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Abstract 

Head and neck squamous cell carcinoma (HNSCC) represents the predominant malignancies in the head 
and neck region, and has limited therapeutic alternatives. Circular RNAs (circRNAs), a substantial 
category of non-coding RNA molecules, exert influential roles in human disease development and 
progression, employing various mechanisms such as microRNA sponging, interaction with RNA-binding 
proteins, and translational capabilities. Accumulating evidence highlights the differential expression of 
numerous circRNAs in HNSCC, and numerous dysregulated circRNAs underscore their crucial 
involvement in malignant advancement and resistance to treatment. This review aims to comprehensively 
outline the characteristics, biogenesis, and mechanisms of circRNAs, elucidating their functional 
significance in HNSCC. In addition, we delve into the clinical implications of circRNAs, considering their 
potential as biomarkers or targets for diagnosis, prognosis, and therapeutic applications in HNSCC. The 
discussion extends to exploring future challenges in the clinical translation of circRNAs, emphasizing the 
need for further research. 

Keywords: Head and neck squamous cell carcinoma; Circular RNA; Biomarker; Non-coding RNA; Immune evasion; Cancer stem 
cell 

Introduction 
Head and neck squamous cell carcinoma 

(HNSCC) stands as the predominant subtype of head 
and neck cancer, ranking seventh among global 
malignant tumors, with over 800,000 new cases 
annually[1, 2]. Influenced by environmental factors, 
smoking, alcohol consumption, and human 
papillomavirus infection, the specific pathogenic 
mechanism of HNSCC remains unclear[3, 4]. Due to the 
absence of specific symptoms, HNSCC is easily 

ignored in the early stage, resulting in most patients 
being diagnosed in the advanced clinical stage. The 
inherent malignant biological characteristics marked 
by local recurrence, lymph node metastasis, and local 
invasion, also contribute to poor prognosis of 
HNSCC. Despite available clinical treatments, 
including surgery, radiotherapy, chemotherapy, and 
immunotherapy, which have demonstrated some 
efficacy in improving survival time and quality of life, 
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the overall five-year survival rate for patients with 
HNSCC has not significantly increased over the past 
decades[5-7]. Hence, there is an urgent need to 
elucidate the mechanisms underlying HNSCC 
development, identifying biomarkers and molecular 
targets for early diagnosis and targeted therapy. 

Non-coding RNAs refers to RNA molecules in 
the transcriptome that are not translated into 
proteins[8]. Circular RNA (circRNA), a predominant 
class of endogenous non-coding RNA molecules 
widely expressed in eukaryotic cells, plays roles in 
various physiological and pathological processes, 
including neurodegenerative diseases[9, 10], 
cardiovascular diseases[11, 12], metabolic diseases[13, 14], 
and cancers[15-18]. The present study provides a 
comprehensive summary of biological functions and 
regulatory mechanisms of circRNAs in HNSCC, 
examining their potential applications and clinical 
translational value in diagnosis, prognosis, and 
targeted therapy. In addition, we anticipate future 
research directions by addressing key issues in 
circRNA research relevant to HNSCC. 

1. Biogenesis and action mechanisms of 
circRNA 

In 1976, Kolakofsky D[19] made the pioneering 
discovery of circRNA in the Sendai virus. Since then, 
an increasing plethora of circRNAs have been 
continually unveiled across diverse species, including 
Drosophila melanogaster, mice, and humans[20]. Initially 
relegated as non-functional by-products of mRNA 
splicing errors, the perception of circRNAs has 
undergone a transformative shift. The evolution of 
high-throughput sequencing technology and 
bioinformatics has progressively deepened the 
understanding of circRNAs. In recent years, circRNAs 
have emerged as a burgeoning frontier in molecular 
biology and oncology research[21-23]. 

