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Abstract 

It’s a major public health problem of global concern that malignant gliomas tend to grow rapidly and 
infiltrate surrounding tissues. Accurate grading of the tumor can determine the degree of malignancy to 
formulate the best treatment plan, which can eliminate the tumor or limit widespread metastasis of the 
tumor, saving the patient's life and improving their prognosis. To more accurately predict the grading of 
gliomas, we proposed a novel method of combining the advantages of 2D and 3D Convolutional Neural 
Networks for tumor grading by multimodality on Magnetic Resonance Imaging. The core of the 
innovation lies in our combination of tumor 3D information extracted from multimodal data with those 
obtained from a 2D ResNet50 architecture. It solves both the lack of temporal-spatial information 
provided by 3D imaging in 2D convolutional neural networks and avoids more noise from too much 
information in 3D convolutional neural networks, which causes serious overfitting problems. 
Incorporating explicit tumor 3D information, such as tumor volume and surface area, enhances the 
grading model's performance and addresses the limitations of both approaches. By fusing information 
from multiple modalities, the model achieves a more precise and accurate characterization of tumors. 
The model I s trained and evaluated using two publicly available brain glioma datasets, achieving an AUC 
of 0.9684 on the validation set. The model's interpretability is enhanced through heatmaps, which 
highlight the tumor region. The proposed method holds promise for clinical application in tumor grading 
and contributes to the field of medical diagnostics for prediction. 
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1. Introduction 
The World Health Organization (WHO) defines 

glioma as a tumor that arises from the brain's 
neuroglial cells [1]. It is the most common primary 
intracranial tumor [2], mainly appearing in the 
hemispheres of the brain (66.8%) and cerebellum 
(8.6%) [3]. The annual incidence rate of glioma in 
China is 5-8 per 100,000 people, and the 5-year 
mortality rated the third following pancreatic cancer 
and lung cancer among systemic tumors, according to 
the China Glioma Guidelines (2022 Edition) [4]. 
Symptoms caused by gliomas vary depending on 
their location and size, and the main clinical 

manifestations include three major categories: 
increased intracranial pressure, neurological and 
cognitive disorders, and epileptic seizures [5,6]. 
Malignant gliomas tend to grow rapidly and infiltrate 
surrounding tissues, posing serious threats to 
patients’ health [7,8]. Treatments for gliomas include 
surgical resection, radiotherapy, chemotherapy, etc. 
[9]. Unfortunately, the prognosis for patients is not 
satisfactory. Consistent follow-up monitoring is also 
essential due to the significant risk of recurrence and 
metastasis in gliomas [10,11]. The fifth edition of the 
WHO Classification of Tumors of the Central Nervous 
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System classifies gliomas into four grades (I-IV), with 
low-grade gliomas (grades I and II) and high-grade 
gliomas (grades III and IV) [1]. Most low-grade 
gliomas will eventually evolve into high-grade 
gliomas [12]. Accurate grading of the tumor can 
determine the degree of malignancy to formulate the 
best treatment plan. Appropriate treatments can 
eliminate the tumor or limit widespread metastasis 
and prevent further progression of the tumor, saving 
the patient's life and improving their prognosis. 

Due to the potential secondary harm caused by 
biopsy, the grading of gliomas currently favors the 
use of non-invasive imaging methods, including 
magnetic resonance imaging (MRI). MRI can reveal 
the diffusion of lesions at the interface between the 
inner and outer boundaries of tumor blood vessels or 
the inner and outer walls of tumor cell interstitial 
tissues, as well as the distribution of blood flow, 
providing high-resolution spatial imaging informa-
tion [13]. Combing with deep learning technology, 
multi-modal MRI has revolutionized medical imaging 
in recent years. Multi-modal MRI data provides 
multiple complementary pieces of information for the 
tumor microenvironment, such as tumor morphology, 
cell density, and blood flow [14,15]. The various T1 
and T2 values of different tissues in the human body 
make it possible to generate images. Water has a low 
signal on T1WI and darker grey matter, whereas 
water has a high signal on T2WI and brighter grey 
matter [16,17]. Different MRI sequences carry diverse 
information, with free water suppressed and bound 
water having a higher signal in images obtained by 
inversion recovery sequences. Furthermore, contrast 
medium like gadolinium can enhance the signal 
intensity of magnetic resonance and affect the T1 and 
T2 relaxation of surrounding protons [18], reflecting 
different tumor information. In this study, we utilize 
deep learning algorithms to automatically extract 
useful features from large-scale multi-modal MRI 
data, which serve as key factors for tumor 
identification and grading. 

