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Abstract 

Background: The correlation between hypoxia and tumor development is widely acknowledged. 
Meanwhile, the foremost organelle affected by hypoxia is mitochondria. This study aims to determine 
whether they possess prognostic characteristics in lung adenocarcinoma (LUAD). For this purpose, a 
bioinformatics analysis was conducted to assess hypoxia and mitochondrial scores related genes, 
resulting in the successful establishment of a prognostic model. 
Methods: Using the single sample Gene Set Enrichment Analysis algorithm, the hypoxia and 
mitochondrial scores were computed. Differential expression analysis and weighted correlation network 
analysis were employed to identify genes associated with hypoxia and mitochondrial scores. 
Prognosis-related genes were obtained through univariate Cox regression, followed by the establishment 
of a prognostic model using least absolute shrinkage and selection operator Cox regression. Two 
independent validation datasets were utilized to verify the accuracy of the prognostic model using 
receiver operating characteristic and calibration curves. Additionally, a nomogram was employed to 
illustrate the clinical significance of this study.  
Results: 318 differentially expressed genes associated with hypoxia and mitochondrial scores were 
identified for the construction of a prognostic model. The prognostic model based on 16 genes, including 
PKM, S100A16, RRAS, TUBA4A, PKP3, KCTD12, LPGAT1, ITPRID2, MZT2A, LIFR, PTPRM, LATS2, 
PDIK1L, GORAB, PCDH7, and CPED1, demonstrates good predictive accuracy for LUAD prognosis. 
Furthermore, tumor microenvironments analysis and drug sensitivity analysis indicate an association 
between risk scores and certain immune cells, and a higher risk scores suggesting improved 
chemotherapy efficacy. 
Conclusion: The research established a prognostic model consisting of 16 genes, and a nomogram was 
developed to accurately predict the prognosis of LUAD patients. These findings may contribute to 
guiding clinical decision-making and treatment selection for patients with LUAD, ultimately leading to 
improved treatment outcomes. 
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Introduction 
Lung adenocarcinoma (LUAD) is a type of 

non-small cell lung cancer. It is characterized by a 
poor prognosis and a high incidence rate, and has 

long been a significant challenge to human health [1]. 
Recent research increasingly elucidates the crucial 
role of genes associated with hypoxia and 
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mitochondria in cancer progression, indicating that 
they may serve as powerful prognostic indicators.  

Hypoxia, defined as inadequate oxygen supply 
to tissues, commonly arises in solid tumors, due to the 
chaotic and disorganized structure of tumor 
vasculature [2, 3]. For a long time, it has been widely 
believed that hypoxia is an effective driving factor for 
tumor invasiveness, promoting metastasis, cell 
apoptosis, immune evasion, and treatment resistance 
[4, 5]. In hypoxic environments, tumor cells undergo a 
series of adaptive changes [6-8].  

Mitochondria serve as the energy centers within 
eukaryotic cells, orchestrating crucial cellular 
functions including apoptosis, cell differentiation, and 
information transmission. They achieve this by 
integrating oxidative phosphorylation, regulating 
proliferation, and participating in programmed cell 
death, among other mechanisms [9, 10].  

Furthermore, the epigenetic regulation of genes 
associated with mitochondria significantly influences 
the initiation, progression, and treatment of tumors 
[11, 12]. Mitochondria serve as the primary sites for 
oxygen consumption within cells. Consequently, they 
are significantly impacted by reduced oxygen levels. 
In response to hypoxic conditions, mitochondria 
regulate their function through various mechanisms 
[13]. Furthermore, the intermediates of the 
mitochondrial TCA cycle participate in modulating 
the hypoxia-inducible factor (HIF), a key regulatory 
factor in adapting to hypoxia. These studies reveal a 
complex relationship between hypoxia and 
mitochondria. Therefore, further research is needed to 
elucidate how hypoxia and mitochondria interact 
with each other, as well as their impact on the 
prognosis of LUAD patients. 

Some models have already been established 
based on hypoxia [14] and mitochondria [15]. 
However, there is currently no research reporting the 
prognostic impact of combined hypoxia and 
mitochondrial-related genes in LUAD. To address this 
gap and expand the therapeutic and diagnostic 
potential of LUAD, a comprehensive analysis was 
conducted. In order to enhance reader comprehension 
of this research, we have constructed a flowchart 
delineating the key processes (Fig. S1). The goal was 
to establish a model incorporating hypoxia and 
mitochondrial-related genes for LUAD.  