1.1 Biological characteristics of circRNA  
CircRNAs, lacking a 5' cap and 3' poly (A) tail, 

exhibit a structurally robust configuration that 
imparts high stability. This stability renders circRNAs 
resistant to degradation by exonucleases, resulting in 
an extended half-life compared to linear RNA[24-26]. 
Demonstrating a high degree of conservation across 
species, circRNAs exhibit spatiotemporal specificity in 
expression, with notable variations in types and 
abundance across different tissues, cells, and 
developmental stages[27, 28]. 

The mechanisms governing circRNA formation 
mainly involve three models: (1) Exon skipping or 
Lariat-driven model; (2) RNA-binding protein 
(RBP)-pairing-driven model; and (3) Intron-pairing- 
driven model. In the Exon skipping or Lariat-driven 

model, precursor mRNA (pre-mRNA) undergoes 
partial overlapping during transcription, leading to 
reverse splicing of downstream 3' splice sites with 
upstream 5' splice sites. This process brings 
non-adjacent exons into proximity, forming a circular 
structure[29-32] (Fig. 1A). In the RBP-pairing-driven 
model, RBPs bind to specific base sequences in 
flanking introns, regulating circularization through 
protein–protein interactions or dimer formation[33-35] 
(Fig. 1B). In the intron-pairing-driven model, the 
flanking introns of downstream splice donor sites and 
upstream splice acceptor sites contain reverse 
complementary sequences, such as Alu elements. 
Selective splicing after base pairing leads to the 
formation of circRNAs with or without introns[25] (Fig. 
1C). In addition, intron circRNAs (ciRNAs) form 
through a 7 nt GU-rich sequence near the 5' splice site 
and an 11 nt C-rich sequence near the branch point, 
circularizing after the action of RNA polymerase II[30] 
(Fig. 1D). The connection of exons from different 
genes on the same or different chromosomes can 
produce fusion circRNAs (Fig. 1E) and read-through 
circRNAs[36, 37] (Fig. 1F). Based on origin and 
formation mechanism, circRNAs are classified into 
exonic circRNAs (ecircRNAs), exonic–intronic 
circRNAs (EIciRNAs), intronic circRNAs (ciRNAs), 
and tRNA intronic circRNAs (tricRNAs) (Fig. 1G). 
Among these, ciRNAs and EIciRNAs are 
predominantly localized in the cell nucleus, whereas 
ecircRNAs primarily distribute in the cytoplasm. 
ecircRNAs, accounting for over 80% of known 
circRNAs, have been the focus of extensive 
research[38-40].  

1.2 Action mechanisms of circRNA 

1.2.1 Transcription and splicing regulation  
Introns containing circRNAs are predominantly 

located in the cell nucleus, where they interact with 
promoters and recruit transcriptional regulatory 
proteins, activating gene transcription[30]. Noteworthy 
examples include circACTN4, which recruits Y-box 
binding protein 1 to co-activate Frizzled-7 
transcription[41]. Cia-MAF interacts with the MAFF 
promoter, recruiting the TIP60 chromatin remodeling 
complex to activate MAFF transcription[42]. circRap1b 
induces H3K14ac modification by recruiting 
acetyltransferase Kat7 to the Hoxa5 promoter region, 
resulting in Hoxa5 transcriptional activation and 
increased Fam3a expression[43]. circ_001659 recruits 
RBBP5 to the Vimentin promoter, enhancing H3K4 
trimethylation at the Vimentin promoter, activating 
Vimentin transcription[44].  

Introns containing circRNAs can also interact 
with RNA Polymerase II, exerting regulatory effects 
on their parent coding genes[45]. circEIF3J and 
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circPAIP2 form an EIciRNA-U1 SnRNP complex, 
binding to the U1 binding site in EIciRNA and 
interacting with U1 snRNA, regulating parent gene 
transcription by interacting with the RNA Polymerase 
II promoter site[46]. In addition, Xu et al. reported that 
circSMARCA5 directly binds to its parent gene site, 
forming an R-loop that terminates exon 15 
transcription of SMARCA5[47]. Moreover, introns 
containing circRNAs regulate alternative splicing by 
influencing splicing factors. For example, 
circSMARCA5 modulates the pre-mRNA splicing 
process of VEGFA by recruiting the splicing factor 
SRSF1, reducing the production of VEGFA splice 
isoforms[48]. These studies underscore the regulatory 
role of circRNAs at both transcriptional and splicing 
levels (Fig. 2A). 

