
Journal of Cancer 2024, Vol. 15 
 

 
https://www.jcancer.org 

4175 

Journal of Cancer 
2024; 15(13): 4175-4196. doi: 10.7150/jca.94630 

Research Paper 

Metabolic Heterogeneity of Tumor Cells and its Impact 
on Colon Cancer Metastasis: Insights from Single-Cell 
and Bulk Transcriptome Analyses 
Yiwen Jia1, Guangming Feng1, Siyuan Chen1, Wenhao Li4, Zeguo Jia5, Jian Wang3, Hongxia Li 2, 
Shaocheng Hong 1, Fu Dai1 

1. Department of Gastroenterology, The Third Affiliated Hospital of Anhui Medical University (Hefei first people’s Hospital), Hefei, China. 
2. Department of Oncology, The Third Affiliated Hospital of Anhui Medical University (Hefei first people’s Hospital), Hefei, 230032, China. 
3. Department of Pathology, The Third Affiliated Hospital of Anhui Medical University (Hefei first people’s Hospital), Hefei, 230032, China. 
4. Department of Pulmonology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China. 
5. Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.  

 Corresponding authors: Fu Dai, swtldjqw@sina.com. Shaocheng Hong, hscahmu@163.com. Hongxia Li, lihongxia@ahmu.edu.cn. 

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). 
See http://ivyspring.com/terms for full terms and conditions. 

Received: 2024.01.23; Accepted: 2024.05.17; Published: 2024.06.03 

Abstract 
Background: Metabolic reprogramming plays a crucial role in the development of colorectal cancer (CRC), 
influencing tumor heterogeneity, the tumor microenvironment, and metastasis. While the interaction between 
metabolism and CRC is critical for developing personalized treatments, gaps remain in understanding how tumor cell 
metabolism affects prognosis. Our study introduces novel insights by integrating single-cell and bulk transcriptome 
analyses to explore the metabolic landscape within CRC cells and its mechanisms influencing disease progression. This 
approach allows us to uncover metabolic heterogeneity and identify specific metabolic genes impacting metastasis, 
which have not been thoroughly examined in previous studies. 
Methods: We sourced microarray and single-cell RNA sequencing datasets from the Gene Expression Omnibus 
(GEO) and bulk sequencing data for CRC from The Cancer Genome Atlas (TCGA). We employed Gene Set 
Variation Analysis (GSVA) to assess metabolic pathway activity, consensus clustering to identify CRC-specific 
transcriptome subtypes in bulkseq, and rigorous quality controls, including the exclusion of cells with high 
mitochondrial gene expression in scRNA seq. Advanced analyses such as AUCcell, infercnvCNV, Non-negative 
Matrix Factorization (NMF), and CytoTRACE were utilized to dissect the cellular landscape and evaluate pathway 
activities and tumor cell stemness. The hdWGCNA algorithm helped identify prognosis-related hub genes, integrating 
these findings using a random forest machine learning model. 
Results: Kaplan-Meier survival curves identified 21 significant metabolic pathways linked to prognosis, with 
consensus clustering defining three CRC subtypes (C3, C2, C1) based on metabolic activity, which correlated with 
distinct clinical outcomes. The metabolic activity of the 13 cell subpopulations, particularly the epithelial cell 
subpopulation with active metabolic levels, was evaluated using AUCcell in scRNA seq. To further analyze tumor cells 
using infercnv, NMF disaggregated these cells into 10 cellular subpopulations. Among these, the C2 subpopulation 
exhibited higher stemness and tended to have a poorer prognosis compared to C6 and C0. Conversely, the C8, C3, 
and C1 subpopulations demonstrated a higher level of the five metabolic pathways, and the C3 and C8 subpopulations 
tended to have a more favorable prognosis. hdWGCNA identified 20 modules, from which we selected modules 
primarily expressed in high metabolic tumor subgroups and highly correlated with clinical information, including blue 
and cyan. By applying variable downscaling of RF to a total of 50 hub genes, seven gene signatures were obtained. 
Furthermore, molecules that were validated to be protective in GEO were screened alongside related molecules, 
resulting in the identification of prognostically relevant molecules such as UQCRFS1 and GRSF1. Additionally, the 
expression of GRSF1 was examined in colon cancer cell lines using qPCR and phenotypically verified by in vitro 
experiments. 

Conclusion: Our findings emphasize that high activity in specific metabolic pathways, including pyruvate metabolism 
and the tricarboxylic acid cycle, correlates with improved colon cancer outcomes, presenting new avenues for 
metabolic-based therapies. The identification of hub genes like GRSF1 and UQCRFS1 and their link to favorable 
metabolic profiles offers novel insights into tumor neovascularization and metastasis, with significant clinical 
implications for targeting metabolic pathways in CRC therapy. 
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Introduction 
Colorectal cancer (CRC) is a global health 

concern, ranking as the fourth most commonly 
diagnosed and third deadliest cancer worldwide. To 
reduce the burden of CRC, targeted interventions are 
necessary, including primary prevention in low- 
income settings and early detection in high-income 
settings [1, 2]. Molecular profiling has become 
increasingly important in therapeutic strategies for 
CRC patients, emphasizing the need for personalized 
and targeted approaches [3, 4]. However, challenges 
persist in improving prognosis and reducing 
mortality, particularly in advanced stages of the 
disease [5, 6]. 

Metabolic disorders play a crucial role in cellular 
physiology and are intricately linked to the 
pathogenesis of various diseases, including CRC. 
Metabolic dysregulation enhances tumor cell 
metastasis and affects their ability to adapt to different 
microenvironments [7, 8]. Therefore, understanding 
the metabolic mechanisms underlying CRC 
metastasis is vital for identifying potential targets and 
developing therapeutic strategies. CRC exhibits 
significant tumor heterogeneity, posing challenges in 
treatment. Different subpopulations of tumor cells 
may have distinct metabolic pathways, influencing 
their response to therapy and metastatic potential. 
The tumor microenvironment, consisting of immune 
cells, vascular endothelial cells, and fibroblasts, also 
plays a critical role in CRC development [9-11]. The 
complex interactions between these cell types 
influence metabolic regulation and tumor progres-
sion. However, there are still gaps in our knowledge 
regarding cell-cell interactions and metabolic 
regulation in the CRC microenvironment. 

Advancements in single-cell technology have 
provided new insights into tumor heterogeneity and 
the tumor microenvironment in CRC [12, 13]. 
Through meticulous single-cell analysis, we can gain a 
deeper understanding of metabolic states, signaling 
cascades, and interaction patterns among different 
cell subpopulations. These efforts will undoubtedly 
unravel the mechanistic basis of metabolic 
abnormalities in CRC development, leading to 
breakthroughs in customized therapies [14, 15]. In 
conclusion, exploring the interaction between 
metabolism and CRC is crucial for understanding 
tumor heterogeneity, the tumor microenvironment, 
and metastasis, as well as for developing personalized 
therapeutic strategies. 