Currently, 2D convolutional neural networks 
(CNNs) are commonly employed for tumor grading 
in the field of medical imaging. Previous studies often 
use diverse strategies to integrate data from various 
modalities through multiple networks or channels, 
aiming to achieve multi-channel-based multi-modal 
feature extraction [19-21]. In contrast, a 3D image is a 
three-dimensional data structure composed of stacked 
2D images. It effectively represents the tumor's 
volume, spatial location, and temporal information 
among the 2D images, leading to improved results in 
other studies that leverage 3D CNN [22-24]. However, 
the increased complexity of 3D imaging data can 
hinder model training, potentially resulting in not 

only training instability and increased computational 
costs, but also failure to achieve the desired outcomes 
in tumor detection and grading. 

It has been pointed out that volumetric analysis 
of brain tumors is a decisive factor in brain tumor 
detection [25], and that the calculation of tumor 
volume also has significant numerical advantages in 
terms of tumor size, region, and treatment [26]. 
Inspired by this, we incorporate the most important 
3D features of gliomas (e.g., tumor volume, surface 
area), instead of whole 3D images, into the grading 
model, which provides a novel and effective approach 
utilizing multi-modal MRI to leverage the benefits of 
both 2D and 3D features. Using Pyradiomics, we 
extract 14 3D features from tumor images. 

Additionally, we adapt the ResNet50 
architecture to predict glioma grading by integrating 
these features with those obtained by the 2D CNN at 
the fully connected layer. The segmented image 
containing only the tumor is obtained, and the four 
modalities (T1, T2, T1-Gd, and FLAIR) are overlaid on 
each of the four channels of the image, serving as 
inputs to the model. The experimental results 
demonstrate that the inclusion of 3D features in our 
approach leads to an improvement of approximately 
1.2% over the multi-modal 2D CNN, yielding optimal 
results and confirming the method's efficacy in this 
study and its potential for clinical medicine. 

For 2D network structure, 3D information of the 
tumor is concealed and does not stand out 
prominently among the numerous image features. We 
are the first to discover the significant contribution of 
these 3D features to tumor grading. This study aims to 
develop and validate a tumor grading model using 
the multi-modal MRI and the 3D features of the 
tumor, based on the 2D ResNet network. Then, we 
conduct a comparative analysis of our proposed 
method through separate experiments using 2D CNN 
and 3D CNN. Additionally, the interpretability of the 
model is given by heatmaps. 

2. Materials and Methods 
2.1 Datasets 

Two publicly available datasets for brain gliomas 
are used in this study: the UCSF-PDGM dataset and 
the BraTS2020 dataset. The UCSF-PDGM dataset [27] 
comprises 495 adult patients diagnosed with 
histologically confirmed grade II-IV diffuse gliomas, 
consisting of 56 grade II, 43 grade III, and 396 grade IV 
tumors. The dataset includes 199 females and 296 
males, with a mean age of approximately 57 years and 
an average overall survival of approximately 574 days 
from the initial diagnosis to the last clinical follow-up. 
Cranial stripping is performed on the dataset using 
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publicly available deep learning algorithms and 295 
grade IV tumors are included in the BraTS2021 
Challenge. The entire dataset undergoes automatic 
segmentation using an ensemble model that 
incorporates the winning segmentation algorithms 
from the BraTS Challenge. Subsequently, the images 
are manually corrected by trained radiologists and 
reviewed by 2 expert reviewers for final approval. In 
addition to T1, T2, T1-Gd and FLAIR modalities, the 
dataset also provides five other modalities, including 
SWI, HARDI, etc. The tumor data in the BraTS 
Challenge originates from 19 distinct medical centers. 
The primary objective of the competition is to foster 
the advancement of medical image segmentation 
techniques and facilitate the provision of enhanced 
tools for brain tumor diagnosis and treatment. The 
BraTS2020 competition, held in 2020, includes a 
training set comprising 369 cases, featuring an 
average age of approximately 61 years and an average 
total survival of about 446 days. The dataset 
encompasses tumor grading information, segmenta-
tion labels, as well as NIFTI files for four modalities 
per case. A series of preprocessing operations are 
conducted on the data from both datasets to create a 
more balanced grading ratio within the dataset. 