1.2.2 Protein or peptide translation 

Traditionally, eukaryotic mRNA translation 
relies on the 5' cap structure. Due to the absence of a 5' 
cap and 3' poly (A) tail, circRNAs have been 
categorized as non-coding RNAs. However, recent 
studies have unveiled a subset of circRNAs capable of 
encoding proteins or peptides, serving as templates 
for ribosomal translation[49, 50]. These circRNAs feature 
an internal ribosome entry site-driven open reading 

frame, facilitating direct ribosomal recruitment and 
translation initiation (Fig. 2A). For instance, circ-EIF6 
encodes the novel peptide EIF6-224aa, EIF6-224aa 
directly interacted with the oncogenic protein MYH9 
to decrease its degradation by inhibiting the 
ubiquitin-proteasome pathway, thereby promoting 
proliferation and metastasis in triple-negative breast 
cancer[51]; circDIDO1 encodes the protein DIDO1-529, 
and DIDO1-529 interacted with poly ADP-ribose 
polymerase 1 (PARP1) and inhibited its activity. 
Knockdown of circDIDO1 promoted gastric cancer 
cell proliferation, migration and invasion[52]; 
circMAPK14 functioned as a tumor suppressor by 
encoding a peptide of 175 amino acids (circMAPK14- 
175aa), which blocked the malignant progression and 
metastasis of colorectal cancer[53]; circAXIN1 encodes 
the protein AXIN1-295aa, which competitively 
interacts with APC to activate the Wnt signaling 
pathway, functioning as an oncogenic protein in 
gastric cancer[54]. Notably, recent studies found that 
RNA m6A modification enhances the initiation of 
circRNA protein translation[55]. In this context, 
circARHGAP35 undergoes m6A-dependent transla-
tion, producing an oncogenic protein[56]. Furthermore, 
m6A modification drives the translation of 
circMAP3K4 into the peptide circMAP3K4-455aa[57]. 

 

 
Figure 1. Biogenesis and classification of circRNA. (A) Lariat-driven model. (B) Intron-pairing-driven model. (C) RBP-pairing-driven model. (D) Generation of intronic circRNAs 
(ciRNAs). (E) Generation of fusion circRNAs (f-circRNAs). (F) Generation of read-through circRNAs (rt-circRNAs). (G) Generation of tRNA intronic circRNAs (tricRNAs). 
ecircRNA: exonic circRNA; EIciRNA: exonic-intronic circRNA. 
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Figure 2. Schematic representation of the action mechanisms of circRNAs. (A) circRNAs exert biological functions through mechanisms such as miRNA sponges, RNA-binding 
protein interaction, transcription and splicing regulation, protein or peptide translation, and pseudogene generation. (B) miRNA binds to mRNA, LncRNA, pseudogene, and 
circRNA, forming a competitive binding relationship among RNA molecules that bind to the same miRNA. 

 

1.2.3 Interaction with RNA-binding proteins  
Specific circRNAs harbor binding sites for 

RNA-binding proteins, enabling direct interactions[58, 

59] (Fig. 2A). For instance, circDLC1 binds to the 
RNA-binding protein HuR. This interaction impedes 
the binding of HuR and MMP1 mRNA, resulting in 
the inhibition of MMP1 expression. Consequently, it 
suppresses the proliferation and metastasis of 
hepatocellular carcinoma[60]. circCwc27 interacts with 
the RNA-binding protein Pur-α. This interaction 
inhibits Pur-α activity, playing a role in Alzheimer’s 
disease onset and development[61]. circSETD2 
interacts with HuR, diminishing the stability of YAP1 
mRNA, ultimately inhibiting the progression of breast 
cancer[62]. Recently, Ju et al. identified an intron 
containing circRNA in HNSCC, named as circGNG7. 
Mechanistically, circGNG7 binds to serine residues 78 
and 82 of the functional heat shock protein 27 
(HSP27), hindering its phosphorylation, which 
reduced HSP27-JNK/P38 mitogen-activated protein 
kinase (MAPK) oncogenic signaling[63]. 

