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Abstract 

Background: Double plant homeodomain finger 2 (DPF2), belonging to the d4 family of structural domains, 
has been associated with various human malignancies. However, its impact on hepatocellular carcinoma (HCC) 
remains unclear. The objective of this study is to elucidate the role of DPF2 in the diagnosis and prognosis of 
HCC.  
Methods: DPF2 gene expression in HCC and adjacent tissues was analyzed using Gene Expression Omnibus 
(GEO) and The Cancer Genome Atlas (TCGA) databases, validated by immunohistochemical staining of 
Guangxi specimens and data from the Human Protein Atlas (HPA). Gene Ontology (GO), Kyoto Encyclopedia 
of Genes and Genome (KEGG), and Gene Set Enrichment Analysis (GSEA) were used to identify DPF2’s 
potential pathways and functions in HCC. DPF2’s mutation and methylation statuses were assessed via 
cBioPortal and MethSurv. The association between DPF2 and immune infiltration was investigated by TIMER. 
The prognostic value of DPF2 in HCC was established through Kaplan-Meier and Cox regression analyses. 
Results: DPF2 levels were significantly higher in HCC than normal tissues (p<0.001), correlating with more 
severe HCC features (p<0.05). Higher DPF2 expression predicted poorer overall survival (OS), 
disease-specific survival (DSS), and progression-free interval (PFI). DPF2 involvement was noted in critical 
signaling pathways including the cell cycle and Wnt. It also correlated with T helper cells, Th2 cells, and immune 
checkpoints like CTLA-4, PD-1, and PD-L1. 
Conclusion: High DPF2 expression, associated with poor HCC prognosis, may disrupt tumor immune 
balance and promote immune evasion. DPF2 could potentially be utilized as a biomarker for diagnosing and 
prognosticating hepatocellular carcinoma. 
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1. Introduction 
Hepatocellular carcinoma (HCC), a notably 

aggressive and lethal malignancy, represents a 
significant global health burden. According to the 
World Health Organization (WHO), liver cancer is 
ranked sixth in global cancer incidence (4.7%) and 

third in mortality (8.3%). Among males, it is fifth in 
incidence (6.3%) and second in mortality (10.5%). In 
2020, it is estimated that approximately 900,000 
individuals were diagnosed with liver cancer 
diagnosis, and 830,000 succumbed to the disease [1, 2]. 
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Notably, there are significant geographical disparities 
in the morbidity and mortality rates of HCC, 
particularly in Asia and China, where liver cancer 
ranks fifth in incidence and second in mortality [3-5]. 
Most HCC diagnoses occur at advanced stages, 
contributing to the high mortality rate associated with 
this malignancy. Current early detection strategies for 
liver cancer, such as tumor marker analysis and 
imaging examinations, are traditional and require 
improvements in accuracy and sensitivity [6, 7]. 
Consequently, there is an urgent need for innovative 
and efficient diagnostic techniques to enhance early 
detection rates and the precision of prognostic 
evaluations for HCC. 

The DPF (double PHD finger) domain, a member 
of the PHD (plant homeodomain) finger group, is 
predominantly found in proteins that interact with 
the N-terminal fragment of histones. This domain is 
crucial for the transcriptional activation of a wide 
array of genes, thereby influencing mammalian tissue 
development and differentiation. Mutations or 
aberrant expression of the DPF domain have been 
linked to the development of various types of cancers 
[8]. Proteins encoded by the DPF2 gene belong to the 
d4 structural domain family, characterized by a 
zinc-finger-like structural motif. These proteins have 
been shown to efficiently bind to the SWI/SNF 
complex, thereby activating non-classical NF-κB 
transcription and its associated oncogenic activity [9]. 
Additionally, genes from the DPF family have been 
associated with various cancers, including acute 
myeloid leukemia (AML), breast cancer, cervical 
cancer, and renal cell carcinoma [10-14].  