However, the impact of tumor cell metabolism 
on patient prognosis remains poorly understood. To 
address this question, our study combines single-cell 
and bulk transcriptome analyses to gain insights into 
the metabolic landscape within tumor cells and its 

potential mechanisms affecting colon cancer 
progression. We utilized microarray and single-cell 
RNA sequencing datasets from the Gene Expression 
Omnibus (GEO) and extensive sequencing data from 
The Cancer Genome Atlas (TCGA) database. The 
metabolic pathway activities were evaluated using 
Gene Set Variation Analysis (GSVA), and a consensus 
clustering approach was employed to identify 
CRC-specific bulk transcriptome isoforms. Our study 
identified 21 prognostically significant metabolic 
pathways, including the tricarboxylic acid cycle and 
pyruvate metabolism, and classified TCGA CRC 
samples into three subtypes based on their metabolic 
pathway activity. Additionally, we identified key 
genes associated with metabolism that affect colon 
cancer metastasis. 

Our results revealed distinct metabolic activities 
among 13 cell subpopulations, with epithelial cells 
exhibiting the highest metabolic pathway activity. 
Furthermore, we identified different programs within 
tumor cells, assessed the level of cell stemness and 
CNV, and determined the pseudotime trajectory of 
CRC cells. Integrating extensive sequencing data and 
machine learning methods, we identified key genes 
associated with prognosis and validated the 
expression and function of GRSF1 in various CRC cell 
lines. These findings highlight the metabolic 
heterogeneity of tumor cells and the association 
between specific metabolic pathways and CRC 
prognosis, providing valuable insights for the 
development of personalized treatment strategies. 

Materials and Methods  
Data acquisition and pre-processing of CRC 
samples from public database 

A total of 1631 colorectal cancer (CRC) samples 
were collected for expression profiling from the Gene 
Expression Omnibus (GEO) and The Cancer Genome 
Atlas (TCGA) databases. From the GEO database, five 
microarray datasets (GSE17536, GSE17537, GSE29621, 
GSE39582, and GSE72970) were downloaded using 
the GEOquery R software package [16-20]. Gene 
expression data in transcripts per million (TPM) 
format from the TCGA-COAD and TCGA-READ 
cohorts, as well as somatic mutation data processed 
by MuTect2, were acquired from the UCSC Xena 
browser (https://xenabrowser.net/datapages/). For 
the colorectal cancer patient dataset sourced from 
GEO and TCGA, we conducted additional screening 
and preserved the data of patients with survival 
information for future analyses, encompassing 613 
cases from TCGA and 1006 from GEO. Additionally, a 
single-cell RNA sequencing (scRNA-seq) dataset 
(GSE188711) consisting of six CRC samples (three 
from the left colon and three from the right colon) was 
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obtained from the GEO database [21].  
To process the data, the ComBat algorithm from 

the sva R package was used to merge the five GEO 
microarray datasets, creating a comprehensive dataset 
called meta-GEO [22]. This step aimed to minimize 
potential batch effects arising from non- 
biotechnological biases among the different datasets. 
For the scRNA-seq dataset, the Seurat software 
package (version 4.3.0) was employed [23]. Each 
sample was read using the Read10X function, and 
seurat objects were created with the parameters 
min.cells = 3 and min.features = 200. Further quality 
control measures were applied to the cells, including 
screening for genes detected in the cells (ranging from 
a minimum of 500 to a maximum of 5000), percentage 
of mitochondrial genes (ranging from 0% to 20%), and 
percentage of hemoglobin genes (ranging from 0% to 
1%). In addition, we performed online analyses based 
on single-cell data obtained from the TISCH2 
database [24]. 

Integration of scRNA-seq, dimensionality 
reduction clustering and cellular annotation 

The scRNA data was normalized using the 
"LogNormalize" method in the "NormalizeData" 
function. After normalization, the top 2000 highly 
variable genes were identified using the 
"FindVariableFeatures" function. To reduce the 
dimensionality of the scRNA-seq data, principal 
component analysis (PCA) was performed based on 
these 2000 highly variable genes. To address potential 
batch effects between samples, cell integration was 
performed using the R package harmony. 
Subsequently, cell clustering was performed using the 
"FindClusters" and "FindResolution" function with a 
resolution of 0.8. The clustering algorithm groups 
cells based on the similarity of their gene expression 
patterns to identify distinct cell populations in the 
scRNA-seq dataset. The clustering results were 
visualized using Unified Mobility Approximation and 
Projection (UMAP), a dimensionality reduction 
technique that projects high-dimensional data onto a 
two-dimensional plane. To identify cell types, we 
annotated cells based on previous literature or known 
marker genes. 

Consensus clustering and etimation of TME  
Unsupervised cluster analysis was applied to 

identify different metabolic modification patterns 
based on 21 prognostically relevant metabolism- 
related pathway activities and to classify CRC 
patients for further analysis. This analysis was 
performed using the unsupervised clustering "Pam" 
method based on the Euclidean and Ward linkage by 
using the "ConsensuClusterPlus" R software package 

and 1000 replications to ensure stability of the 
classification [25]. Transcriptional differences between 
three prognostically relevant metabolic CRC subtypes 
compared using a PCA approach. We used the 
MCPcounter algorithm of the Multi-omics Immuno- 
Oncology Biological Research (IOBR) package to 
compare the amounts of immune cell infiltration for 
CRC samples [26, 27]. In addition, stromal scores and 
tumor purity were compared between different CRC 
molecular typologies using the ESTIMATE algorithm 
[28]. 

Kaplan–Meier survival analysis 
To assess differences in survival outcomes, the 

construction of Kaplan-Meier survival curves was 
used. For survival analysis, the survival software 
package (version 3.5.0) and the survminer package 
(version 0.4.9) were used, resulting in the identifi-
cation of metabolic pathways or molecules associated 
with prognosis and the comparison of prognostic 
differences across CRC molecular subtypes.  

Geneset functional analysis for bulkseq 
Enrichment of metabolic pathway gene sets in 

CRC patient samples in bulkseq can be assessed by 
GSVA [29]. Subsequent differences in metabolic 
pathways were obtained using limma (version 3.54.0) 
package calculations, and thresholds of adj.P.Val 
<0.05 as well as logFC>0.1 were adopted. Fast 
Genome Enrichment Analysis (FGSEA) was 
performed according to the MsigDB download 
H.all.v7.2. using the fGSEA (version 1.24.0) R package 
[30]. Enrichment analysis was performed for terms 
related to gene ontology biological process (GOBP) for 
DEGs between C3 and C1. In addition to this classical 
biological signaling pathway activity was scored for 
each sample using progeny (version 1.17.3) [31].  