1.2.4 circRNA-derived pseudogene 
Pseudogenes are genomic DNA sequences 

closely resembling coding genes but have lost their 
normal function due to the absence of functional 
promoters or other regulatory elements, often 
remaining transcriptionally inert[64, 65]. Studies 
indicate that pseudogenes originating from linear 
mRNAs can undergo reverse transcription and 
integrate into the host genome. Similarly, circRNAs 
can also undergo reverse transcription transposition, 
resulting in pseudogenes derived from processed 
circRNAs being inserted into the host genome, 

thereby altering genomic DNA composition[66, 67] (Fig. 
2A). To date, the functions and mechanisms of 
pseudogenes derived from circRNAs remain unclear. 

1.2.5 miRNA (microRNA) sponge  
miRNAs, approximately 19–24 nucleotides long, 

are small endogenous non-coding single-stranded 
RNAs that regulate translation or induce mRNA 
degradation by binding to the 3'UTRs of target 
mRNAs. This binding is mediated by miRNA 
response elements (MREs) on various RNAs, 
including lncRNAs, pseudogenes, and circRNAs. The 
same miRNA can bind to multiple types of RNAs, and 
the competitive binding of RNAs with the same MREs 
to miRNAs is known as the competing endogenous 
RNA mechanism[48, 68] (Fig. 2B). Within this 
mechanism, circRNA are referred to as miRNA 
“sponge” due to their specific adsorption of miRNAs, 
thus modulating the expression of downstream target 
genes. Numerous studies confirm the ability of 
circRNAs to reduce miRNA inhibitory effects on 
target genes, indirectly regulating target gene 
expression[69, 70]. Typically, a single circRNA harbors 
multiple binding sites for different miRNAs or 
multiple sites for the same miRNA. For instance, 
circTMEM59 inhibits colorectal cancer cell migration 
by adsorbing miR-668-3p and miR-410-3p. It also 
serves as a sponge for miR-147b, impeding the 
progression of pancreatic ductal adenocarcinoma[71-73]. 
Moreover, the same miRNA can be adsorbed by 
different circRNAs. For example, circKIF4A and 
circ_0058063 contain miR-335-5p binding sites, 
thereby regulating miR-335-5p target gene 
expression[74, 75]. To date, miRNA sponge is the most 
extensively studied mechanism of circRNA. 
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In summary, circRNAs exert their biological 
functions through various mechanisms, including 
transcription and splicing, interaction with RNA 
binding protein, translation of proteins or peptides, 
generation of pseudogenes, and acting as miRNA 
sponge. 

2. Functional roles and mechanisms of 
circRNA in HNSCC  
2.1 Regulation of proliferation 

circRNAs exert a pivotal role in modulating the 
proliferation of HNSCCs. Notably, several circRNAs, 
including circ_0000045, circ_0000052, circ_0023028, 
circ_0032822, circZNF609, circPVT1, circHIPK2, and 
circ-CCND1, are upregulated in both HNSCC tissues 
and cells, actively promoting HNSCC cell 
proliferation[76-83]. Conversely, certain circRNAs 
function as tumor suppressor genes, exerting 
inhibitory effects on HNSCC cell proliferation. For 
example, circ_0036722 regulates the expression of the 
parental gene RHCG by sequestering miR-1248, 
suppressing laryngeal squamous cell carcinoma 
(LSCC) cell proliferation[84]. circ_0000140 inhibits the 
proliferation of oral squamous cell carcinoma (OSCC) 
cells[85]. Moreover, overexpression of circRNF13 
exhibits inhibitory effects on nasopharyngeal 
carcinoma (NPC) cell proliferation[86]. 