Materials and Methods 
Datasets 

The gene expression data in Fragments Per 
Kilobase Million format, along with clinical 
information for 489 patients with LUAD, as well as 
gene expression data for 59 adjacent non-cancerous 

tissues, were all obtained from the The Cancer 
Genome Atlas Lung Adenocarcinoma (TCGA-LUAD) 
database. Gene expression data and clinical 
information for datasets GSE31210 and GSE72094 
were retrieved from the Gene Expression Omnibus 
(GEO) database. The two datasets were built upon the 
GPL570 and GPL15048 platforms, containing 226 and 
393 LUAD samples, respectively. Inclusion criteria 
comprised complete clinical information and overall 
survival (OS) greater than 30 days. The training 
cohort consisted of patients from TCGA-LUAD, while 
those from GSE31210 and GSE72094 constituted the 
external validation cohort. 

Single Sample Gene Set Enrichment Analysis 
(ssGSEA) 

The MSigDB was utilized to obtain hypoxia 
hallmark gene sets, comprising 200 genes (Table S1). 
As presented in table S2, the 1135 
mitochondrial-related genes were extracted from 
MitoCarta3.0 [16]. The ssGSEA analysis was 
conducted for all samples, followed by the calculation 
of hypoxia and mitochondrial scores for each sample 
[17]. 

Weighted Correlation Network Analysis 
(WGCNA)  

The transcriptome data from TCGA-LUAD were 
chosen to construct gene coexpression networks 
utilizing the R package “WGCNA” [18]. As indicated 
in Figure S2, the outlier was identified and 
subsequently excluded from the analysis. During the 
network construction phase, a soft thresholding 
power (β) above 0.90 was determined, demonstrating 
a fit index for scale-free topology. We established a 
minimum module size of 30, and utilized the dynamic 
treecutting algorithm to cluster modules with similar 
gene expressions, presenting them in a tree diagram 
with assigned colors. To detect modules linked with 
hypoxia and mitochondrial scores, we generated a 
heatmap illustrating module-feature relationships. 
Modules strongly correlated with both scores were 
designated as modules of interest, and the genes 
within these modules were defined as hypoxia and 
mitochondrial scores-related genes (HMSRGs). 

Identification of DEGs and Functional 
Enrichment Analysis 

The “limma” [19] R package was employed to 
identify the DEGs in HMSRGs, which were defined as 
DE-HMSRGs for the subsequent analysis. The 
"clusterProfiler" [20] R package was utilized to 
investigate the functions and pathways associated 
with the DE-HMSRGs through Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes 
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(KEGG) analyses. Moreover, Gene Set Enrichment 
Analysis (GSEA) was utilized to identify pathways 
enriched in both groups. 

Construction and validation of a Prediction 
Model Related to Hypoxia and Mitochondrial 
Scores 

Univariate Cox regression and Least Absolute 
Shrinkage and Selection Operator (LASSO) Cox 
regression analyses were conducted to develop a 
prediction model related to hypoxia and 
mitochondrial scores, utilizing the R packages 
“Survival” and “Glmnet” [21]. The risk score was 
determined using the formula: risk score = ∑ (each 
gene's expression × corresponding coefficient). 

Unsupervised clustering of Hypoxia and 
Mitochondrial Scores Related model genes 

Utilizing the expression profiles of model genes, 
we employed the "ConsensusClusterPlus" [22] R 
package to conduct Consensus Clustering (CC) for 
identifying previously unidentified subtypes of 
TCGA-LUAD [22]. Parameters for CC included 
selecting "maxK" as 9, "clusterAlg" as "km", and 
"distance" as "euclidean". 

Construction of a Nomogram for Predicting 
Survival 

A nomogram was developed utilizing the "rms" 
R package, which incorporated calculated risk scores 
along with clinical features. Time-dependent Receiver 
Operating Characteristic (ROC) curves were 
constructed utilizing the "survivalROC" [23] R 
package to evaluate the model accuracy. 
Subsequently, calibration plots were developed using 
the "rms" R package to assess the predictive accuracy 
of the nomogram.  