Epithelial (tumor) cell state and the 
chromosomal copy-number variations (CNV) 
estimation 

First, the InferCNV (version 1.14.2) package was 
utilized to calculate copy number variations (CNV) in 
all epithelial cells [32]. Neutrophils were chosen as a 
reference for this analysis. Using K-means clustering, 
epithelial cells displaying significant chromosomal 
copy number variations were identified as tumor 
cells. The CNV score was then calculated based on 
established methodologies from previous studies [33]. 
Following the identification of tumor cells based on 
their chromosomal copy number variations, a 
non-negative matrix factorization (NMF) algorithm 
was employed to downscale all tumor cells [34]. For 
scoring gene sets from single-cell sequencing data, we 
used the AUCell package, an algorithm that calculates 
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gene set activity at single-cell resolution. Based on the 
set of metabolism-related genes obtained from the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
database and the eight tumor cell states identified by 
Dalia Barkley et al., the AUCell was employed to 
assess the activity of metabolism-related signatures 
and tumor cell state in each malignant cell [35]. In 
addition the CYTOTRACE algorithm was used to 
assess the stemness of cellular Clusters obtained by 
NMF [36].  

Pseudotime analysis of CRC maligent cells 
Trajectory analysis was performed using 

Monocle (version 2.26.0) to understand the cellular 
changes that occur during differentiation of different 
CRC cells [37]. Monocle objects were first constructed 
using the "newCellDataSet" function, then cells were 
ordered by filtering highly variable genes and 
down-dimensioned using the "DDRTree" algorithm to 
construct temporal trajectories. Subsequently, 
differentially expressed genes along the pseudotime 
were detected using the "differentialGeneTest" 
function and visualized by pseudotime heatmap. To 
functionally annotate these differential genes, we 
used Metascape (http://metascape.org). Metascape is 
an online tool that integrates various databases and 
algorithms for gene ontology and pathway 
enrichment analysis.  

Cell communication analysis in TME 
To infer cell-cell interactions between tumor cells 

and immune/stromal cell types, we employed 
CellChat (version 1.6.1) software [38]. This tool 
utilizes the expression of ligand-receptor pairs from 
the CellChatDB.human database, which contains 
information on "Secreted Signaling”. Using a 
default-based workflow, potential receptor-ligand 
pairs were identified and cellular communication 
networks with fewer than 10 cells were filtered out. 
Subsequently, receptor-ligand pairs associated with 
signaling pathways crucial for cellular interactions 
were extracted for visualization. 

HdWGCNA analysis 
To construct a scale-free network at the 

single-cell level, high dimensional weighted gene 
co-expression network analysis (hdWGCNA) was 
utilized [39]. This analysis was performed using the R 
package hdWGCNA (version 0.1.1.9010). The first 
step involved setting a threshold for the scale-free 
topology model fit. A threshold value greater than 0.8 
was chosen to ensure a scale-free network structure. 
Next, a soft threshold of 14 was selected to achieve 
optimal connectivity within the network. This 
parameter influences the strength of correlations 
between genes and determines the modules or 

clusters of co-expressed genes.To score the TCGA 
COAD/READ cohort with the obtained modules, 
GSVA was employed. Correlations between the 
modules and phenotypic traits were evaluated using 
Spearman correlation tests. A total of 50 hub genes 
from specific models were further screened using the 
Random Survival Forests Variable Hunting (RSFVH) 
algorithm [40]. Prognostically relevant genes were 
analyzed by Cox regression analysis to construct risk 
score models based on previous research methods. 
The best gene combinations or final characteristics 
were screened using log-rank p-values. or final 
features were screened by KM analysis.  

Pancan analysis  
The Pancan analysis obtained gene expression 

data for 11,060 tumor patient samples from the TCGA 
Pan-Cancer (PANCAN) cohort via Xena. Samples 
with non-solid tumors were excluded from the 
analysis. The primary endpoint for survival analysis 
was overall survival (OS), and Cox regression-based 
analysis and KM analysis were performed to assess 
prognostic significance. To investigate the 
relationship between favorable prognostic 
metabolism-related gene sets, tumor-related genesets 
(EMT, cell cycle, angiogenesis), and key genes in 
tumor samples, z-score algorithm was employed [41]. 

Cell culture and small interfering RNA 
(siRNA) transfection 

The colon cell lines (NCM460, HT29, HCT116, 
SW480, RKO) and bladder cancer cell line 5637 were 
obtained from the American Type Culture Collection 
(ATCC) and cultured in Dulbecco's Modified Eagle 
Medium (DMEM, Gibco, USA). The DMEM was 
supplemented with 10% Fetal Bovine Serum (FBS, 
Lonsera, Australia) and a mixed antibiotic agent (100 
U/mL penicillin and 100 μg/mL streptomycin). The 
cells were maintained at 37 °C in a humidified 
atmosphere containing 5% CO2. Transfection of 
siRNAs was performed using Lipofectamine 3000 
reagent following the manufacturer's protocol. 
Transfection efficiency was detected by western blots. 
Small interfering RNA (siRNA) oligonucleotides were 
obtained from HanBio Technology (Shanghai, China). 
The siRNA sequences can be found in Table S1. 

RT-PCR and Western blots 
TRI reagent was used to extract total RNA from 

CRC cell lines following the manufacturer's 
instructions (Invitrogen, USA). Total RNAs, at a 
concentration of 500 ng/μL, were reverse-transcribed 
into complementary cDNA using a two-step RT kit 
(Takara Biotechnology) according to the 
manufacturer's instructions. Finally, the amplification 
reaction was performed on the LightCycler 480 
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instrument. The target genes were amplified with 
GAPDH as the internal control. Table S2 includes a 
list of the primer sequences used in this investigation. 
Total proteins were extracted using RIPA buffer 
(Beyotime, China) treated with phosphatase and 
protease suppressor. Western blotting was conducted 
according to the previous protocol [42]. The primary 
antibodies used in the study were anti-GAPDH 
(sc-47724, Santa Cruz) and anti-GRSF1 (ab194358, 
Abcam). 

Cell counting kit-8 and Transwell migration 
assays 

SW480 and RKO cells (1×105/well) were 
cultured in 6-well plates and transfected with 
Si-GRSF1 or Si-NC. After 72 hours of transfection, 
2000 cells were seeded into 96-well plates. The cells 
were cultured for 0, 24, 48, or 72 hours with Si-GRSF1 
or Si-NC, followed by incubation with CCK8 solution 
(C0038, Beyotime, Shanghai, China) for an additional 
1.5 hours. Cell viability was evaluated by measuring 
the optical density (OD) value at 450 nm. For cell 
migration assays, Transwell chambers (Corning, 
USA) were used. The transfected cells (4×104) were 
suspended in 100 μl serum-free medium and placed 
in the top chamber, while a medium containing 10% 
fetal bovine serum was added to the bottom 
chambers. After incubating for 36 hours, the inner 
chambers were scrubbed, and the cells on the other 
side of the membrane were fixed with 4% 
formaldehyde solution. The cells were then stained 
with crystal violet and recorded under a microscope. 