Research has shown that reducing DPF2 impairs 
cell viability and induces apoptosis in human 
pancreatic cancer cells, suggesting a crucial role for 
DPF2 in the initiation and progression of these cells 
[15]. However, studies on DPF2's role in 
hepatocellular carcinoma are limited, making its 
potential impact on the development and progression 
of this disease uncertain. 

The objective of this research is to examine the 
expression and prognostic implications of DPF2 in 
hepatocellular carcinoma through comprehensive 
bioinformatics analysis and immunohistochemical 
experimental validation. It involves exploring the 
biological function of DPF2 and the signaling 
pathways involved in the pathogenesis and 
progression of HCC. Additionally, the study assesses 
the gene mutation and DNA methylation status of 
DPF2 and examines its role in modulating the tumor 
immune microenvironment. The ultimate goal is to 
provide novel insights and methodologies for the 
diagnosis and therapeutic intervention of HCC. 

2. Materials and Methods 
2.1 Data processing 

Transcriptomic and clinical data for HCC and 
adjacent normal liver tissue were obtained from the 
TCGA database (https://portal.gdc.cancer.gov/) 
(Table 1), with RNA-seq data normalized to TPM 
format. Additional TPM-standardized RNA-seq data 
were sourced from the Genotype-Tissue Expression 
(GTEx) database for a comprehensive pan-cancer 
analysis. mRNA expression data from the 
GSE14520_3921 (Table S1), GSE14520_571 (Table S2), 
GSE76427, and GSE121248 datasets of the GEO 
database were downloaded from the NCBI database 
(https://www.ncbi.nlm.nih.gov/) for external 
validation of DPF2 expression differences and 
survival analysis. 

2.2 DPF2 protein expression and HPA 
DPF2 protein expression variations between 

HCC cells and normal hepatocytes were assessed 
using data from the Clinical Proteomic Tumor 
Analysis Consortium (CPTAC) available on the 
UALCAN website (https://ualcan.path.uab.edu/ 
analysis-prot.html). DPF2 immunohistochemical data 
in HCC specimens were obtained from the Human 
Protein Atlas (HPA) database. [16]. 

2.3 Survival analysis 
Survival analysis was performed on the 

TCGA_LIHC, GSE14520_3921, and GSE14520_571 
databases using Kaplan-Meier and Cox regression 
models. The databases were stratified into groups 
with high and low DPF2 expression levels using the 
‘surv_cutpoint’ algorithm from the survminer 
package in R [17]. The impact of clinical variables on 
outcomes was evaluated through univariate and 
multivariate Cox analyses. Prognostic variables with a 
p-value less than 0.1 from the univariate analysis were 
included in the multivariate analysis. The results of 
the regression were visualized as forest plots using 
ggplot2.  

2.4 Building and validating nomogram 
Based on the independent prognostic factors 

derived from the COX analysis, we developed 
nomograms that predict survival probabilities. These 
nomograms use scaled line segments to integrate 
multiple predictors and are plotted on the same plane 
at a specific scale, effectively illustrating the 
interrelationships between the predictor variables in 
the predictive model. The validity of the nomograms 
was assessed by creating calibration plots using the 
RMS software package to analyze how well the model 
fits the actual situation. 
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2.5 Differentially Expressed Gene analysis 
Based on the median DPF2 expression in 

TCGA_LIHC, samples were categorized into groups 
with high and low DPF2 expression. The 'DESeq2' 
package in R was used to conduct differential gene 
expression (DEG) analysis [17], with an adjusted 
p-value < 0.05 and |log2FoldChange| > 2 as the 
thresholds for identifying DEGs. The association 
between DPF2 expression and the top 5 upregulated 
and downregulated DEGs was investigated using 
Spearman correlation analysis. DEGs were visualized 
as volcano plots. 

2.6 Functional Enrichment Analysis 
GO, KEGG, and GSEA analyses were conducted 

on DEGs using the 'clusterProfiler' package. For GSEA 
analysis, the gene sets c2.cp.all.v2022.1.Hs. 
symbols.gmt and c5.all.v2022.1.Hs.symbols.gmt were 
used [18]. Significance was established with an 
adjusted p-value<0.05 and False Discovery Rate 
(FDR) <0.25. Results were visualized using ggplot2. 