2.2 Data Preprocessing 
Following the WHO definition, we reclassify the 

UCSF-PDGM dataset into a binary dataset consisting 
of low-grade gliomas (LGG) and high-grade gliomas 
(HGG). We also incorporate the cases categorized as 
LGG in BraTS2020, with each case containing four 
modalities (T1, T2, T1-Gd and FLAIR) and a 
corresponding tumor segmentation map. Each case is 
represented as 3D data in NIfTI format with 
dimensions of 240x240x155. Initially, we convert each 
case into 155 PNG images of size 240x240. Then, we 
extract the tumor region based on the tumor 
segmentation map. As a result, the new dataset 
comprises a total of 112 LGG cases and 407 HGG 
cases. 

Subsequently, we partition the dataset into 
training and validation sets based on patients, with a 
ratio of 7:3. The training set comprises 78 LGGs and 
286 HGGs, while the validation set contains 34 LGGs 
and 121 HGGs. However, due to the significant 
difference in the number of LGGs and HGGs, we 
perform up-sampling to address the long-tailed 
distribution issue. Additionally, we employ data 
augmentation techniques exclusively for LGGs, 
resulting in a final input of 25,162 images in the 
training set and 6,881 images in the validation set, as 
shown in Figure 1. 

 
 

 
Figure 1. Data division illustrating the inclusion and exclusion criteria. A total of 55 gliomas are excluded based on tumor size or follow-up imaging, and the remaining cases are 
divided into training and validation cohorts. 
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Our proposed method involves incorporating 
the intrinsic 3D features of the images into the 
features obtained from training a 2D CNN. To extract 
these 3D radiomic features, we utilize the 
Pyradiomics package (v3.0.1). Pyradiomics can extract 
various radiomic features from images such as Gray 
Level Co-occurrence Matrix (GLCM), 2D Shape and 
3D Shape features. Ultimately, for each case, we 
choose only 14 easily accessible 3D shape features 
extracted by Pyradiomics, including Mesh Volume, 
Voxel Volume, Surface Area, Surface Volume Ratio, 
Sphericity, Maximum 3D Diameter, Maximum 2D 
Diameter Slice, Maximum 2D Diameter Column, 
Maximum 2D Diameter Row, Major Axis Length, 
Minor Axis Length, Least Axis Length, Elongation 
and Flatness. 

2.3 Data Augmentation 
Compared to the original image size of 240x240, 

even after excluding cases that still have tumors 
appearing too small. For LGG images in the training 
set, we first resize the images to 448x448. Then, we 
perform a central crop to obtain images of size 
224x224. Finally, we randomly crop them to 160x160. 
For HGG images in the training set and the validation 
set, we directly perform a central crop to obtain 
images of size 160x160. A study has shown that 
flipping techniques can effectively capture features in 
medical images, generating more discriminative 
feature maps [28]. Following the recommendations 
from this study [22], we also incorporate horizontal 
and vertical flipping into our data augmentation 
process. Additionally, we apply CyclicShift [29], a 
method that moves the image in a random direction 
and cyclically fills the out-of-box parts to the other 
side. This technique helps to avoid losing original 
image pixels while preserving their semantic 
information as much as possible. It also forces the 
model to effectively utilize local and fragmented 
information. Furthermore, we include random 
rotation in the range of [-180°, 180°] to prevent 
overfitting and enrich the data patterns of replicated 
images. At last, we use salt and pepper noise, which 
introduces noticeable noise and distortion in certain 
regions of the image. This encourages the model to 
better learn the semantic information of the target and 
helps the model become more robust and resilient. 

2.4 Model 

In the selection of the tumor grading model, we 
consider that a few 2D images of a patient may not 
capture the complete information of the entire tumor. 
By employing a 2D CNN, the tumor is projected into a 
single planar image, resulting in the loss of temporal 
spatial information. This absence of information 

adversely affects the accuracy of tumor grading. 
Conversely, while the utilization of 3D CNN allows 
for the direct consideration of the complete tumor 
information, excessive information introduces 
additional noise, thereby impeding model training 
and leading to a severe overfitting issue. Additionally, 
the 3D model demands more computational resources 
due to its higher computational intensity. In a study 
aiming to improve the expected lifespan of brain 
tumor patients, tumor grading was performed 
through volume analysis [30]. To overcome the 
limitations of both 2D CNN and 3D CNN, we propose 
a novel approach for tumor grading that combines 2D 
CNN with 3D features. This fusion of 2D and 3D 
information enhances the grading performance of the 
model while mitigating resource consumption. 