Estimation of Tumor Microenvironments 
(TME) 

ESTIMATE and ssGSEA analyses were 
employed to quantitatively analyze the levels of 
immune cells and immune-related pathways. And the 
expression levels of immune checkpoints between the 
high-risk and low-risk groups were compared, 
utilizing the "ggpubr" R package. 

Tumor Mutational Burden (TMB) and Drug 
Sensitivity Analysis 

The TMB for each TCGA-LUAD patient were 
determined using methods described in previous 
studies [24]. Additionally, the "maftools" [25] package 
was used to identify the top 20 most mutated genes in 
TCGA cohort and display the mutation profiles and 

their frequencies. The distribution of drugs between 
the groups underwent analysis using the 
"pRRophetic" [26] R package. 

Statistical Analysis  

All statistical analyses were performed using R 
software (version 4.2.2). Differences between two 
groups were assessed using either Student’s t-test or 
Wilcoxon test. Survival analysis was depicted using 
Kaplan-Meier plots and compared using the log-rank 
test. Statistical significance was defined as P < 0.05. 

Results 

Identification of Hypoxia Score and 
Mitochondrial Score Related Genes 

The ssGSEA analysis was conducted on 
hypoxia-related genes and mitochondrial-related 
genes expression profiles within the TCGA-LUAD 
dataset, aiming to obtain hypoxia and mitochondrial 
scores. The detailed score results from ssGSEA 
outputs are presented in Table S3. 

WGCNA was conducted using the obtained 
hypoxia and mitochondrial scores as phenotypic data. 
Following the exclusion of outlier samples, a 
scale-free network was constructed with a soft 
threshold parameter set to β=3 (Figure 1A). Finally, 22 
modules were identified, each labeled with a different 
color (Figure 1B). The turquoise module showed the 
least correlation with the mitochondrial score (cor = 
−0.88, P = 1e-58) and hypoxia score (cor = −0.6, P = 
2e-48) (Figure 1C). Thus, the turquoise module was 
identified as the module of interest. Overall, a total of 
3682 genes were identified as hub genes and 
designated as HMSRGs, listed in Table S4. 

Identification and Analysis of DE-HMSRGs 

Differential expression analysis was conducted 
on 3682 HMSRGs between normal and LUAD 
samples, a total of 229 up-regulated genes and 89 
down-regulated genes were identified in LUAD 
samples. (Figure 2A, B). GSEA indicates that in 
LUAD, DE-HMSRGs are primarily enriched in 
metabolic regulation pathways, while in normal 
tissues, they are predominantly enriched in various 
signaling pathways. (Fig. 2C). The GO enrichment 
analysis indicated that pathways associated with 
GTPase regulator activity, nucleoside−triphosphatase 
regulator activity, actin binding, and cell−substrate 
adhesion (Fig. 2D). KEGG analysis reveals that 
DE-HMSRGs are predominantly enriched in sugar 
metabolism and biosynthesis (Fig. 2E).  
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Figure 1: Coexpression Network Construction. (A) The network topology analysis was conducted using various soft threshold powers. (B) Cluster dendrograms of genes based 
on topological overlap of dissimilarities, and module colors were assigned. (C) Heatmap illustrates the relationship between gene modules and phenotypic traits. The correlation 
coefficient in each cell reflects this relationship, transitioning from red to blue to indicate decreasing magnitude. The number in parentheses within each cell denotes the 
correlation P-value. 

 

Establishment and Validation of a Hypoxia and 
Mitochondrial Scores Related Prognostic 
Model 