 Patient samples collection and 
Immunohistochemistry (IHC) 

Fresh colon tissues were obtained from six CRC 
patients who underwent radical surgery and one 
patient who underwent a colonoscopy at the Third 
Affiliated Hospital of Anhui Medical University. The 
patients who underwent radical surgery included two 
cases with distant metastases and four cases in the 
early stage (STAGE I-II) of colon cancer without 
distant liver metastases. The patient who underwent 
colonoscopy had colon cancer with distant liver 
metastases. All samples were coded according to local 
ethical guidelines, such as those set forth in the 
Declaration of Helsinki, and informed consent was 
obtained from all patients. Colon tissues were 
immersed in 4% paraformaldehyde for 24 hr, 
embedded in araffin, sectioned, then oven-dried at 
60°C for 30 min. Subsequently, GRSF1 
immunohischemically detected using a primary 
anti-GRAF1 antibody (ab194358, Abcam) and an 
antirabbit secondary antibody for 30min at room 
temperature. The tissue sections were stained using a 

DAB Horseradish Peroxidase Color Development Kit 
(P0203, Beyotime, China), and then the intensity of 
GRSF1 staining was analyzed using ImageJ software. 

Results 
Bulk RNAseq analysis identified three 
metabolic pathways-related subtypes with 
unique genomic and transcriptional profiles in 
CRC 

The flowchart of the study is presented in Figure 
1. To investigate the mechanism of metabolic 
reprogramming in CRC, we collected 85 pathways 
related to metabolism from the KEGG database 
(Table S1). After pathways with fewer than 2 genes 
were excluded, we used the remaining 84 metabolic 
pathway signatures in the TCGA COAD/READ 
cohort to score each sample by GSVA. The TCGA 
cohort was used to assess the prognostic value of 
metabolic pathways through KM survival analysis. 
Results showed that 21 metabolism-related pathways 
had prognostic significance (Figure S2). Subseq-
uently, we performed consensus clustering to identify 
the best subtype classification (from K=2 to 4), and 
determined that K=3 was the optimal choice (Figure 
2A; Figure S3). Principal component analysis (PCA) 
illustrates that the three clusters have unique 
transcriptional profiles (Figure 2C). Of note, patients 
with the C1 subtype exhibited the poorest overall 
survival (OS) and progression-free survival (PFS), as 
well as lower prognostic-associated metabolic 
pathway activity, except for other types of O-glycan 
biosynthesis (Figure 2B, 2F). These findings are 
consistent with our previous survival analysis of 
metabolic pathways. To determine the metabolism- 
related pathway typing of the tumour microen-
vironment (TME), we utilized the ESTIMATE and 
MCPcounter algorithms. Among the three subtypes, 
patients in subtype C1 exhibited the lowest tumour 
purity and the highest Stromal score (Figure 2D). 
Interestingly the MCPcounter results showed that the 
C1 subtype had a higher infiltration of stromal cells 
(fibroblasts and endothelial cells) and immune cells 
(Myeloid dendritic cells, Monocytic lineage, B lineage, 
Cytotoxic lymphocytes, and T cells) compared to the 
other two subtypes (Figure 2G). Furthermore, it was 
discovered that the C1 subtype exhibited increased 
expression of immune checkpoint molecules, 
specifically PDCD1 and LAG3 (Figure 2H). This indi-
cates that the subtypes related to metabolic pathways 
may have implications for immunotherapy. Addi-
tionally, the C1 subtype is associated with advanced 
stage and lymph node metastatic progression relative 
to the other two subtypes, which correlates with the 
poorer prognosis observed in C1 (Table 1). 
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Table 1. Clinical features of the three metabolic subtypes of 
TCGA CRC 

Characteristics C1(N=231) C2(N=236) C3(N=146) pvalue 
Sex 

   
0.45 

FEMALE 106 117 63 
 

MALE 125 119 83 
 

T 
   

0.1 
T1-2 36 53 34 

 

T3-4 194 182 112 
 

N 
   

4.50E-04 
N0 110 139 99 

 

N1-2 120 95 47 
 

M 
   

0.29 
M0 158 179 118 

 

M1 37 30 18 
 

Stage 
   

1.50E-03 
Stage I-II 106 130 94 

 

Stage III-IV 117 99 47 
 

lymphatic invasion 
   

0.32 
NO 118 134 76 

 

YES 95 80 52 
 

Venous invasion 
   

0.05 
NO 143 158 101 

 

YES 61 49 22 
 

Age 
   

0.4 
≥65 137 138 95 

 

<65 94 98 51 
 

BMI  
   

0.23 
Normal weight 37 38 18 

 

obese 43 34 12 
 

overweight 56 43 18 
 

underweight 5 0 0   
 
To further investigate the distinct biological 

processes of each subtype, we utilised fGSEA and GO 
enrichment analysis to explore subtype-specific 
pathways. The fGSEA results indicate significant 

enrichment of C1 subtypes in the HALLMARK_ 
TGF_BETA_SIGNALING, HALLMARK_ 
EPITHELIAL_MESENCHYMAL_TRANSITION, 
HALLMARK_ANGIOGENESIS, and HALLMARK_ 
COAGULATION pathways, all of which are 
associated with the matrix environment of the TME. 
In contrast, the corresponding C3 were more enriched 
in the HALLMARK_G2M_CHECKPOINT, 
HALLMARK_MITOTIC_SPINDLE, and 
HALLMARK_E2F_TARGETS pathways, which are 
associated with the cell cycle (Figure 3A). The GOBP 
enrichment analysis indicates that C1 is linked to 
extracellular matrix remodeling and collagen-related 
processes, while C3 cluster are primarily associated 
with immune responses and metabolic processes 
(Figure 3B). Furthermore, according to the Progeny 
software-based analysis, the C1 subtype exhibited a 
relatively higher activation of cancer-related classical 
pathways, such as hypoxia, JAK-STAT, NF-KB, TGFb, 
and TNFa (Figure 3C). In addition, we investigated 
somatic mutations in each subtype to study CRC 
driver genes and analyzed the top 20 genes with the 
highest mutation frequencies (Figure 3D). The 
mutation analysis results indicate that TP53 had a 
higher mutation frequency in patients with the C1 
subtype, while PIK3CA had a higher mutation rate in 
the C3 subtype. Based on these results, we found that 
TME with higher stromal cell infiltration is often 
accompanied by lower glucose, lipid, and amino acid 

 
Figure 1. The overall flowchart of this research.     
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metabolism such as the TCA (tricarboxylic acid cycle), 
fatty acid degradation, and Valine, leucine and 
isoleucine degradation, and these high stromal and 

low metabolism states correlate with a poorer 
prognosis. 