2.2 Regulation of cell cycle transition 
Cell cycle dysregulation is a hallmark of cancer 

cells, with cyclin D1 serving as a key regulator in the 
G1/S phase transition and playing a crucial role in 
cancer cell proliferation[87, 88]. Knockdown of 
circMYLK in LSCC cells results in reduced cyclin D1 
expression levels, suggesting that circMYLK 
potentially promotes tumor cell proliferation by 
accelerating the cell cycle process[89]. Another study 
demonstrated that circPTK2 promotes cell cycle 
progression in LSCC cells. Knockdown of circPTK2 
leads to reduced expression levels of cell cycle-related 
proteins, including cyclin A1, cyclin B1, and cyclin 
D1[90]. 

2.3 Regulation of invasion and migration 
Invasion and migration are pivotal features of 

malignant tumors, contributing significantly to the 
mortality of patients with cancer. Epithelial–
mesenchymal transition (EMT) is crucial in tumor cell 
dissemination, orchestrating the shift from an 
epithelial to a more invasive, migratory mesenchymal 
phenotype[91]. Ma et al. discovered that 
circRNA_ACAP2 regulates the EMT process through 
the miR-21-5p/STAT3 axis, inhibiting HNSCC cell 
migration[92]. circ_0000140 binds to miR-31, 

upregulating the target gene LATS2 expression, 
thereby inhibiting the EMT process in OSCC cells[85]. 
Furthermore, Pei et al. identified that circFOXM1 
upregulates Smad2 gene expression by sequestering 
miR-136-5p, promoting the EMT process in NPC 
cells[93]. Liu et al. demonstrated that EBV-encoded 
circRPMS1 fosters the EMT in NPC cells by 
sequestering multiple miRNAs, including miR-203, 
miR-31, and miR-451[94]. 

2.4 Regulation of angiogenesis 
The growth and metastasis of cancer cells rely on 

tumor angiogenesis, a process facilitated by the 
collective action of cancer cells, stromal cells, and their 
secretions. Given that VEGF is pivotal in promoting 
cancer cell growth through angiogenesis, circRNAs 
exert influence by directly or indirectly modulating 
VEGF expression levels[95, 96]. Gong et al. discovered 
that circBFAR promotes ki-67, MMP2, and VEGFA 
protein expression by binding to miR-31-5p, 
facilitating the generation of new blood vessels in 
LSCC[97]. In LSCC, silencing circSHKBP1 leads to a 
significant reduction in MMP2 and VEGFA 
expression, resulting in the inhibition of LSCC cell 
invasion and angiogenesis[98]. Silencing circ-ZNF609 
in NPC results in decreased VEGF expression levels, 
along with a noticeable downregulation of VEGFR1 
and VEGFR2 protein expression, suggesting that 
circ-ZNF609 may play a role in promoting 
angiogenesis in NPC[99]. 

2.5 Regulation of immune evasion 

Immune surveillance mechanisms play a pivotal 
role in identifying and eliminating cancer cells. 
Central to this process is PD-1 (Programmed death-1), 
a critical immune checkpoint molecule primarily 
expressed in immune cells. Its interaction with the 
ligand PD-L1 (programmed death-ligand 1) on cancer 
cells prevents the activation of tumor antigen-specific 
T cells, contributing to the immune evasion of cancer 
cells[100, 101]. circ_0000052 upregulates PD-L1 expres-
sion by sequestering miR-382-3p, thereby promoting 
the malignant progression of HNSCC[77]. Ge et al. 
demonstrated that EBV-encoded circBART2.2 
expression promotes PD-L1 transcription through the 
binding of circBART2.2 to the helicase domain of 
RIG-I and the activation of transcription factors IRF3 
and NF-κB, resulting in immune evasion of NPC[102]. 