2.7 Protein-protein interaction network 
analysis 

Protein interactions were scrutinized using 
STRING with a confidence score exceeding 0.7, 
resulting in a PPI network comprising DPF2 proteins 
and 15 associated proteins [19]. Additionally, the 
interactions and functions of the DPF2 gene were 
analyzed using GeneMANIA (http://genemania.org) 
[20]. 

2.8 Gene mutations and DNA methylation 
DPF2 mutations and copy number variations 

(CNV) were explored via cBioPortal, examining the 
correlation between DPF2 genetic alterations and 
HCC prognosis [21]. DPF2 promoter methylation was 
investigated using UALCAN [22], while MethSurv 
assessed the prognostic significance of DPF2 
methylation levels [23]. 

2.9 Immune infiltration analysis 
Enrichment scores for 24 types of immune cells 

were determined using the ssGSEA algorithm 
through GSVA. The correlation between DPF2 
expression and immune cell infiltration, as well as its 
relationship with TP53 and immune 
checkpoints—CTLA4, PDCD1/PD1, CD274/PDL1, 
was assessed using Spearman analysis [24, 25]. 
Differences in immune cell infiltration between 
groups with high and low DPF2 expression were 
analyzed using the Wilcoxon rank-sum test. 

2.10 Pathologic sample collection 
Seventeen pairs of HCC and corresponding 

paracarcinoma tissues were collected from HCC 

patients at the First Hospital of Guangxi Medical 
University. Inclusion criteria included: 1. Patients 
with primary hepatocellular carcinoma treated for the 
first time; 2. Patients treated with partial hepatectomy; 
3. Patients who have not undergone interventional 
therapy, targeted therapy, or immunotherapy before 
surgery. Exclusion criteria: involved patients with a 
history of other tumors besides hepatocellular 
carcinoma. The study, approved by the hospital’s 
Ethics Committee (NO. 2024-E068-01) in accordance 
with the Declaration of Helsinki, secured written 
informed consent from all participants. 

2.11 Immunohistochemistry 
Paired tumors and para-cancerous tissues were 

processed according to the following protocols: 1. 
Tissue Preparation: Sections were deparaffinized in 
xylene and hydrated through a graded series of 
ethanol (100%, 95%, 85%, 75%). 2. Antigen Repair: 
Antigen repair was performed using a citrate buffer 
(pH 6.0) in a microwave (95°C) for 15 minutes. 3. 
Blocking: After cooling, sections were treated with an 
appropriate amount of endogenous peroxidase 
blocker (PV-9000, ZSGB-Bio, China), and incubated at 
room temperature for 10 minutes. 4. Antibody 
Incubation: Sections were incubated with a primary 
antibody against DPF2 (Proteintech, No. 12111-1-AP, 
1:150) overnight at 4°C. Sections were then incubated 
for 20 minutes at room temperature with appropriate 
amounts of reaction enhancement solution and 
enhancer-labeled sheep anti-mouse/rabbit IgG 
polymers (PV-9000, ZSGB-Bio, China). 5. 
Visualization: Visualization was achieved using DAB 
(diaminobenzidine) as the chromogen. 6. 
Counterstaining: Sections were counterstained with 
hematoxylin to highlight nuclei. 7. Mounting: Sections 
were dehydrated, cleared, and mounted for 
microscopic evaluation. Staining results were 
analyzed using Image-J software. The Average 
Optical Density (AOD) of DPF2-positive stains was 
calculated for semi-quantitative analysis: 
AOD=Integrated Optical Density/Area Analyzed 
[26-28]. 

