW method will be chosen; 
otherwise, the fixed-effects IVW method will be 
employed [27, 28]. (2) Egger regression assessed 
whether multiple instrumental variables exhibit 
horizontal pleiotropy. The intercept represents the 
average pleiotropic effect across the genetic variants. 
A p-value of the intercept less than 0.05 (p < 0.05) and 
a large distance from zero indicate potential 
horizontal pleiotropy [29]. (3) The MR pleiotropy 
residual sum and outlier (MR-PRESSO) test identified 
horizontal pleiotropic outliers in multi-instrument 
summary-level MR testing to eliminate outlier SNPs 
and estimate corrected results [30]. A p-value less 
than 0.05 (p < 0.05) indicated potential horizontal 
pleiotropy. 

2.3.5 Visualization of results 

To enhance the interpretability of MR analysis 
results, various visualizations were created [31]. A 
leave-one-out analysis systematically removed one 
SNP at a time to assess overall analysis robustness. 
Scatter plots illustrated the impact of each SNP on 
exposure and outcome, capturing the collective trend. 
Forest plots, utilizing the Wald ratio method, 
elucidated individual instrumental variables’ 

contribution to the overall causal estimate. Funnel 
plots helped to visualize potential bias in SNP 
selection. 

2.4 Bidirectional MR analysis 
We conducted reverse MR analysis between GM, 

metabolites, and HCC to confirm the absence of 
reverse association among them. This ensured that the 
mediation pathway could only proceed in the 
direction of exposure → mediator → outcome, as 
illustrated in Figure 1. The remaining analytical steps 
are analogous to the forward MR analysis described 
earlier. All MR analyses were performed using R 
version 4.2.0 (https://www.r-project.org/) with the 
“TwoSampleMR,” “MR-PRESSO,” and “ggplot2” 
packages. 

2.5 Mediation analysis 
Furthermore, we conducted a two-step MR 

analysis employing mediation analysis to explore 
whether metabolites mediated the causal pathway 
from GM to HCC. The total effect was decomposed 
into a mediating effect and a direct effect. The formula 
utilized for calculating the direct effect is: Direct 
Effect=Total Effect-Mediating Effect [19]. 

The mediating effect of GM on HCC was then 
decomposed into i) the causal effect of the exposure 
on the mediator (beta1) and ii) the causal effect of the 
mediator on the outcome (beta2). The formula utilized 
for calculating the mediating effect is: Mediating 
Effect=beta1×beta2 [19]. The steps of the mediation 
analysis were shown in Figure 2. 
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Figure 3: Causal relationship between GM and HCC. N: the number of SNPs; Se: standard error. 

 

3. Results 
3.1 Selection of exposure variable: 
bidirectional MR analysis between GM and 
HCC 

We excluded SNPs with LD, those with 
palindrome structures, and those already associated 
with the pathway. Detailed information on 
instrumental variables is provided in the Figure S1. 
The IVW and BW methods indicated a causal 
association of Clostridium leptum (IVW, odds ratio 
[OR]: 0.62, 95% confidence interval [CI]: 0.42–0.91, p = 
0.016), Bifidobacterium adolescentis (IVW, OR: 0.59, 95% 
CI: 0.37–0.93, p = 0.023), and Parabacteroides johnsonii 
(IVW, OR: 1.30, 95% CI: 1.02–1.66, p = 0.032) with 
HCC (Figure 3). The WM method yielded consistent 
conclusions in the causal association analysis of C. 
leptum (OR: 0.61, 95% CI: 0.37–1.00, p = 0.048) with 
HCC. However, the results of WM with B. adolescentis 
(p = 0.296) and P. johnsonii (p = 0.138) were negative, 
leading to their exclusion (Figure 3). Reverse MR 
analysis indicated no reverse causal relationship 
between C. leptum and HCC (OR: 0.99, 95% CI: 0.95–
1.03, p = 0.658; Figure S2). Finally, C. leptum was 
selected as the exposure variable (SNP1). 

3.2 Selection of mediator variable 

3.2.1 Bidirectional MR analysis between C. leptum and 
metabolites 

We conducted MR analysis on SNPs 
representing 1400 metabolites in the CLSA cohort, 
identifying three metabolites with a causal 
relationship with C. leptum (Figure S3). These are 
phosphoethanolamine (PE; IVW, OR: 0.91, 95% CI: 
0.83–0.99, p = 0.028), sphingomyelin (IVW, OR: 0.91, 
95% CI: 0.85–0.99, p = 0.022), and X-12729 (IVW, OR: 

1.12, 95% CI: 1.03–1.23, p = 0.012). However, the 
results of the WM did not support a causal effect for 
sphingomyelin (p = 0.082) and X-12729 (p = 0.080), 
leading to their exclusion. Reverse MR analysis 
suggested the absence of a reverse causal relationship 
between C. leptum and PE (OR: 1.04, 95% CI: 0.84–1.28, 
p = 0.705; Figure S2). Finally, PE was selected as the 
SNP2. 