We adopt the standard ResNet50 network as the 
backbone of our model. This choice ensures that the 
model has stable and reliable performance while 
enabling the use of pre-trained parameters. The 
residual blocks in the ResNet consist of one or more 
convolutional layers and a shortcut connection that 
directly adds the input of the unit to its output. This 
design allows deep networks to be trained more easily 
without losing information, addressing the issues of 
gradient vanishing and exploding. 

In MRI, different imaging modalities provide 
different information. T1WI highlights the transverse 
relaxation differences in tissues, providing clearer 
visualization of the tissue structure of the brain and 
other organs, reflecting global information. On the 
other hand, T2WI emphasizes the longitudinal 
relaxation differences in tissues, offering a more 
intuitive display of lesions. Additionally, different 
tissues such as white matter, bone marrow, 
cerebrospinal fluid, and fat exhibit varying signal 
intensities across different imaging sequences, 
allowing the model to learn different feature maps in 
different modalities. The fusion of information from 
multiple modalities can result in a more precise and 
accurate characterization and understanding of 
tumors by removing redundant information and 
complementing missing information. 

Based on this, we integrate the data from four 
modalities, namely T1, T2, T1-Gd and FLAIR, into the 
network. Considering that the model needs to process 
this information simultaneously without separate 
computations, in this study, the data from the four 
modalities are combined via channel stacking. This 
approach ensures that the model can simultaneously 
observe multi-modal information while reducing 
computational costs. Unlike previous networks, the 
model proposed in this study expands its output from 
a single channel to four channels, constituting the 2D 
information of the images. During data preprocessing, 
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14 3D radiomic features are extracted for each 
patient's tumor. Recognizing the equal importance of 
the features learned by the CNN model and the 
radiomic features, we modify the fully connected 
layer of ResNet50. The learned feature vectors are first 
scaled to 14 values, and each tumor image is 
combined with the corresponding 14 3D radiomic 
features of the patient. Finally, these 28 features are 
directly outputted as a 1x2 vector. We apply Softmax 
to the output vector, ensuring that the sum of the 
probabilities of the image being LGG and HGG is 1. In 
each step, the model learns the information from a 
batch of images and adjusts the parameters through 
an optimizer. At the end of an epoch, we obtain the 
1x2 outputs for all the images. Finally, we reclassify 
these vectors according to patients, and the average of 
many 1x2 output vectors for each patient becomes the 
final prediction of our model for the tumor grading of 
that patient. The architecture of our model is shown in 
Figure 2. 

For model training, we set 20 epochs with a 
batch size of 16 for the training set. We use the Adam 
optimizer with a learning rate of 0.001. The L2 
regularization weight decay is set to 5e-4. The 
gradient decay rate is 0.9 and the squared gradient 
decay rate is set to 0.99. The loss function used is 
cross-entropy. All experiments in this study are 
conducted using Python 3.9.16, PyTorch 2.0.0, and 
two NVIDIA GeForce GM200 graphics cards with 

CUDA 12.0 installed. 

2.5 Statistical analysis 
The ROC curve is a graphical tool used to 

illustrate the performance of a classification model. It 
plots the true positive rate (TPR) against the false 
positive rate (FPR) at different thresholds. We choose 
AUC (Area Under the Curve) as the primary 
evaluation metric in this study. The AUC represents 
the area under the ROC curve and is one of the most 
important metrics used in the medical field to assess 
the performance of binary classifiers. A higher AUC 
value indicates better classifier performance.  

Since the proportion of LGG to HGG in the 
validation set is close to 1:4, using accuracy as an 
evaluation metric will result in a misleading 
interpretation. If all tumors are classified as HGG, the 
accuracy (Acc) would still reach 78%, making it 
unsuitable for comparing the model's classification 
ability. Therefore, we adopt the average per-class 
accuracy (APCA) alongside accuracy to evaluate the 
model's strengths and weaknesses in this study. 
APCA calculates the accuracy for each class and then 
averages them to obtain the final result. 

𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 =
𝑨𝑨𝑨𝑨𝑨𝑨𝑳𝑳𝑳𝑳𝑳𝑳 + 𝑨𝑨𝑨𝑨𝑨𝑨𝑯𝑯𝑳𝑳𝑳𝑳

𝟐𝟐
 

Finally, we use sensitivity (SEN) and specificity 
(SPE) as metrics for evaluating the accuracy of the 
model on samples from different categories. 