 

 
Figure 2. Prognostically relevant metabolic pathway-associated subtypes identified by consensus clustering in TCGA COAD/READ cohort. (A) The 
consensus matrix heat map categorizes CRC patients into 3 clusters. (B) Survival curves (overall survival, OS, and progression-free survival, PFS) demonstrate prognostic 
differences among the three subtypes. (C) Scatter plot illustrates the two-dimensional mapping of samples from the three subtypes based on PCA analysis. (D) Box plots display 
the tumor purity and stromal score of the three subtypes calculated using ESTIMATE. (E) Heatmap shows the differential expression of 21 metabolic-related pathways among the 
three subtypes. (F) Box plots represent the immune infiltration of ten cell types obtained from MCPcounter analysis. (G) Box plots depict the expression levels of immune 
checkpoint markers LAG3 and PDCD1 across the three subtypes. 
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Figure 3. Enrichment analysis and mutation analysis of three subtypes of colorectal cancer. (A) The fGSEA plots of the significantly up- or down-regulated hallmark 
gene sets in C3-C1 (Cluster 3- Cluster 1) subtypes. (B) GO BP enrichment analyses of genes upregulated in C3 and C1. (C) Violin plots demonstrating the activity of five classical 
cancer-related pathways in three clusters obtained by progeny analysis. (D) The waterfall plot showing the mutation distribution of the top 20 most frequently mutated genes 
among three clusters. 
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Cellular annotation and decoding the 
metabolic landscape of TMEs based on 
scRNAseq data 

To better understand metabolic heterogeneity at 
the cellular level in CRC, we included single-cell 
sequencing data from six CRC patients for analysis. 
After strict quality control and filtration, we obtained 
a total of 22,963 cells. Based on the annotation of 
known classical markers, 13 cell types were identified 
(Figure 4A: NK cells (markers: GNLY, KLRB1), DCs 
(markers: FSCN1, LAMP3), Neutrophils (markers: 
S100A8, CSF3R), Endothelial cells (markers: VWF, 
PECAM1), Mast cells (markers: KIT ,CPA3), 
Fibroblasts (markers: COL1A1, DCN), Epithelial cells 
(markers: KRT18 ,KRT8), Macrophage cells (markers: 
LYZ, CD68), Plasma cells (JCHAIN, MZB1), 
Regulatory T cells (markers: CTLA4 ,FOXP3), 
Conventonal T cells (markers: CD3D, IL7R), CD8 T 
cells (markers: CD8A ,CCL5), B cells (markers: 
CD79A, MS4A1)). Proportion stacked histogram 
showing cell proportions from 6 samples (Figure 4B). 
Violin plots and heatmaps show marker genes specific 
to 13 cell types (Figure 4C, 4D). The activity of 84 
pathways in each cell type was then calculated using 
AUCell, and we found that epithelial cells showed 
abundant pathway activation compared to other cell 
types (Figure 4E). Based on differential pathway 
analysis between C3 and C1 subtypes, we identified 
20 metabolism-related pathways that were elevated in 
patients with C3 subtypes, of which the TOP5 
pathway (ranked by -log10adj.p.val) was the TCA 
cycle, Valine, leucine and isoleucine degradation, 
fatty acid degradation, Pyruvate metabolism and 
Butanoate metabolism (Figure 4F). The violin plot 
displays the top 5 pathways across all cell types, with 
the highest pathway activity observed in epithelial 
cells (Figure 4E). The above results indicate that 
epithelial cells may have a significant impact on TME 
through these metabolically relevant pathways. 

CRC malignant cell clusters heterogeneity and 
their communication with stromal cells 

The identification of malignant tumor cells (n = 
1200) in epithelial cells was performed using 
InferCNV. Based on the inferred CNV matrix, we 
employed K-means clustering and identified five 
clusters. Cluster3 predominantly consisted of 
neutrophils and epithelial cells, which exhibited low 
CNVs. Based on this observation, we categorized the 
remaining clusters as malignant cells (Figure 5A, B). 
NMF (Non-Negative Matrix Factorization) analysis 
was performed using expression matrices of a total of 
1096 genes from 8 tumor-associated cell states and 5 
metabolism-related pathways. This analysis identified 

10 distinct tumor cell clusters (Figure 5C). The 
hierarchical clustering analysis of the 13 labels 
revealed that clusters C1, C3, and C8 exhibited a 
higher metabolic pathway status. Conversely, clusters 
C2, C0, and C6 displayed higher levels of stress, 
hypoxia, epithelial-mesenchymal transition (EMT) 
and partial epithelial-mesenchymal transition (pEMT) 
(Figure 5E). The proportional histograms provide an 
illustration of the distribution of subpopulations 
within each cluster. It is observed that the 
subpopulations with high metabolic states (C1, C3, 
and C8) are composed of cells from multiple samples. 
On the other hand, the subpopulations C0, C2, and C6 
have a larger proportion of cells originating from a 
single sample (Figure 5F). In addition, our findings 
indicate that clusters C1, C3, and C8 have relatively 
low cell stemness and CNV (copy number variation) 
scores. This suggests that these clusters may be 
associated with a more differentiated or less stem-like 
cellular phenotype, and exhibit lower levels of 
genomic instability in terms of copy number 
alterations (Figure 5D, G). Furthermore, we 
conducted GSVA on the top 100 specific genes of each 
tumor subclusters to estimate their relative 
abundance in the bulk data. In the TCGA cohort, it 
was observed that the C3 subgroup (HR = 0.481, 95% 
CI 0.308-0.751) and the C8 subgroup (HR = 0.643, 95% 
CI 0.445-0.930) were associated with a better 
prognosis. However, in the Meta-GEO cohort 
(GSE17536, GSE17537, GSE29621, GSE39582, and 
GSE72970), the C0 (HR = 1.748, 95% CI 1.183-2.584), 
C2 (HR = 1.466, 95% CI 1.048-2.049), and C6 (HR = 
1.592, 95% CI 1.087-2.332) subgroups were associated 
with a worse prognosis (Figure 5H). Interestingly, our 
analysis also revealed contrasting associations 
between cell state signatures and prognosis in 
different cohorts. In the TCGA cohort, the presence of 
a cell cycle signature was associated with a favorable 
prognosis. However, in the GEO cohort, the cell state 
labeling related to stress, hypoxia, mesenchymal 
transition, and partial epithelial-mesenchymal 
transition (pEMT) was associated with a poorer 
prognosis (Figure S4).  

Subsequently, the pseudotime analysis was 
utilized to speculate on the developmental order of 
tumor cell states within the ten identified clusters. The 
analysis suggests that the C1 and C8 subpopulations 
are primarily located at the early stages of the time 
series, while the C2 subpopulation is predominantly 
found towards the later stages of the time series 
(Figure 6A). This chronological pattern suggests a 
potential developmental sequence of tumor cell states, 
with C1 and C8 potentially representing less 
malignant stages and C2 representing more advanced 
or more malignant states.  
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Figure 4. Deciphering metabolic landscape of colorectal cancer patients at single-cell resolution (A) UMAP visualization of 22963 cells (13 cell types) across six 
CRC patients. (B) Bar plot showed the 13 cell proportion among patients. (C, D) Heatmap and Violin plot showed the markers of each cell type. (E) Heatmap displaying the 
activity of metabolic pathways in 13 different cell types. (F) Differential analysis of metabolic pathways revealed that 20 metabolic pathways were up-regulated in C3. The top 5 
pathways in the -log10 (adj.P.val) ranking are highlighted in red. (G) Violin plots indicated the metabolic pathway activity of top5 in these cell types. 
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Figure 5. Identification of ten tumor cell clusters by nonnegative matrix factorization (NMF). (A) Heatmap using neutrophils as a reference to show the landscape 
of CNVs derived from epithelial cells. (B) K-means clustering based on CNVs reveals similarities between colon epithelial cells in Cluster 3 and neutrophils. (C) UMAP 
visualization of the ten tumor cell clusters. (D) Among CRC tumor cell subtypes, C2 malignancy has the highest cell stemness score per cell as determined by AUCell. (E) Dot 
plot displayed the scores for eight cell states and five metabolic pathways. (F) Proportion of patients in different malignant cell clusters. (G) Violin plots shows differences in CNV 
scores for subpopulations of malignant cells. (H) CRC Tumor cell clusters associated with patient overall survival risk in TCGA-COAD/READ (left panel) and Meta-GEO cohorts 
(right panel) based on Cox regression analysis. 
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Figure 6. Analysis of pseudotime trajectories for clusters of CRC tumor cells. (A) Predicting the differentiation trajectory of subclusters of CRC tumor cells using 
Monocle. (B) Heatmap demonstrating Hallmark pathway scoring of CRC malignant cell subpopulations. (C) The genes that change with pseudotime have been classified into 4 
main categories, and the pathways in which each category is significantly enriched by metascape. (D) Scatterplot demonstrating the decrease in 5 metabolic pathway scores with 
elevated pseudotime. 