Using univariate Cox regression and 
LASSO-Cox regression, a prognostic model was 
established comprising 16 genes (PKM, S100A16, 
RRAS, TUBA4A, PKP3, KCTD12, LPGAT1, ITPRID2, 
MZT2A, LIFR, PTPRM, LATS2, PDIK1L, GORAB, 
PCDH7, CPED1) (Fig. 3A, B). Table S5 presents the 
corresponding coefficients of the 16 model genes. The 
expression levels of PKM, S100A16, RRAS, TUBA4A, 
PKP3, KCTD12, LPGAT1, ITPRID2, MZT2A, LIFR, 
PTPRM, LATS2, PDIK1L, GORAB, PCDH7, CPED1 
all presented significantly difference between normal 
and tumor samples (Fig. S3). The LUAD patients were 
divided into high-risk and low-risk groups based on 
the median risk score (0.4814). This stratification 
method was also applied to patients in the validation 
cohorts GSE31210 and GSE72094. The heatmap 
indicated T-stage, N-stage, and clinical stage were 
found to be correlated with the risk scores (Fig. 3C). 
Figure 3D displays the risk score distributions 

alongside the survival status. The OS significantly 
differed between the two patient groups, indicating a 
worse prognosis for those exhibiting higher risk 
scores (Fig. 3E). We subsequently conducted 
subgroup analyses based on clinical features, 
revealing the strong predictive accuracy of the 
signature for nearly all LUAD patients prognosis (Fig. 
S4, 5). The PCA analyses demonstrated favorable 
results for this prognostic model (Fig. S6). Tables 1, 2, 
and 3 display the distribution of LUAD patients 
among various groups based on each clinical feature. 

Unsupervised Clustering of Hypoxia and 
Mitochondrial Scores Related Model Genes  

CC analysis was conducted using the 16 
HMSRGs to explore unidentified subtypes within 
TCGA-LUAD. When K=2, the differences between 
subgroups are most pronounced, indicating that 
LUAD can be well distinguished between the two 
clusters (Fig. 4A, B). The OS between the two clusters 
showed significant differences (P < 0.001) (Fig. 4C). 
The alluvial diagrams show that the majority of 
cluster 1 belongs to the low risk group (Fig. 4D).  
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Figure 2: Obtaining and Enrichment analysis for the hypoxia and mitochondrial score related DEGs. (A) Volcano plot showing the DEGs in hub genes between tumor and 
normal. (B) Venn diagrams showing overlaps of overexpressed genes and hub genes (red: overexpressed genes in tumor samples; blue: overexpressed genes in normal samples). 
(C) The enriched gene terms in gene set enrichment analysis (GSEA). (D) Column diagrams depicting GO analysis for DEGs related to hypoxia and mitochondrial scores. (E) 
Column diagrams depicting KEGG analysis for DEGs related to hypoxia and mitochondrial scores. 

 

 

Table 1: The association of clinicopathological features in TCGA 
cohort. 

TCGA-LUAD cohort 
Characteristics High risk (%) Low risk (%) P value 
Age    
≤65 year 125 (51.2%) 118 (48.2%) 0.498 
>65 year 119 (48.8%) 127 (51.8%)  
Gender (%)    
Female 124 (50.8%) 138 (56.3%) 0.222 
Male 120 (49.2%) 107 (43.7%)  
Pathologic stage    
Ⅰ 120 (49.2%) 152 (62.0%) 0.004 
Ⅱ 60 (24.6%) 57 (23.3%)  
Ⅲ 51 (20.9%) 24 (9.8%)  
Ⅳ 13 (5.3%) 12 (4.9%)  
T stage   0.224 
T1 72 (29.5%) 96 (39.2%)  
T2 137 (56.1%) 120 (49.0%)  
T3 25 (10.2%) 20 (8.2%)  
T4 9 (3.7%) 7 (2.9%)  
TX 1 (0.4%) 2 (0.8%)  
N stage   <0.001 
N0 142 (58.2%) 181 (73.9%)  
N1 54 (22.1%) 35 (14.3%)  

TCGA-LUAD cohort 
Characteristics High risk (%) Low risk (%) P value 
N2 44 (18.0%) 20 (8.2%)  
N3 1 (0.4%) 1 (0.4%)  
Nx 3 (1.2%) 8 (3.3%)  
M stage   0.837 
M0 164 (67.2%) 162 (66.1%)  
M1 13 (5.3%) 11 (4.5%)  
Mx 67 (27.5%) 72 (29.4%)  

 
 

Table 2: The association of clinicopathological features in 
GSE31210 cohort. 