2.6 Regulation of apoptosis 
circRNAs have a significant influence in 

regulating apoptosis in HNSCC through the 
modulation of pro-apoptotic and anti-apoptotic genes 
within apoptotic signaling pathways. Knockdown of 
circ_0044520 upregulates Bax (BCL2 Associated X) 
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expression and simultaneously reduces BCL2 (B-cell 
lymphoma 2) expression, promoting apoptosis of 
LSCC cells[103]. Knockdown of circ_0000285 enhances 
Caspase-3 activity, upregulates Bax protein levels, 
and downregulates BCL2 protein levels. These 
alterations indicate the ability of circ_0000285 to 
inhibit apoptosis in NPC cells[104]. Silencing 
circRNA_100290 increases Caspase-9 expression in 
LSCC cells, suggesting that circRNA_100290 sup-
presses apoptosis[105]. In addition, hsa_circ_0002162 
exhibits increased expression in Tongue squamous 
cell carcinoma. Silencing hsa_circ_0002162 leads to an 
increase in apoptotic protein Caspase-3 expression[106]. 

2.7 Regulation of autophagy 
Autophagy, a cellular process crucial for 

maintaining homeostasis, involves the engulfment 
and digestion of damaged or aging proteins and 
organelles by lysosomal hydrolases. P62 and LC3 
serve as markers reflecting autophagic activity. In 
conditions of low autophagy or inhibition, P62 
accumulates in the cytoplasm, while the LC3-II/I ratio 
indicates the level of autophagy[107-110]. Studies have 
shown that autophagy can exert dual effects on tumor 
occurrence and progression[111, 112]. Overexpression of 
circ-PKD2 in OSCC cells results in an increased 
LC3-II/I ratio and decreased P62 levels, suggesting 
that circ-PKD2 promotes autophagy in OSCC cells[113]. 
Conversely, overexpression of circPARD3 leads to 
decreased LC3-II levels and increased P62 levels in 
LSCC cells, indicating that circPARD3 inhibits 
autophagy in LSCC[114]. 

2.8 Regulation of chemoradiotherapy 
sensitivity 

Chemotherapy and radiotherapy are pivotal in 
cancer treatment, yet resistance poses a significant 
challenge, impacting treatment efficacy and 
contributing to poor prognosis in patients with 
HNSCC. circRNAs participate in the regulation of 
chemoradiotherapy sensitivity in cancer cells[115, 116]. 
circCUX1, upregulated in radiotherapy-resistant 
hypopharyngeal squamous cell carcinomas (HSCC) 
tissues, is implicated in promoting resistance. 
Knockdown of circCUX1 enhances the release of 
inflammatory cytokines IL-1β and IL-18, thereby 
augmenting the sensitivity of HSCC to 
radiotherapy[117]. circATRNL1 enhances OSCC 
sensitivity to radiation by promoting target gene 
PTEN expression, which is achieved through the 
sequestration of miR-23a-3p[118]. circ-PKD2 promotes 
the sensitivity of OSCC to cisplatin both in vitro and in 
vivo. Its mechanism involves inhibiting miR-646 and 
promoting Atg13-mediated autophagy[113]. 
Knockdown of circNRIP1 increases the sensitivity of 

NPC cells to 5-Fu and CDDP in vitro[119]. circCRIM1 
competitively binds to miR-422a, counteracting its 
inhibitory effect on FOXQ1 and promoting resistance 
of NPC cells to docetaxel[120]. 