 
To further assess the function of each 

subpopulation, we used AUCell to score based on the 
HALLMARK geneset. The results demonstrate that 

the C1 and C8 subgroups exhibit similarity in their 
functional states. Specifically, these subgroups show 
relatively high activities in MYC-TARGETS, 
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E2F-TARGETS, and G2M-CHECKPOINT pathways, 
while displaying low activities in TGF-BETA- 
SIGNALING, ANGIOGENESIS, and EMT pathways. 
In contrast, the C2 subpopulation showed 
diametrically opposed results (Figure 6B). Based on 
the chronological analysis, genes with temporal 
changes were categorized into four subclasses. 
Cluster2 genes were found to be highly expressed at 
the beginning of the chronological sequence and 
primarily associated with processes such as peptide 
chain elongation, metallothionein binding metals, 
regulation of signal transduction by p53 class 
mediator, regulation of intrinsic apoptotic signaling 
pathway, cell killing, cytokine signaling in the 
immune system, and necroptosis.  

On the other hand, Cluster4 genes exhibited high 
expression mainly at the end of the chronological 
sequence and were significantly enriched for 
pathways involved in diseases of signal transduction 
by growth factor receptors and second messengers, 
intermediate filament cytoskeleton organization, 
epidermis development, NABA SECRETED 
FACTORS, and regulation of epithelial cell 
proliferation (Figure 6C). Additionally, the analysis 
also revealed a decrease in the scores of 
metabolism-related pathways with pseudotime 
changes (Figure 6D).  

To investigate the interaction between tumor cell 
subpopulations and TME, we utilized CellChat to 
infer the communication roles among different cell 
types. The result revealed that fibroblasts, Treg cells, 
and macrophages had the most frequent interactions 
with the C2 subpopulation, while the interactions 
with the C1 and C8 subpopulations were relatively 
infrequent (Figure 7B). Furthermore, it was 
discovered that the C6 subpopulation may have 
enhanced communication with stromal cells, 
specifically fibroblasts and endothelial cells, via the 
MK and BMP signaling pathways. On the other hand, 
the C2 and C0 subpopulations may maintain stronger 
crosstalk with endothelial cells through the WNT and 
VEGF signaling pathways, respectively (Figure 7C). 
The expression of MK, VEGF, ncWNT, WNT, BMP, 
and TGFB signaling pathway receptor-ligand pairs in 
tumor and non-tumor cells indirectly indicates 
possible patterns of interaction. It is noteworthy that 
these ligands are highly expressed on fibroblasts and 
endothelial cells (Figure 7A). In summary, Figure 7D 
shows a schematic of possible hypotheses. 

HdWGCNA and RSFVH identify hub genes in 
tumour clusters associated with favourable 
prognostic metabolic pathways  

Next, high dimensional weighted gene 
co-expression network analysis (hdWGCNA) was 

used to identify the main molecular characteristics of 
each tumor cluster. With a soft threshold of 14, the 
scale-free network of each tumor cluster was 
constructed for the best connectivity and a total of 20 
gene modules were identified (Figure 8A–C). The 
Blue and Cyan modules were selected based on their 
predominant expression in the C3 and C8 
subpopulations, respectively. The Blue module 
showed a significant negative correlation with Stage, 
T, and overall survival time, while the Cyan module 
was negatively correlated with N, Stage, lymph node 
invasion, and vascular invasion (Figure 8D). Top 10 
ranking of the 50 hub genes with the highest 
importance, obtained through variable screening 
using Random Survival Forests Variable Hunting 
(RSFVH) for candidate modules (Figure 8E). The risk 
models were constructed using Cox regression 
analysis of 1023 gene set combinations. Seven gene 
features (GRSF1, UQCRFS1, SULT1B1, PTP4A1, 
LGALS2, G3BP1, and CUTA) with the smallest 
p-values were identified (Figure 8F). In the meta-GEO 
cohort, KM survival analysis revealed that UQCRFS1 
(p < 0.001), GRSF1 (p = 0.007), and LGALS2 (p < 0.001) 
were associated with a favourable prognosis (Figure 
9A). The analysis showed that the expression of 
GRSF1 and UQCRFS1 decreased with the progression 
of tumor Stage, M-stage, and N-stage in the TCGA 
cohort (Figure 9B). Figure 9C shows the expression of 
these two candidate genes in different cell types in 
other single-cell sequencing datasets. Furthermore, in 
the PANCAN cohort consisting of 32 solid tumors, we 
observed that both candidate genes were positively 
associated with five metabolism-related pathways 
that have prognostic relevance, as well as the cell 
cycle pathway. Conversely, they showed a negative 
association with angiogenesis and EMT (Figure 9D). 
Additionally, these candidate genes were found to be 
associated with a favorable prognosis in the COAD, 
KIRC (kidney renal clear cell carcinoma), and KIRD 
(kidney renal papillary cell carcinoma) (Figure 9E). 
Correlation analysis further revealed a positive 
association between GRSF1 and UQCRFS1 with 
certain immunotherapy-positive signatures. This 
suggests that higher expression levels or activity of 
GRSF1 and UQCRFS1 may be related to increased 
immune response or potential sensitivity to 
immunotherapy in the analyzed context (Figure 9F). 