 
Figure 2. The workflow of the proposed method. The left side indicates that four modalities are superimposed on four different channels to constitute multimodal data. On the 
one hand, the features are extracted by 2D CNN with ResNet50 as the backbone, on the other hand, 14 3D features are extracted by using Pyradiomics, and both of them are 
superimposed to output a 1*2 vector. The lower illustration shows that a patient with multiple 2D MRIs can obtain multiple 1*2 vectors, which are then combined to generate 
graded prediction results. 
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Figure 3. Performance comparison of different models on the validation cohort using ROC curves. Our method's curve (blue solid line) achieves the highest score at nearly all 
reference points. 

 

3. Results 
3.1 The proposed model 

Our proposed model utilizes ResNet50 as the 
backbone and data from the four modalities (T1, T2, 
T1-Gd and FLAIR) is fed to the model to extract the 
required key features. In order to integrate the 3D 
features better, we modify the infrastructure of 
ResNet50 by replacing the inputs from multiple 
channels to multiple pathway concatenation. With 
these improvements, our model achieves an AUC of 
0.9684 on the validation set, providing strong 
evidence of its efficacy in extracting multi-modal 
features, as shown in Figure 3. 

In our optimal result, Acc is 0.9936, APCA is 
0.9853, SEN is 1.0000 and SPE is 0.9706. Observation 
of the model's confusion matrix reveals that only one 
case of LGG was not correctly classified, as shown in 
Figure 4. 

3.2 Multi-modal and compared with 2D 
To validate the ability of the multi-modal 

approach to learn more information and improve the 
model's tumor grading capability, we conduct 
experiments by applying 2D CNN with 3D features 
separately to each modality. Apart from changing the 
input of ResNet50 to a single channel, all other 
parameters remain unchanged. The results are shown 
in Table 1. The AUC obtained from the T1 modality is 
the lowest at 0.8284, while the highest AUC is 
achieved with the T2 modality at 0.9499. The results of 
the single-modality experiments are lower than the 
AUC obtained with the multi-modal approach, 

indicating that the multi-modal method significantly 
enhances the model's ability to grade tumors. This 
confirms the effectiveness of training with combined 
multi-modalities. 

 

Table 1. Results of evaluation metrics for different modalities 
under 2D CNN (A) and 2D CNN with 3D features (B). Using the 
results obtained for each modality under 2D CNN as a baseline. 
Evaluation indicators include AUC (Area Under Curve), ACC 
(Accuracy), APCA (Average Per-Class Accuracy), SEN 
(Sensitivity) and SPE (Specificity). 

(A) 
  2D   

AUC Acc APCA SEN SPE 
single-modal T1 0.6451 0.7226 0.6218 0.8482 0.3953 

T2 0.9178 0.8774 0.8149 0.9554 0.6744 
T1-Gd 0.9120 0.8194 0.7580 0.9604 0.5556 
FLAIR 0.9079 0.8452 0.7787 0.9533 0.6042 

multi-modal T1+T2+T1-Gd+FLAIR 0.9565 0.8774 0.8171 0.9811 0.6531 
(B) 
  2D+3d_features   

AUC Acc APCA SEN SPE 
single-modal T1 0.8284 0.8129 0.7396 0.9259 0.5532 

T2 0.9499 0.9097 0.8558 0.9735 0.7381 
T1-Gd 0.9317 0.8839 0.8239 0.9478 0.7000 
FLAIR 0.9227 0.8903 0.8352 0.9407 0.7297 

multi-modal T1+T2+T1-Gd+FLAIR 0.9684 0.9936 0.9853 1.0000 0.9706 
 
Subsequently, we conduct a control experiment 

using only 2D CNN without incorporating 3D 
features. In this experiment, the multi-modal images, 
composed of the four modalities, are fed into the 
ResNet50 model. The fully connected layer directly 
outputs a 1x2 vector representing the model's 
classification of the tumor as LGG or HGG. The data 
augmentation method and model parameters remain 
unchanged. This experiment achieves an AUC of 
0.9565 on the validation set. Based on these findings, 
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we conduct separate experiments for each single 
modality using 2D CNN alone and the results 
obtained from each modality on 2D CNN are used as 
the baseline for that modality.  

The results in Table 1 demonstrate that our 
method improves the performance by 18.3% for T1, 
3.2% for T2, 2.0% for T1-Gd, and 1.5% for FLAIR. In 
the experiment with the combination of all four 
modalities as input, there is a 1.2% improvement. 
Furthermore, the experiments conducted with 2D 
CNN reveal that multimodality consistently 
outperforms individual modalities in terms of AUC. 
These experiments demonstrate the effectiveness of 
our proposed approach of 2D CNN with 3D features 
and incorporating multiple modalities in the tumor 
grading task. 