2.9 Regulation of stem cell properties 
Cancer stem cells, with their ability for 

self-renewal and differentiation into diverse cancer 
cell types, underlie the malignancy of cancer, 
contributing to recurrence, metastasis, and 
chemoradiotherapy resistance[121]. In HNSCC, cancer 
stem cells are increasingly recognized as pivotal 
players in its pathogenesis. Chen et al. showed that the 
knockdown of circSHKBP1 inhibits stem-like 
properties in LSCC and suppresses tumor growth. 
This regulatory role is attributed to the ability of 
circSHKBP1 to sequester miR-766-5p, consequently 
enhancing HMGA2 expression and promoting LSCC 
progression[98]. circFAT1 promotes cancer stem cell 
characteristics by activating STAT3. Knockdown of 
circFAT1 reduces HNSCC cell sphere formation in 
vitro[122]. 

In summary, circRNAs function as either 
oncogenes or tumor suppressor genes, modulating 
HNSCC-related key signaling pathways. Their 
regulatory influence extends across various aspects, 
including cell proliferation, cell cycle transition, 
migration, invasion, angiogenesis, apoptosis, 
autophagy, and cancer stem cell maintenance. This 
comprehensive regulatory role underscores their 
significance in shaping the growth, recurrence, 
metastasis, and chemoradiotherapy sensitivity in 
HNSCC (Fig. 3). 

3. Potential of circRNA as diagnostic and 
prognostic biomarkers in HNSCC 

The identification of specific biomarkers for 
HNSCC is crucial for non-invasive diagnostics and 
accurate prognosis assessment. circRNAs, 
characterized by high stability, diverse types, and 
spatiotemporal specificity, present unique advantages 
as potential biomarkers in HNSCC due to their 
presence in various bodily fluids. Increasing evidence 
suggests that circRNAs have significant potential in 
HNSCC diagnosis and prognosis, potentially 
evolving into early screening and prognostic markers 
for patients with HNSCC[123-125]. hsa_circ_0003829 
exhibits significantly lower expression in OSCC 
tissues compared to adjacent normal tissues, and the 
expression level of hsa_circ_0003829 was correlated 
with lymph node metastasis and clinical staging. 
Receiver operating characteristic curve analysis yields 
an area under the curve (AUC) of 0.81, sensitivity of 
70%, and specificity of 80%, suggesting that 
hsa_circ_0003829 may serve as a potential diagnostic 
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marker for OSCC[126]. circRNA_103862 upregulates in 
LSCC tissues and is closely linked to clinical staging 
and lymph node metastasis. It demonstrates an AUC 
of 0.805, with a sensitivity of 0.823 and a specificity of 
0.694[127]. Furthermore, circ0019201, circ0011773, and 
circ0122790 upregulated in the plasma of patients 
with LSCC, with AUC of 0.766, 0.864, and 0.908, 
respectively, suggesting their potential as predictive 
biomarkers for LSCC[128]. Moreover, circMORC3 
downregulation in HSCC tissues and plasma, with an 
AUC of 0.767, suggests its potential as an early 
diagnostic biomarker for HNSCC[129] (Table 1). 

4. Potential of circRNAs as molecular 
target for HNSCC treatment 

The pivotal regulatory role of circRNAs in 
governing various aspects of HNSCC, including cell 
proliferation, invasion, migration, apoptosis, glucose 
metabolism, underscores their potential as molecular 
targets for HNSCC treatment[130-137]. Notably, 
circMTCL1 was upregulated in LSCC tissues. In vivo 
and in vitro experiments showed that circMTCL1 
promotes the proliferation, invasion, and migration of 
LSCC cells, suggesting it serves as a potential 
therapeutic target for LSCC[138] (Table 2). 

 

 
Figure 3. Regulatory role of circRNAs in HNSCC, including cell proliferation, cell cycle, invasion, migration, angiogenesis, immune evasion, apoptosis, autophagy, and cancer 
stem cell maintenance. 