Down-regulation of GRSF1 inhibits CRC cell 
proliferation but promotes migration 

To further investigate the function of GRSF1 in 
CRC, in vitro experiments were performed using CRC 
cells. Firstly, the mRNA expression levels of GRSF1 
were examined by RT-qPCR in six cell lines. 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

4188 

 
Figure 7. Cell communication analysis to assess crosstalk between malignant cells and tumor microenvironment cells. (A) Dot plots display gene expression 
levels of receptor-ligand pairs involved in interactions between TME and tumor clusters. (B) Overall number of interactions and crosstalk of tumor subpopulations with 
fibroblasts, macrophages and T reg cells, respectively. (C) Circle plots showing the interactions of MK, WNT, BMP, VEGF classical tumour-associated signalling pathways. (D) 
Malignant cells with a low expression of metabolic pathways associated with favorable prognosis are often accompanied by greater infiltration of Treg and fibroblasts, while 
promoting neovascularisation and metastasis. 
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Figure 8. Identification of co-expression modules and prognostically relevant hub genes in CRC tumor cells. (A and B) Weighed gene co-expression network 
analysis was constructed among CRC tumor cells. (C) The top 10 eigengenes of each module are ranked by eigengene-based connectivity (kME). (D) Correlation of each module 
with clinical phenotypes and scoring in subpopulations of malignant cells. (E) Ten genes were screened using random survival forest analysis. (F) After conducting Kaplan-Meier 
analysis on 1,023 combinations, the top 20 signatures were sorted based on their p-values. The signature includes seven genes that were identified due to their relatively high 
-log10 p value. 
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Figure 9. The expression of GRSF1 and UQCRFS1 in CRC is associated with a favourable prognosis. (A) KM analysis of UQCRFS1, GRSF1, PTP4A1, and LGALS2 
in the Meta-GEO cohort. (B) Correlation of UQCRFS1, GRSF1, and LGALS2 with Stage, Lymph Node Metastasis, and Distant Metastasis. (C) Based on the TISCH2 database to 
identify the expression patterns of GRSF1 and UQCRFS1 in malignant and non-malignant cells across three single-cell datasets for colorectal cancer. (D) Survival analysis for 
UQCRFS1 and GRSF1 in pan-cancer cohort. (E) GRSF1 and UQCRFS1 correlate with five metabolic pathways and many malignant features of the tumour in the pan-cancer 
cohort. (F) Association of GRSF1 and UQCRFS2 with the set of immunotherapy-positive related signatures. 

 
The results showed a significant elevation of 

GRSF1 expression in RKO, SW480 and HCT116 
compared to the normal colon cell line NCM460 
(Figure 10A). Subsequently, the protein levels of 
GRSF1 expression were measured 48 hours after 

transfection using siRNA-mediated GRSF1 
knockdown in RKO and SW480 cell lines. Western 
blot analysis confirmed the efficacy of GRSF1 
knockdown in these cell lines (Figure 10B). 
Furthermore, the impact of GRSF1 knockdown on cell 
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viability was assessed using the CCK8 assay. The 
results demonstrated a significant decrease in cell 
viability in RKO and SW480 cells following GRSF1 
knockdown (P < 0.01) (Figure 10C). This suggests that 
GRSF1 may play an essential role in promoting the 
proliferation of CRC cell lines. Additionally, 
Transwell migration experiments were conducted to 
evaluate the effect of GRSF1 knockdown on cell 
migration. The results revealed that GRSF1 

knockdown significantly promoted the migration of 
RKO and SW480 cells (Figure 10D). 
Immunohistochemistry analysis reveals diminished 
expression of GSRF1 in colon cancer specimens 
classified as stage M1 when contrasted with those at 
stage M0 (Figure 10E, F). These findings collectively 
suggest that GRSF1 may have functional significance 
in CRC, including its involvement in cell proliferation 
and migration processes. 

 

 
Figure 10. Validation of GRSF1 through in vitro experiments. (A) The mRNA expression of GRSF1 was measured in five colonrectal cell lines (NCM460, SW480, 
HCT116, HT29, and RKO) and blader cancer cellline 5637 using RT-qPCR. (B) Western blots reflect GRSF1 expression in RKO and SW480 cell lines treated with si-GRSF1. (C) 
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The CCK-8 assay showed a significant reduction in cell viability after the GRSF1 knockdown. (D) The Transwell migration assay demonstrated an increased migration ability in 
SW480 and RKO cell lines following treatment with si-GRSF1. (E and F) Immunohistochemical images demonstrating the expression levels of GRSF1 in M0-stage and M1-stage 
colon cancers. (*P < 0.05, **P < 0.01). 

 

Discussion 
In recent years, the advancement of multi-omics 

technologies has significantly improved the diagnosis 
and treatment of CRC. Despite these advancements, it 
is still concerning that approximately 60% of CRC 
patients eventually develop metastases [43]. 
Moreover, the use of multiple forms of combination 
therapy often leads to the development of resistance, 
further complicating the management of CRC 
metastases [44, 45]. As a result, CRC metastases 
remain the primary cause of cancer-related deaths. 
Indeed, metabolic reprogramming plays a crucial role 
in tumor progression and metastasis and is 
considered a fundamental hallmark of cancer [46]. 
Cancer cells often undergo metabolic rewiring to meet 
their high energy and nutrient demands required for 
rapid cell division [47]. Several proteomic and 
metabolomic studies have revealed that many 
metabolic pathways are altered in colorectal tumors 
compared to normal mucosa [48, 49]. However, 
targeting or combining metabolic pathways in tumor 
cells presents a significant challenge due to the 
complexity of tumor metabolism. The development of 
single-cell technology provides a new vision for our 
understanding of tumor and TME metabolism.  

Our study provides comprehensive insights into 
the metabolic heterogeneity within the TME of CRC, 
significantly advancing our understanding of 
metabolic reprogramming in cancer progression 
beyond what has been achieved in some previous 
studies [50-52]. Unlike previous studies that have 
broadly characterized metabolic pathways associated 
prognosis model in CRC, our research utilizes 
advanced multi-omics approaches, including bulk 
RNAseq and scRNAseq analyses, to dissect these 
pathways at a more granular, cellular level. This 
allows us to identify distinct metabolic subtypes and 
characterize cellular annotations, which are crucial for 
tailoring personalized treatment strategies. Initially, 
we collected 85 metabolism-related pathways from 
the KEGG database and scored them by GSVA for the 
TCGA CRC cohort. The results showed prognostic 
significance for 21 metabolic related pathways. 
Through clustering analysis, we identified three 
optimal subtype classifications, where the C1 subtype 
exhibited the poorest OS and PFS. Moreover, the C1 
subtype displayed higher activation of classic 
pathways such as Hypoxia, JAK-STAT, NF-KB, TGFb, 
and TNFa, which promote tumorigenesis and 
development [53-57]. Furthermore, our investigation 
into the TME revealed that the C1 subtype displayed 

higher infiltration of stromal cells (fibroblasts and 
endothelial cells). Further exploration using 
enrichment analysis highlighted the significance of 
extracellular matrix remodeling and collagen-related 
processes in the C1 subtypes. In comparison, the C3 
subtype was more enriched in G2M checkpoint, 
mitotic spindle, and E2F targets pathways associated 
with the cell cycle [58]. Additionally, increased 
expression of immune checkpoint molecules, 
specifically PDCD1 and LAG3, was observed in the 
C1 subtype, suggesting potential implications for 
immunotherapy.  