2.12 Statistical analysis 
IBM SPSS Statistics 26 and R (version 4.2.1) were 

employed for data analysis. The Wilcoxon rank-sum 
test was used to assess the significance of DPF2 
expression in unpaired tissues, while the paired 
samples t-test was used for paired tissues. The 
association between clinical characteristics and DPF2 
expression was examined using the Wilcoxon 
rank-sum test and logistic regression. Spearman’s 
rank correlation was utilized to analyze the 
relationship between the two groups. Statistical 
significance was determined by p-value<0.05.  
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3. Results 
3.1 High expression of DPF2 in hepatocellular 
carcinoma 

Pan-cancer analysis, leveraging the TCGA and 
GTEx databases, revealed that DPF2 was markedly 
overexpressed in a majority of cancer types, including 
hepatocellular carcinoma, pancreatic cancer, breast 
cancer, cholangiocarcinoma, melanoma, and 
squamous cell carcinoma of the head and neck (Figure 
1A). DPF2 expression was notably higher in patients 
with hepatocellular carcinoma compared to normal 
hepatocyte tissues (p<0.001) (Figure 1B). In a 
comparison of 50 pairs of hepatocellular carcinoma 
and corresponding paracarcinomatous tissues, 
significant overexpression of DPF2 was observed in 
the hepatocellular carcinoma tissues (p<0.001) (Figure 
1C). This heightened expression of DPF2 in 
hepatocellular carcinoma tissues (p<0.001) was 
corroborated at the transcriptome level in the 
GSE14520_3921, GSE14520_571, GSE76427, and 
GSE121248 datasets (Figure 1D-G).  

Further characterization of DPF2 expression at 
the protein level was conducted through 
Immunohistochemistry (IHC) of hepatocellular 
carcinoma and normal liver tissues, sourced from the 
HPA website. This analysis demonstrated that the 
IHC staining intensity of DPF2 in hepatocellular 
carcinoma was significantly greater than that in 
paracancerous tissues (Figure 2A). Additionally, 
results from the CPTAC database showed a 
significant increase in the protein expression level of 
DPF2 in hepatocellular carcinoma tissues compared to 
normal hepatocyte tissues (Figure 2B). 

3.2 High DPF2 expression is associated with 
adverse clinicopathologic features 

Elevated expression of DPF2 was significantly 
correlated with a more advanced stage of HCC, 
residual tumor status, vascular invasion, and higher 
AFP levels (all p<0.05) (Table 1, Figure 2C-H). 
Additionally, the outcomes of the univariate logistic 
regression analysis showed a strong correlation 
between DPF2 expression and clinical pathology 
characteristics, particularly AFP (OR=2.952, 95% 
CI=1.633-5.334, p<0.001), and histological stage 
(OR=2.011, 95% CI=1.307-3.095, p=0.001). Further-
more, DPF2 may be associated with age (OR=0.686, 
95% CI=0.456-1.032, p=0.070), race (OR=1.461, 95% 
CI=0.966-2.211, p=0.073), tumor status (OR=1.495, 
95% CI=0.980-2.280, p=0.062), and vascular invasion 
(OR=1.570, 95% CI=0.986-2.499, p=0.057), although 
these correlations were not statistically significant 
(Table 2). 

3.3 High DPF2 expression is associated with 
poorer prognosis in HCC 

The Kaplan-Meier method was used to evaluate 
the prognostic relationship between DPF2 expression 
and hepatocellular carcinoma. The 'surv_cutpoint' 
algorithm was used to divide patients into groups 
with high and low DPF2 expression [29]. The findings 
indicated that high DPF2 expression correlated with 
poorer overall survival (OS) (HR=1.82, 95% 
CI=1.28-2.57, p<0.001), disease-specific survival (DSS) 
(HR=1.70, 95% CI=1.08-2.68, p=0.022), and 
progression-free interval (PFI) (HR=1.63, 95% 
CI=1.21-2.20, p=0.001) (Figure 3A-C). Further 
Kaplan-Meier analysis of the GSE14520_3921 and 
GSE14520_571 datasets demonstrated that high DPF2 
expression in GSE14520_3921 was associated with 
poorer OS (HR=1.72, 95% CI=1.12-2.63, p=0.013) and 
recurrence-free survival (RFS) (HR=1.47, 95% 
CI=1.03-2.10, p=0.036) (Figure 3D-E). In the 
GSE14520_571 dataset, similar results were observed, 
but the differences in OS (p=0.160) and RFS (p=0.227) 
were not statistically significant, likely due to the 
small sample size (Figure 3F-G).  