3.2.2 Bidirectional MR analysis between PE and HCC 
The IVW method showed that PE was negatively 

associated with the risk of HCC (OR: 0.71, 95% CI: 
0.541–0.935, p = 0.015; Figure S3). Reverse MR 
analysis indicated no reverse causal relationship 
between them (OR: 0.99, 95% CI: 0.98–1.01, p = 0.322; 
Figure S2). Therefore, PE was chosen as the mediator 
variable. 

3.3 Results of mediation analysis 
We conducted an analysis of PE as a mediator of 

the pathway from C. leptum to HCC. The effect values 
were derived from the Beta coefficients of the IVW 
method, as depicted in Figure 4. Through two-step 
MR analysis, we calculated a potential mediation 
effect of PE levels (proportion mediated = -6.725%, 
95% CI = 12.96% to -26.41%) in the causal association 
between C. leptum and the risk of HCC. This finding 
suggests that an increase of one standard deviation in 
C. leptum abundance would result in a 38% decrease 
in the risk of HCC (OR: 0.62 [95% CI, 0.42–0.91]), 
accompanied by a 9% decrease in PE levels (OR: 0.91 
[95% CI: 0.84–0.99]). Simultaneously, an increase in PE 
levels by one standard deviation is associated with a 
29% decrease in the risk of HCC (OR: 0.71 [95% CI: 
0.54–0.94]). Reverse MR analysis indicated the 
absence of a reverse causal relationship. We observed 
that PE plays a role in negative feedback regulation in 
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the gut–liver axis regulation process. When the 
abundance of GM increases, PE reduces this 
protective effect. Conversely, when the abundance of 
GM decreases, an increase in PE weakens the negative 
effects of GM instability. 

3.4 Results of sensitivity analysis and 
visualization 

The F-statistics for the selected SNPs are all 
above 10 (Figure S1), indicating a low likelihood of 
weak instrument bias for these instrumental variables. 
The r2 values ranging from 0 to 1 indicated that the 
two SNPs are randomly distributed, with no LD 
(Figure S1). Supplementary Table S1 presents the 
results of three sensitivity analyses. The p-values for 
Cochran’s Q were all >0.05, the intercepts of Egger 
regression were close to zero, and the p-values were 
all >0.05. After removing outlier SNPs with 
MR-PRESSO, the p-values were all >0.05. These 
results demonstrate that our analysis adheres to the 
three fundamental assumptions of MR. We also 
visualized the results of the MR analysis. Scatter plots 
illustrated the trends of effects obtained from different 
parameter estimation methods (Figure S4). 
Leave-one-out analysis assessed the impact of each 
SNP on the overall causal estimate (Figure S5). Funnel 
plots indicated the results of heterogeneity 
assessment using IVW and MR-Egger (Figure S6). 
Forest plots illustrated the strength of the association 
between each SNP and the outcome (Figure S7). 

4. Discussion 
This study utilized the latest GWAS database to 

identify potential causal relationships between the 
gene expression of three GM and HCC. Additionally, 
a two-step bidirectional MR analysis revealed that the 
potential link between gut microbiota and HCC risk 
might be mediated by phosphoethanolamine levels 
(proportion mediated = -6.725%). Our findings 
indicate that increased gene expression abundance of 
C. leptum could reduce the risk of HCC. Furthermore, 

the protective effect of this GM was regulated by the 
levels of PE through negative feedback modulation. 
To the best of our knowledge, this is the first study 
reporting causal relationships involving plasma 
metabolites mediating interactions between GM and 
HCC. 

Our study revealed that an increase in C. leptum 
abundance is associated with a reduced risk of HCC. 
Ma et al. conducted a MR analysis between GM and 
HCC in 2022. However, they did not perform a 
bidirectional analysis. They identified 
F_Ruminococcaceae and G_Porphyromonadaceae as 
protective factors for liver cancer [7], originating from 
the family and genus within bacterial classification. 
Unfortunately, they did not specify the species within 
the genus to which these bacteria belong. By contrast, 
our study utilized the latest published GWAS 
database to identify three different species of gut 
microbes that have a causal relationship with HCC. 
Another research of MR analysis was published by 
Jiang et al. But the exposure data were from the 
Western populations, whilst the outcome data were 
from the East Asians population. Populations from 
two independent samples of the different ethnic 
background could result in the winner's curse bias [7, 
8]. In our study, all databases were sourced from 
Western populations, effectively overcoming the 
winner's curse bias caused by sample overlap. 

The bidirectional liver-gut axis, composed of the 
portal and biliary systems, serves as the anatomical 
foundation for the interplay between GM and liver 
diseases [32]. On the one hand, nutrients, GM, and 
their metabolic products enter the liver through the 
portal vein system. On the other hand, various 
substances produced by the liver can enter the 
intestine through the biliary system, thereby 
influencing the intestinal microenvironment. Ren et al. 
[33] characterized the gut microbiome in 75 early 
HCC patients, 40 cirrhosis patients, and 75 healthy 
controls using 16S rRNA sequencing technology. 
They found that the abundance of GM profiles varies 

 
Figure 4: Results of mediation analysis. 
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at different stages of diseases, revealing the 
correlation between gut microbial communities and 
liver diseases. 