3.3 Compared with 3D 
We further implement a ResNet50 model based 

on 3D CNN to compare the results of directly using 
the 3D model with our proposed method. We choose 
the same training and validation sets used in the 2D 
CNN experiment and apply additional data 
augmentation techniques to the LGG samples in the 
training set. However, we make slight modifications 
to the data preprocessing and augmentation methods. 
First, we convert each patient's DICOM files into 
155x240x240 2D images containing only the tumor. 
Next, we select center cropping, horizontal flipping, 
vertical flipping and random rotation at four angles as 
the data augmentation methods in order to preserve 

the original 3D information of the tumor. Also, we use 
a global variable to apply the same data augmentation 
to all images from a particular patient and select the 
middle 128 images. At last, the remaining 2D images 
are concatenated to form a 3D image of size 
128x160x160, which serves as the input. Similarly, we 
conduct experiments using T1, T2, T1-Gd, FLAIR and 
the combination of all four modalities, resulting in a 
total of five 3D CNN experiments. We choose the 3D 
ResNet50 model with a batch size of 4 while keeping 
the other parameters unchanged.  

The results of the 3D experiments are shown in 
Table 2. The AUC obtained from the multi-modal 3D 
CNN is only 0.6626, significantly lower than the AUC 
achieved with our proposed method of combining 2D 
and 3D features. This demonstrates the effectiveness 
of our method. However, regardless of the modality, 
the results of 3D CNN are lower than those of 2D 
CNN used alone. Additionally, the AUC obtained 
from the multi-modal approach is lower than the 
values obtained from the single modalities. 

 

Table 2. Results of evaluation metrics for different modalities 
under 3D CNN. 

  3D   
AUC Acc APCA SEN SPE 

single-modal T1 0.6631 0.7871 0.6792 0.8385 0.5200 
T2 0.7321 0.6194 0.6561 0.9559 0.3563 
T1-Gd 0.8250 0.7742 0.7061 0.9216 0.4906 
FLAIR 0.7336 0.7161 0.6667 0.9140 0.4194 

multi-modal T1+T2+T1-Gd+FLAIR 0.6626 0.6129 0.6075 0.8861 0.3289 
 

 

 
Figure 4. Confusion matrix for the five models. The y-axis represents the actual grading, and the x-axis represents the predicted grading. 
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Figure 5. Heatmaps for LGG(A) and HGG(B), each map includes a whole-brain map 
and a tumor map with four modal overlays. The darker red regions indicate the areas 
where the model focuses most. 

 

3.4 Ablation study 
Finally, we conduct ablation experiments on the 

data augmentation methods used in 2D+3d_features, 
as shown in Table 3. When we remove the CyclicShift 
method from the data augmentation, the AUC 
decreases by approximately 1.0%. This indicates that 
the presence of CyclicShift helps the model focus 
more on local features, thereby improving the tumor 
grading capability of the model. Additionally, the 
rotation and flipping data augmentation methods 
have been proven effective in the tumor grading 
model. In the experiments without data 

augmentation, we only apply center cropping to the 
training and validation sets to ensure consistent input 
size. The results in Table 3 demonstrate that the use of 
data augmentation and replication strategies 
significantly improves the AUC. 

 

Table 3. AUC results of ablation experiments using 2D CNN 
with 3D features model for different data augmentation strategies. 

Strategy AUC 
w/o Augment 0.9492 
w/o CyclicShift 0.9582 
w/o Rotation 0.9628 
w/o Flip 0.9638 
w/o Duplication 0.9480 
Our work 0.9684 

 

3.5 Explainability 
We provide model explainability through 

heatmaps, as shown in Figure 5. The darker red 
regions indicate the areas the model focuses on the 
most. In the original images, the model primarily 
focuses on the glioma in the brain. Based on the image 
segmentation results, we retain only the tumor 
regions as input for the model. The segmented images 
include necrotic regions, edema areas, and enhanced 
tumor regions. The heatmaps generated from these 
segmented images provide a more detailed focus area, 
and we can observe that the deeper red regions on the 
tumor correspond to the most prominent areas 
learned by the model during tumor grading. 

3.6 Survival analysis 
Figure 6 presents the Kaplan-Meier survival 

analysis information related to the glioma status in 
the UCSF-PDFM patient cohort. However, there is a 
missing value for HGG. To compensate for this, we 
remove the top and bottom 10 patients in HGG after 
sorting by overall survival (OS) and replace the 
missing value with the average. All survival times are 
reported in months. The results indicate that the 
overall survival probability of LGG patients is higher 
than that of HGG patients and the number of HGG 
patients who survive decreases more rapidly. After 
conducting the log-rank test, we find that 
p<0.0001<0.05, indicating that the difference in 
survival status between the two groups cannot be 
explained by sampling error alone. The grouping 
factor is the reason for the divergence in survival rates 
between the two curves. 