To gain a deeper understanding of metabolic 
heterogeneity at the cellular level in CRC, we 
incorporated scRNA seq data from six CRC patients. 
Differential pathway analysis between the C3 and C1 
subtypes revealed 20 metabolism-related pathways 
that were elevated in patients with the C3 subtype. 
These pathways included the TCA cycle, Valine, 
leucine and isoleucine degradation, fatty acid 
degradation, Pyruvate metabolism, and Butanoate 
metabolism. Interestingly, the top five pathways 
demonstrated the highest activity in epithelial cells. 
The famous Warburg effect refers to the tendency of 
cancer cells to utilize anaerobic glycolysis rather than 
oxidative phosphorylation even in the presence of an 
adequate supply of oxygen [59]. And both the TCA 
cycle as well as Pyruvate metabolism were 
significantly associated with this effect. It has been 
shown that NCAPD3 enhances the Warburg effect in 
colon cancer, including the enhancement of cellular 
aerobic glycolysis and the inhibition of TCA cyclic 
flux, which promotes tumor development [60]. In 
addition, butyrate is mainly produced by the gut 
microbiota during colonic fermentation. Fewer 
butyrate-producing bacteria were detected in the 
microbiota of CRC patients than in controls [61]. 
Numerous studies have shown that butyrate exerts 
anticancer activity in colorectal cancer by affecting 
multiple signaling pathways [62-64]. We performed 
InferCNV analysis and K-means clustering, which 
resulted in the identification of five clusters. Among 
them, Cluster 3 consisted predominantly of 
neutrophils and epithelial cells. The remaining 
clusters were categorized as malignant cells. NMF 
analysis was then conducted, revealing ten distinct 
tumor cell clusters. Hierarchical clustering analysis 
showed that clusters C1, C3, and C8 exhibited higher 
metabolic pathway statuses, while clusters C0, C2, 
and C6 displayed higher levels of stress, hypoxia, 
EMT, and pEMT. We further investigated interactions 
between tumor cell subgroups and the TME, finding 
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that fibroblasts, Treg cells, and macrophages most 
frequently interacted with the C2 subgroup, but 
relatively less with C1 and C8 subgroups. Interactions 
between tumor cells and adjacent CAFs 
(Cancer-associated fibroblasts) can influence tumor 
progression and treatment resistance, where possible 
mechanisms include induction of epithelial-to- 
mesenchymal transition (EMT), stemness-associated 
programs, and metabolic reprogramming of tumor 
cells [65]. Recent studies have also shown that CAFs 
secreted exosomal miR-92a-3p promote metastasis 
and chemotherapy resistance of CRC [66]. Moreover, 
we found that the C6 subgroup might enhance 
communication with stromal cells (especially 
fibroblasts and endothelial cells) through the MK and 
BMP signaling pathways. Whereas C2 and C0 
subpopulations have strong communication with 
endothelial cells through WNT and VEGF pathways, 
respectively. BMP and WNT signaling pathways 
crosstalk in CRC, Loss of SMAD4 alters BMP 
signaling activates wnt signalingto promote CRC cell 
metastasis [67, 68]. The vascular endothelial growth 
factor (VEGF) family and its receptors are considered 
to be the most prominent regulators of angiogenesis, 
affecting tumor progression and metastasis [69]. 
Prognostic analysis also indicated that the C0, C2, and 
C6 subgroups were associated with a worse prognosis 
in the Meta-GEO cohort, whereas the C3 and C8 
subgroups were associated with a better prognosis in 
the TCGA cohort. It is worth mentioning that C1 and 
C8 exhibited relatively low cell stemness and CNV 
scores. In summary, we suggest that tumor cell 
subpopulations are accompanied by changes in top5 
metabolism-related prognostic pathway activity with 
different TME and pathway crosstalk. 

Moreover, by employing the hdWGCNA 
technique, we were able to identify 20 gene modules 
that correlate with clinical features of CRC. 
Particularly, the blue and cyan modules 
predominantly expressed in the C3 and C8 subgroups 
respectively, offer noval biomarkers for predicting the 
metastatic potential of CRC subtypes. Through 
RSFVH and external cohorts validation, we identified 
the key gene GRSF1. This discovery emphasizes the 
central role of GRSF1 in modulating the cancer 
metabolism landscape, positioning it as a key player 
worth further investigation. Furthermore, in light of 
our findings, in the PANCAN cohort, GRSF1 not only 
associates positively with metabolism-related and cell 
cycle pathways but also shows negative association 
with angiogenesis and EMT, positioning it as a key 
player in modulating the cancer metabolism 
landscape. It was also associated with a favorable 
prognosis in KIRC and KIRD. Correlation analysis 
showed a positive correlation between GRSF1, and 

certain immunotherapy-positive features, suggesting 
that it may facilitate immunotherapy response. 
Various studies have shown the oncogenic effects of 
GRSF1 in gastric cancer, cervical cancer, lung 
adenocarcinoma, triple-negative breast cancer, and 
hepatocellular carcinoma [70-74]. 

Interestingly in our study, GRSF1 plays a dual 
role in CRC including promotion of proliferation and 
inhibition of metastasis. A number of cancer-related 
signaling molecules have been shown to play a dual 
role in the development and progression of cancer. 
For example, Epcam is prognostically favorable in 
both KIRC and endometrial cancer, but has been 
shown to promote proliferation and inhibit invasion 
and migration in vitro [75, 76]. Furthermore, FBXO22 
has a paradoxical role in breast cancer, promoting 
breast tumor cell proliferation while preventing EMT 
and metastasis [77]. Similarly, SnoN, an important 
negative regulator of TGFβ signaling, plays a role in 
suppressing EMT and promoting proliferation in 
mammalian [78]. Based on these findings, we 
speculate that GRSF1 may play a role in promoting 
tumor clone formation early in tumorigenesis. And 
when the tumor metastasizes or progresses, the 
expression of GRSF1 would be reduced through some 
as yet undefined mechanisms. Our study suggests 
that targeting GRSF1 in CRC may not be a good 
therapeutic approach. However, our study has several 
limitations. Firstly, Due to the lack of sufficient 
clinical information on the samples in the public 
databases TCGA and GEO, it is possible that other 
disease states in some patients may also affect the 
metabolic profile of tumor cells. The mechanism by 
which GRSF1 promotes tumor progression needs to 
be further explored and corresponding in vivo 
experiments are lacking as this study only found 
inhibition of migration in CRC cell lines in vitro 
Moreover, our findings of GRSF1 expression and its 
correlation with clinical features require validation in 
a larger patient cohort. The process of GRSF1 crosstalk 
with immune cells in TME also requires further 
experimental validation.  

Overall, the detailed elucidation of metabolic 
heterogeneity and its implications in CRC provided 
by our study not only fills gaps left by previous 
research but also sets the stage for novel therapeutic 
interventions that are finely tuned to the metabolic 
nuances of individual tumors. Through bulk RNAseq 
and scRNAseq analyses, we identified distinct 
metabolic subtypes, characterized cellular annota-
tions, elucidated communication patterns between 
malignant cells and stromal cells, and identified hub 
gene GRSF1 associated with favorable prognostic 
metabolic pathways. This underlines the importance 
of our findings for understanding the intricate nature 
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of the metabolic landscape in CRC and for guiding 
future efforts to develop targeted therapies. Our 
findings may contribute to a better understanding of 
the metabolic landscape in CRC and may have 
implications for the development of targeted 
therapies and immunotherapies.  
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