Our study demonstrates a causal relationship 
between gut microbiota composition and 
hepatocellular carcinoma. Previous research has also 
confirmed a significant correlation between gut 
microbiota and the risk of HCC. This is consistent 
with our study findings. Research suggests that GM, 
through various mechanisms such as altering 
intestinal barrier permeability, regulating inflam-
matory factors, endotoxins, and modulating the 
immune microenvironment, can directly or indirectly 
promote or inhibit the occurrence of tumors [34]. 
Trautwein et al. found that the loss of Akkermansia 
muciniphila correlates with hepatic monocytic 
myeloid-derived suppressor cells abundance, and its 
reintroduction restores intestinal barrier function, 
strongly reducing liver inflammation and fibrosis, 
thereby inhibiting the development of liver cancer 
[35]. In addition to shaping the inflammatory 
microenvironment, GM can also influence the 
immune barrier. Sharpe and colleagues found that a 
specific gut bacterium, Coprobacillus cateniformis, 
enhances the efficacy of PD-1 checkpoint blockade 
therapy by downregulating the expression and 
activity of immune molecules PD-L2 and repulsive 
guidance molecule b [36]. Balancing and optimizing 
the GM could have a significant impact on controlling 
the development of tumors. 

In our study, mediation MR analysis revealed 
that C. leptum is a protective bacterium against HCC 
and is negatively regulated by PE. Leptum is one of 
the major taxonomic groups within the Clostridium 
genus. In a study characterizing the dominant GM in 
obese patients with non-alcoholic fatty liver disease, 
the quantity of Faecalibacterium prausnitzii colonies 
was significantly lower in the obesity with 
non-alcoholic fatty liver disease group than in the 
simple obesity group. Additionally, F. prausnitzii is 
positively impacted by C. leptum [37], suggesting that 
Leptum may be a protective bacterial group, 
consistent with our research findings. Du and 
colleagues discovered that a significant enrichment of 
the Clostridia class can enhance antigen presentation 
and effector T cell function through the 
cGAS-STING-IFN-I pathway, thereby boosting 
anti-tumor immune responses [38]. Simultaneously, 
Palamidi et al. found that adding organic acid 
supplements to food can increase the abundance of C. 
leptum subgroups (p = 0.040), thereby upregulating 
the expression of intestinal mucosal protective gene 
MUC2 and improving intestinal barrier protection 
[39]. These studies collectively indicate that C. leptum, 
as a protective bacterial group, can influence the 

occurrence and development of HCC through various 
mechanisms. 

In mediation analysis, we discovered that PE, a 
metabolite, could mitigate the risk of HCC. Several 
studies have noted that levels of PE and its associated 
metabolites are influenced by the GM [40-43]. Ferreira 
et al. previously reported that synthetic PE exhibited 
anticancer effects in Ehrlich ascites carcinoma by 
inducing apoptosis [44]. Additionally, synthetic PE 
was found to induce cell cycle arrest and apoptosis in 
breast cancer cells through the mitochondrial 
pathway [45]. These findings suggest that PE may act 
as a protective factor, aligning with the results of our 
MR analysis. A study on non-Hodgkin lymphoma 
indicated that the enzyme phospholipase-C could 
hydrolyze phosphatidylethanolamine and 
phosphatidylcholine into PE and diacylglycerol, all 
known to be involved in apoptosis via cell cycle 
signaling [46]. Chemical reactions, signaling 
pathways, and various metabolic intermediates are 
interconnected in the human body. Understanding 
the causal role of metabolites in disease etiology can 
offer manageable intervention points for treatment. 

MR is a potent causal inference method that can 
identify genetic variants associated with the study 
target. It overcomes the inherent limitations of 
traditional observational studies and diminishes the 
impact of confounding factors and reverse causation 
on the results [47]. However, our study still has some 
limitations. First, despite employing various 
algorithms to mitigate confounding factors, SNPs may 
still be influenced by potential horizontal pleiotropy. 
Second, our GWAS data exclusively originated from 
Western countries. These results require validation in 
other ethnic groups owing to genetic, environmental, 
and lifestyle differences between Western and Eastern 
populations. Third, although our results indicated 
that certain GM and metabolites serve as protective 
factors for HCC, further mechanistic studies and 
randomized controlled trials are necessary to validate 
these findings. Since the findings from MR analysis 
rely solely on genetic evidence, additional mediators 
besides PE may also contribute to the interaction 
between the GM and HCC. Further research is 
warranted to explore these substances for a more 
comprehensive understanding of the complex 
interplay between GM and hepatocellular carcinoma. 

5. Conclusions 
This bidirectional mediation MR analysis 

suggests that PE may mediate the causal relationship 
between GM and HCC. Targeting these gut microbes 
could offer potential avenues for the prevention and 
treatment of HCC. However, further investigation is 
warranted to elucidate the underlying mechanisms 
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linking GM and liver cancer. 
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