4. Discussion 
Currently, the choice between 2D and 3D CNN 

for glioma grading tasks in multi-modal MRI 
primarily depends on the characteristics of the dataset 
and the requirements of the task. 2D CNN is mainly 
used for processing slice images in MRI, allowing for 
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convolution and feature extraction on a 
two-dimensional plane. It independently processes 
the images on each slice and then combines the 
features of the slices for grading. In contrast, 3D CNN 
is suitable for handling combinations of multiple MRI 
slices or a sequence. This model can perform 
convolution and feature extraction in three directions 
(width, height, and depth), capturing spatial 
information and temporal relationships in volumetric 
data. Compared to 2D CNN, 3D CNN can better 
utilize the correlation between slices. However, due to 
its more complex structure, it consumes more 
computational resources. 

For 2D CNN, the differences among various 
studies mainly lie in the selection of slices. František 
Šefčík et al. [31] designed a simple 4-layer 2D CNN 
model and used the interpretability of the model's 
output as an additional training objective, combined 
with the original classification objective, to train the 
neural network model. During training, they stacked 
three modalities (T1, T2, and FLAIR) and selected 
only the slice with the largest tumor as input. In a 
study involving 161 patients, Jialin Ding et al. [21] 
achieved the highest AUC of 0.8980 by developing a 
method that combines radiomics and 2D CNN only 
on the T1 modality. They selected 851 extracted 
radiomic features and utilized inputs from the section 

with the largest tumor area along with two adjacent 
images. In another study involving 1166 patients, Yoo 
Seong Choi et al. [32] achieved a fully automated 
process that included segmentation and grading. In 
the grading stage, they used two modalities (T2 and 
T1-Gd) and a tumor mask. They selected five MRI 
slices of each patient as input for the 2D CNN. The 
aforementioned three papers chose either the slice 
with the largest tumor itself or included surrounding 
parts of the image but failed to provide 
comprehensive tumor information. In a study by Ruyi 
Qu et al. [19], which focused on tumor methylation, 
they directly inputted all 2D images containing 
tumors for each patient and trained separate models 
for four modalities (T1, T2, T1-Gd and FLAIR). They 
combined the extracted features using self-attention 
mechanisms and used LSTM to determine the grading 
category. Soumick Chatterjee et al. [20] created a 
category for images without tumors, converting the 
grading task into a three-class classification. The input 
consisted of the four modalities (T1, T2, T1-Gd and 
FLAIR) stacked 2D images. Although both papers 
include all images containing tumors as input, 
misclassification can easily occur when the tumor size 
is too small. 

For 3D CNN, Hiba Mzoughi et al. [22] proposed 
a 3D CNN framework for automatic brain glioma 

 
Figure 6. Kaplan-Meier survival analysis information related to the glioma status in the UCSF-PDFM patient cohort. The survival probability of patients is represented on the 
y-axis and the follow-up time is represented on the x-axis. 
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classification using the entire volume of the T1-Gd 
sequence. When compared to 2D CNN, it generated 
more discriminative feature maps and achieved an 
accuracy of 96.49% on the validation set. Sérgio 
Pereira et al. [24] compared the differences between 
inputting whole-brain images and tumor regions. 
They conducted experiments on four modalities (T1, 
T2, T1-Gd and FLAIR) and analyzed the results using 
heatmaps. They found that using tumor ROI for 
prediction yielded better results, with the highest 
accuracy reaching 92.98%. In a study involving 470 
patients, Chenan Xu et al. [23] developed a fully 
automated segmentation and grading model based on 
3D CNN. They used three multi-modalities (T1, T2 
and T1-Gd) and combined the features extracted from 
3D CNN with tumor shape, texture, and other 
radiomic features. Finally, they inputted the 
combined features into an SVM for classification, 
achieving an AUC of 0.9580. 