GSE31210 cohort 
Characteristics High risk (%) Low risk (%) P value 
Age    
≤65 year 88 (77.9%) 88 (77.9%) 1 
>65 year 25 (22.1%) 25 (22.1%)  
Gender (%)    
Female 48 (42.5%) 73 (64.6%) 0.001 
Male 65 (57.5%) 40 (35.4%)  
Pathologic stage    
Ⅰ 69 (61.1%) 99 (87.6%) <0.001 
Ⅱ 44 (38.9%) 14 (12.4%)  
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Figure 3: Construction of a hypoxia and mitochondrial score related prognostic model. (A, B) Determining the number of factors using LASSO analysis. (C) Heatmap displaying 
16 model genes and clinical features. (D) Distribution of risk score according to the survival status and time in TCGA, GSE31210, and GSE72094 cohorts. (E) Kaplan-Meier curves 
depicting OS for patients in the different groups. 
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Figure 4: Unsupervised clustering of hypoxia and mitochondrial score related model genes. (A) LUAD patients were grouped into two molecular clusters using a k = 2 approach, 
relying on the hypoxia and mitochondrial score-related model gene profile. (B) Plotting the empirical cumulative distribution function, we observed consensus distributions for 
each k value ranging from 2 to 9. (C) Kaplan-Meier analysis of the prognosis of LUAD patients across two distinct molecular clusters. (D) Alluvial diagram illustrates the 
interrelation among molecular clusters, survival status, and risk groups in LUAD patients. 
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Table 3: The association of clinicopathological features in 
GSE72094 cohort. 

GSE72094 cohort 
Characteristics High risk (%) Low risk (%) P value 
Age    
≤65 year 58 (29.6%) 59 (29.9%) 0.938 
>65 year 138 (70.4%) 138 (70.1%)  
Gender (%)    
Female 98 (50.0%) 121 (61.4%) 0.023 
Male 98 (50.0%) 76 (38.6%)  
Pathologic stage    
Ⅰ 114 (58.2%) 140 (71.1%) 0.022 
Ⅱ 41 (20.9%) 26 (13.2%)  
Ⅲ 35 (17.9%) 22 (11.2%)  
Ⅳ 6 (3.1%) 9 (4.6%)  

 

Construction of a Prognostic Nomogram 
We then further perform univariate Cox 

regression and multivariate Cox regression on risk 
score and clinical features. The findings suggest that 
the risk score and clinical stage independently 
influence the prognosis of TCGA-LUAD (Fig. 5A, B). 
Additionally, we constructed a nomogram and 
performed calibration, showing its ability to predict 
the OS rates reasonably well compared to an ideal 
model in both the TCGA, GSE31210 and GSE72094 
cohort (Fig. 5C, D). The ROC curves of the TCGA 
cohort indicated that the area under the curve (AUC) 
was 0.721, 0.711, and 0.671 for 1-, 3-, and 5-year OS 
rates. For the GSE31210 cohort, the AUC values were 
0.756, 0.641, and 0.669 for 1-, 3-, and 5-year OS rates, 
while for the GSE72094 cohort, the AUC values were 
0.672, 0.670, and 0.673 for 1-, 2-, and 3-year OS rates, 
respectively (Fig. 5E).  

TME and Immune Checkpoint Analysis 
TME is impacted by hypoxia and mitochondria 

and plays a crucial role in the initiation and 
progression of cancer. We evaluated the expression 
levels of infiltrating immune cells and pathways, 
observing higher expression of activated B cells, 
eosinophil, immature B cell, and mast cell in the 
low-risk group. Additionally, pathways with 
differential expression between the two groups were 
found to be highly expressed in the high-risk group 
(Fig. 6A, B). Subsequently, the expression levels of 
immune checkpoint genes in both groups were 
compared, revealing that CD276 and TNFSF9 were 
highly expressed in the high-risk group (Fig. 6C). 

Tumor Mutational Burden (TMB) Analysis 
Clinical trials and preclinical studies have shown 

that immune checkpoint blockade provides long-term 
clinical benefit, particularly in patients with higher 
TMB, including improved treatment responses and 
prolonged OS [27, 28]. Results showed that the 
high-risk group exhibited higher TMB (Fig. 7A). The 
survival analysis indicates that patients in the high 

TMB group have better OS (Fig. 7B). Furthermore, the 
results indicate that patients simultaneously 
exhibiting high TMB and low-risk scores have the best 
OS (Fig. 7C). Our results indicate that high-risk 
patients may exhibit improved treatment 
responsiveness. Subsequently, we investigated the 
genetic mutation landscape of TCGA-LUAD, listing 
the top 20 genes with the highest mutation rates (Fig. 
7D, E). The results indicate that the high-risk group 
exhibits a higher mutation frequency. 