Subsequent analysis of overall survival 
differences associated with DPF2 expression in 
various clinical subgroups revealed that patients with 
high DPF2 expression had a poorer prognosis across 
multiple categories: AFP ≤ 400, T1 and T2, T3 and T4, 
G1 and G2, G3 and G4, and stage I and II, as well as 
stage III and IV subgroups (all p<0.05) (Figure S1). 

3.4 Diagnostic and prognostic value of DPF2 in 
HCC 

DPF2’s diagnostic potential in HCC was 
evaluated by performing ROC analysis on the TCGA, 
GSE14520_3921, and GSE14520_571 databases. The 
findings indicated that DPF2 demonstrated superior 
prognostic efficacy across all datasets, with AUC 
values of 0.942 for TCGA (Figure 4A), 0.847 for 
GSE14520_3921 (Figure 4B), and 0.788 for 
GSE14520_571 (Figure 4C). Additional analyses of 
other datasets and clinicopathological subgroups 
confirmed DPF2’s robust predictive capacity (Figure 
S2). The predictive value of DPF2 expression in the 
prognosis of HCC was further assessed by building a 
risk score model. The data showed that patients in the 
high-risk score cohort experienced endpoint events 
within a shorter timeframe, highlighting the link 
between increased DPF2 expression and poorer HCC 
prognosis, and affirming its prognostic relevance in 
HCC (Figure 4D). Time-dependent ROC curves were 
generated from the TCGA and GSE14520_3921 
datasets further supported the prognostic value of 
DPF2 in predicting 1-, 3-, and 5-year survival rates 
(Figure 4E-F). 
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Univariate and multivariate Cox regression 
analyses were conducted to identify the prognostic 
determinants of HCC in relation to DPF2 expression. 
Univariate analysis revealed a significant correlation 
between DPF2 overexpression (high vs. low, HR 
1.496, p = 0.023), T stage (T3 vs. T1, HR 2.674, p < 
0.001; T4 vs. T1, HR 5.386, p < 0.001), and M stage (M1 
vs. M0, HR 4.077, p = 0.017) with poorer OS in HCC 
patients (Figure 4G). Multivariate analysis further 
identified DPF2 overexpression (high vs. low, HR 
1.614, p = 0.035) and T stage (T3 vs. T1, HR 2.954, p < 
0.001; T4 vs. T1, HR 5.281, p = 0.001) as independent 
risk factors for OS in patients with HCC (Figure 4H). 

We developed a nomogram based on 
independent risk factors for OS in HCC, such as T 

staging and DPF2 expression, to further confirm 
DPF2's prognostic impact on 1-, 3- and 5-year survival 
rates. The cumulative score, derived by aggregating 
the scores of each prognostic determinant, was used 
to forecast OS for HCC patients. The nomogram 
indicated that a higher total score corresponded to a 
less favorable prognosis (Figure 4I). Additionally, 
calibration curves were used to assess the discrepancy 
between the predicted probabilities by the nomogram 
at various time points and the actual probabilities. 
The results suggested that DPF2 expression could 
potentially offer a more accurate forecast of survival 
probabilities at 3 and 5 years compared to the 
prediction for the 1-year survival rate (Figure 4J). 