 

Table 1. Potential circRNA biomarker for diagnosis and prognosis of HNSCC 

circRNAs Expression Cancer 
type 

Function Clinical relevance Reference 

hsa_circ_0023305 up LSCC Promotes proliferation, invasion, 
migration 

Clinical stage, lymph node metastasis [123] 

hsa_circ_0066755 up NPC Promotes proliferation, invasion, 
migration 

Clinical stage [124] 

hsa_circ_0028007 up NPC Promotes migration, and invasion Aggressive infiltration, and metastatic lymph nodes [125] 
hsa_circ_0003829 down OSCC - Lymphatic metastasis, TNM stage [126] 
circRNA_103862 up LSCC Promotes proliferation, migration, 

invasion 
Survival time [127] 

circ_0019201, circ_0011773, 
circ_0122790 

up LSCC - High diagnostic ability for single circRNA and 
combined 

[128] 

circMORC3 down HSCC - T stage, tumor size [129] 
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Table 2. circRNA serves as potential therapeutic target in HNSCC 

circRNAs Expression Cancer type Target genes Function Reference 
circDHTKD1 up OSCC miR-326/GAB1 Promotes cell growth and migration, inhibits apoptosis [130] 
circ_0008068 up OSCC miR-153-3p/AGK Promotes proliferation, migration, invasion, tube formation, glycolysis, inhibits apoptosis [131] 

 
hsa_circ_0042666  down LSCC miR-223/TGFBR3  Inhibits proliferation and invasion [132] 
circFLNA up LSCC miR-486-3p/FLNA Promotes migration [133] 
circ_0000215 up NPC miR-512-5p/PIK3R1 Promotes proliferation, migration [134] 
circRNA CDR1as up NPC miR-7-5p/E2F3 Promotes proliferation, glucose metabolism [135] 
hsa_circ_0046263 up NPC miR-133a-5p/IGFBP3 Promotes proliferation, invasion, migration  [136] 
circSOX9 up NPC miR-485-3p/SOX9 Promotes invasion and proliferation [137] 
c i rcMTCL1 up LSCC C1QBP/β -ca ten in  Promotes proliferation, invasion, migration  [138] 

 
5. Conclusions and perspectives 

A growing body of evidence highlights 
significant dysregulation of circRNAs in HNSCC, 
with both in vitro and in vivo studies illustrating their 
regulatory effects on downstream target genes and 
signaling pathways. These circRNAs play crucial roles 
in governing processes such as cell proliferation, 
invasion, metastasis, apoptosis, and autophagy, 
influencing the occurrence, development, and 
sensitivity to chemoradiotherapy in HNSCC. 
Moreover, several circRNAs exhibit a significant 
association with clinical features and prognosis, 
showcasing their potential as promising biomarkers 
and therapeutic targets for HNSCC diagnosis, 
prognosis, and targeted therapy. 

However, as research on circRNAs in HNSCC 
expands, several challenges and future research 
directions become apparent: (1) While circRNAs 
exhibit multiple mechanisms of action, current studies 
primarily focus on their role as miRNA sponges. The 
broader impact of circRNAs on transcription, splicing, 
protein interactions, and encoding proteins or 
peptides in HNSCC remains understudied. (2) The 
upstream regulation of circRNA expression 
dysregulation in HNSCC, including variable splicing 
and post-transcriptional modification, requires 
further investigation. (3) Understanding the 
regulatory role of circRNAs in HNSCC stem cells, 
considered the root of malignant behaviors and 
treatment resistance, offers potential insights for 
clinical diagnosis and treatment. (4) Compared with 
2D cell models and animal models, the application of 
organoids and organ-on-a-chip technology presents 
an exciting avenue for studying the spatial structure 
and tissue analog of circRNAs in HNSCC, offering 
potential clinical transformation insights. (5) Current 
studies on circRNA biomarkers often feature small 
sample sizes. Large-scale, multi-center clinical 
samples are needed to validate the utility of circRNAs 
as biomarkers for early diagnosis and prognosis 
assessment. (6) Addressing the urgent challenge of 
altering circRNA expression levels in target cells is 
essential for circRNA transformation research. In 

conclusion, as circRNA research deepens, it holds 
substantial promise for clinical diagnosis and 
treatment of HNSCC in the future. 
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