Efficacy of the Model in Predicting Drug 
Sensitivity 

The half maximal inhibitory concentration (IC50) 
for each drug was calculated in TCGA-LUAD 
samples. Correlation analysis was conducted between 
IC50 and risk scores, selecting 48 drugs with p-values 
less than 0.01. The relationship between IC50 and 
model genes was illustrated in Fig. 8A. And box plots 
were used to illustrate the differences in IC50 for 
certain drugs between the high-risk and low-risk 
groups (Fig. 8B). We found that the IC50 values for 
almost all drugs were lower in the high-risk group. 
These results suggest that TCGA-LUAD patients with 
high risk score have higher sensitivity to 
chemotherapy.  

Discussion 
Increasing evidence suggests that the close 

relationship between hypoxia and mitochondria 
collectively influences the proliferation and metastasis 
of LUAD. In this study, we successfully established a 
prognostic model integrating hypoxia and 
mitochondrial genes, aiming to better promote the 
diagnosis and treatment of LUAD.  

Based on the expression levels of hypoxia and 
mitochondrial-related genes, the hypoxia and 
mitochondrial scores were calculated for each 
individual sample, respectively. We obtained 22 
modules, and the turquoise module was most 
irrelevant to mitochondrial score (cor = -0.88, P = 
1e-58) and hypoxia score (cor = -0.6, P = 2e-48). We 
then identified 318 different expressed genes from the 
list of 3682 HMSRGs, which were defined as 
DE-HMSRGs, respectively. 

In this study, key signature genes have been 
identified in LUAD that exhibit associations with 
hypoxia and mitochondrial scores, including PKM, 
S100A16, RRAS, TUBA4A, PKP3, KCTD12, LPGAT1, 
ITPRID2, MZT2A, LIFR, PTPRM, LATS2, PDIK1L, 
GORAB, PCDH7, and CPED1, some of these genes 
has already been reported in previous studies. PKM2 
is a key enzyme in the glycolysis process [29, 30]. We 
found that PKM is significantly upregulated in 
LUAD. 
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Figure 5: Constructing a nomogram diagram. (A, B) The univariate and multivariate Cox regression analysis of risk score and clinical features. (C) Nomogram of risk score and 
clinical characteristics (D) Nomogram calibration at 1-, 3-, and 5-years in the TCGA cohort, the GSE31210 cohort, and at 1-, 2-, and 3-years in the GSE72094 cohort. (E) The 
ROC curve shows the accuracy of the prognostic model. 
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Figure 6: TME and checkpoint analysis. (A) The distribution of 23 immune cell subsets infiltration between two groups. (B) The distribution of 13 immune related pathways 
between two groups. (C) The distribution of checkpoint related genes between two groups. *p < 0.05, **p < 0.01, ***p < 0.001. 

 
RRAS is involved in invasion and migration [31, 

32]. We found that RRAS is downregulated in LUAD, 
and lower expression may correlate with better drug 
sensitivity. PKP3 is a member of the PKP family. Some 
studies have confirmed the role of PKP3 in the early 
occurrence of tumors [33-35]. Our research has also 
found that PKP shows significantly elevated 
expression in tumor tissues. KCTD12 is involved in 
forming GABABR. High expression of KCTD12 
promotes tumor occurrence by regulating the cell 
cycle, however, upregulation of KCTD12 inhibits the 
growth of tumor cells in COAD, UVM, and BRCA [36, 
37]. Our research found that KCTD12 plays a negative 
role in the development of LUAD. LIFR has been 
confirmed to be downregulated in LUAD and 
hepatocellular carcinoma in previous studies, and it 
can inhibit tumor invasion and metastasis [38, 39]. 
Our study also confirms this point. GORAB exhibits 
tumor-suppressive functions in human lung 

squamous carcinoma cells, as shown in previous 
reports [40]. Our study demonstrates that GORAB 
similarly exerts this effect in LUAD. 