We refer to the strategy employed in the 
aforementioned papers to train our model and 
combine the advantages of 2D and 3D approaches to 
propose a method for glioma grading that utilizes 
both 2D CNN and 3D features. Additionally, we 
design comparative experiments between 2D CNN 
and 3D CNN. The experimental results presented in 
Table 1 and Table 2 indicate that the method using 
2D CNN with 3D features achieves the optimal AUC 
of 0.9684 when combining the four modalities. 
Compared to using only 2D or 3D CNN, our method 
shows improvements in both single-modality and 
multi-modality (from 0.9565 to 0.9684). Since the T1 
sequence focuses more on global features, when we 
input images with tumors only for this modality, the 
performance of the 2D CNN-based grading is poor, 
with an AUC of only 0.6451, which is lower than the 
result of 0.6631 obtained by 3D CNN. However, our 
method significantly improves the performance of the 
ResNet50 model for glioma grading in the T1 
modality by incorporating 3D features, reaching an 
AUC of 0.8284. The addition of 3D features provides 
the missing temporal information to the 2D CNN 
model, and the combination of these features 
contributes to accurate grading. 

Furthermore, from the tables, we also observe 
that multi-modality achieves higher SEN compared to 
single-modality. In the 2D CNN experiments, the SEN 
for multi-modality reaches 0.9811, while our proposed 
method achieves 1.000, indicating that the features 
learned through multi-modality are advantageous in 
distinguishing classes with more diverse 
distributions. Next, by observing the SPE, we can see 
that after incorporating 3D features, both 
single-modal and multi-modal experiments show a 
significant improvement in SPE. In the case of 

multi-modality, the SPE increases from 0.6531 to 
0.9706, suggesting that our method can alleviate the 
impact of class imbalance on the model. 

Based on our experimental results, except for the 
T1 sequence, the AUC for the other three modalities 
and the multi-modal 3D CNN experiments are lower 
than the 2D CNN results. Additionally, the 
multi-modal 3D CNN results are lower than the 
results of the other four single modalities. We 
speculate that when the convolutional layers 
transition from 2D to 3D, the learned feature maps 
become more complex. When multiple feature maps 
are learned simultaneously through multi-modality, 
various feature maps influence the judgments of the 
3D CNN, resulting in a lower AUC. 

During the data augmentation process, due to 
the adoption of random cropping and CyclicShift, the 
tumors inputted to the model may be segmented into 
two parts or not be complete. However, considering 
that in actual diagnosis, doctors also observe multiple 
2D images and tumor images obtained from different 
directions may not be complete either, it is reasonable 
that the model should possess the ability to accurately 
grade incomplete tumors. In terms of the model's 
running speed and cost-effectiveness, we conduct a 
comparison using a 3D model consisting of four 
modalities. In this 3D model, we employ two GPUs 
with a combined graphics memory of 22,658 MB, 
resulting in a processing time of approximately 5 
minutes and 30 seconds per round. Conversely, our 
proposed model, utilizing a mere 1,965 MB of 
graphics memory, exhibits a significantly reduced 
processing time of about 4 minutes and 10 seconds 
per round. These findings demonstrate that our 
model not only lowers the configuration requirements 
but also achieves a higher AUC at a faster pace, 
thereby presenting distinct advantages in the context 
of clinical practice. 

The limitations of this study mainly lie in the 
following aspects. Firstly, the data used in this study 
comes from two datasets comprising multiple medical 
centers. Although the same exclusion criteria are 
applied, there may be differences in the imaging 
scanners used for imaging due to the different 
periods. The extent to which these discrepancies 
might impact glioma grading remains a subject of 
controversy and necessitates further standardization 
efforts. Also, although 519 cases have been included 
in our experiment, more data should be added for 
future experiments to meet the diversity of patients. 
Secondly, when combining the features extracted by 
CNN and the 3D features, we assume that the 
importance of these two types of features is equal. 
Then, we compress the features extracted by CNN 
through fully connected layers to 14 features. 
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However, it is worth noting that this compression 
process and the presumed equal significance of the 
features might introduce potential biases into the 
grading results. To address this limitation, we plan to 
use reinforcement learning to automatically select the 
optimal number of features in each training round to 
obtain more accurate predictive grading results. 

5. Conclusion 
In this study, we develop and validate a 

multi-modal model for grading prediction of gliomas 
by using ResNet50 as a backbone and combining 2D 
CNN with explicit tumor 3D information. Extensive 
experiments demonstrate that our model achieves the 
state-of-the-art AUC of 0.9684 on the validation set. 
Furthermore, we verify that the model can focus on 
the tumor region through visualization. Therefore, 
using only the image of the tumor as input can make 
the model more able to focus on the information 
present in the tumor. In conclusion, our proposed 
method accurately grades gliomas and holds potential 
for clinical application in the field of medical 
diagnostics. 
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