A prognostic model was successfully 
constructed using the aforementioned 16 genes. And 
our results indicate the successful establishment of 
this prognostic model, demonstrating high accuracy. 
And it was also well demonstrated in the external 
validation sets GSE31210 and GSE72094 that this 
model exhibits high accuracy. Compared to other 
similar prognosis models, our prognosis model 
possesses higher predictive accuracy. Liu et al. 
established a prognostic model based on 
hypoxia-associated genes, with AUC values of 0.66, 
0.72, and 0.62 for 1-, 3-, and 5-year survival rates, 
respectively [14]. Yang et al. developed a new 
hypoxia-related prognostic risk score model, and the 
AUC values of this model were 0.70, 0.67, and 0.68, 
respectively, for 1-, 3-, and 5-year OS [41]. 
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Subsequently, a nomogram was constructed by 
integrating the prognostic model with clinical 
features. We subsequently assessed the correlation 
between immune checkpoints and the prognostic 
model, identifying immune checkpoints with 
significant expression differences between the two 
groups, including CD276, TNFSF9, TNFSF15, CD28, 
CD40LG, among others. This may offer new insights 
into the treatment of LUAD. Next, we investigated the 
relationship between the prognostic model and TMB, 
revealing significant differences in TMB between the 
high and low-risk groups, suggesting that our model 
may guide immunotherapy for LUAD. Finally, drug 
sensitivity analysis showed that the majority of drugs 
had lower IC50 values in the high-risk group. This 
phenomenon can be explained by the fact that 
high-risk patients typically have a higher tumor 
mutation burden, making them more likely to 
respond positively to immunotherapy and targeted 
therapy, indicating that TCGA-LUAD patients with 

high risk scores may be sensitive to standard 
chemotherapy regimens. 

However, this study has several limitations. Due 
to the limited number of patients with the OS 
exceeding 5 years in the GSE72094 dataset, we only 
conducted analyses related to 1-, 2-, and 3-year 
survival for this dataset. Although the utilization of 
sound bioinformatics methods and validation across 
multiple databases has significantly facilitated the 
establishment of prognostic models for LUAD [42], it 
is important to note that most studies to date have 
relied on gene expression data from various 
databases, lacking detailed insights into underlying 
biological processes. Moreover, the prognostic model 
we have developed may inherently exhibit some bias 
because we cannot account for the intrinsic variations 
within tumors, such as differences in hypoxia within 
and outside the tumor. Additionally, all data in this 
study are retrospective, emphasizing the critical need 
for experimental research to validate the conclusions 
drawn in this article. 

 

 
Figure 7: Investigating the correlation between the prognostic model and immunotherapy. (A) The distribution of TMB between two groups. (B) Kaplan-Meier curves depicting 
OS for patients in the high and low TMB groups. (C) Kaplan-Meier curves illustrate the OS of patients in the combined risk group and TMB group. (D,E) The waterfall plot displays 
the top 20 mutated genes and their distributional variance in tow groups. 
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Figure 8: Efficacy of the prognostic model in predicting drug sensitivity. (A) The relationship between drugs, risk score, and model genes; *p < 0.05, **p < 0.01, ***p < 0.001. (B) 
Boxplots compare the IC50 of drugs between the high-risk and low-risk groups, alongside the correlation between IC50 and risk score.  

 
 
In conclusion, we have developed a prognostic 

model with high predictive accuracy for forecasting 
the OS of LUAD. The prognostic model can predict 
the prognosis of LUAD patients well. Additionally, it 
contributes to the study of immune infiltration in the 
immune microenvironment of LUAD and provides 
new insights into the comprehensive treatment plan 
for LUAD patients. 

Conclusions 
In conclusion, the study contributes to the 

enhanced comprehension of LUAD by underscoring 
the crucial role of hypoxia and mitochondrial scores 
related genes and presenting a pragmatic prognostic 
model for clinical application. This model has the 
potential to stratify risk and tailor highly 
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individualized treatment plans for LUAD patients, 
thereby improving their prognosis. Further research 
in this direction may contribute to the development of 
more effective treatment strategies and advance the 
diagnosis and treatment of LUAD. 
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