 

 
Figure 1. Expression of DPF2 in different types of tumors and liver cancer. (A) Pan-cancer analysis of DPF2 in TCGA and GTEx databases. (B) TCGA database of HCC 
and unpaired normal liver tissues. (C) TCGA database of HCC and paired normal liver tissues. (D) GSE14520_3921. (E) GSE14520_571. (F) GSE76427. (G) GSE121248. TCGA, 
The Cancer Genome Atlas; GTEx, Genotype Tissue Expression Project. ns: p ≥ 0.05; *p < 0.05; **p < 0.01; ***p < 0.001. 
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Figure 2. Expression of DPF2 at the protein level and relationship between DPF2 and clinicopathological features. (A) Typical immunohistochemical images of 
DPF2 expression in HCC tissues and normal liver tissues from the HPA database. (B) DPF2 protein expression in HCC tissues and normal liver tissues from the CPTAC database 
in the UALCAN website. (C) Pathological stage. (D) T stage. (E) Histologic grade. (F) Tumor status. (G) Vascular invasion. (H) AFP. AFP, alpha-fetoprotein. ns: p ≥ 0.05; *p < 0.05; 
**p < 0.01; ***p < 0.001. 

 

3.5 DEG identification and functional 
enrichment analysis in HCC patients 

Between the cohorts with high and low DPF2 
expression, a total of 245 transcriptomic genes showed 
differential expression, including 216 genes that were 
upregulated and 29 genes that were downregulated 
(with an adjusted p-value<0.05 and |log2Foldchange 
|>2) (Figure 5A). The top five upregulated and 
downregulated differential genes (MAGEA4, 
LGALS14, CEACAM7, HMGA2, SST, ARHGAP36, 
HAMP, SAA2, ANGPTL7, P2RX2) were subjected to 
further analysis based on their adjusted p-values. 

Heatmaps were employed to delineate the 
relationship between these genes and DPF2 
expression (Figure 5B). Functional annotation of the 
differentially expressed genes (DEGs) was carried out 
using GO and KEGG enrichment analyses. The results 
indicated that the primary biological processes (BP) 
involved digestion, metal ion stress response, and 
inorganic compound detoxification. The main cellular 
components (CC) were associated with glutamatergic 
synapse, intermediate filament, and integral 
components of the postsynaptic membrane. The key 
molecular functions (MF) involved gated channel 
activity, hormone activity, and neurotransmitter 
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receptor activity. KEGG analysis revealed that these 
differential genes were predominantly implicated in 
pathways such as Neuroactive ligand-receptor 

interaction, Protein digestion and absorption, and 
mineral absorption (Figure 5C-D). 

 

 
Figure 3. High expression of DPF2 was associated with poor prognosis. Kaplan–Meier survival curves of DPF2 in (A) OS, (B) DSS and (C) PFI in The Cancer Genome 
Atlas (TCGA), (D) OS and (E) RFS in GSE14520_3921, (F) OS and (G) RFS in GSE14520_571 subgroups. OS, Overall Survival. DSS, Disease Free Survival. PFI: Progression Free 
Interval. RFS, Recurrence Free Survival. 

 
Figure 4. Predictive ability of DPF2 for hepatocellular carcinoma (HCC). Diagnostic ROC curves in (A) The Cancer Genome Atlas (TCGA), (B) GSE14520_3921, (C) 
GSE14520_571. (D) Risk score, survival time distribution, and gene expression heat map of DPF2 in TCGA. Predictive power of DPF2 for 1‐, 3‐, and 5‐year overall survival (OS) 
by time‐dependent ROC analysis in (E) TCGA, and (F) GSE14520_3921. (G) Forest map based on Univariate Cox analysis for overall survival. (H) Forest map based on 
Multivariate Cox analysis for overall survival. (I) Prediction of 1‐, 3‐, and 5‐year OS by nomogram. (J) Calibration plots were used to validate the nomogram model. 
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Figure 5. Analysis of differentially expressed genes and functional enrichment of DPF2 in HCC. (A) Volcano plot showing the DEGs between DPF2 high and DPF2 
low groups. (B) Heat map showing the top five upregulated and downregulated genes with DPF2 expression. (C) Bubble plot of GO and KEGG enrichment analysis. (D) Circle 
diagram showing the GO and KEGG terms corresponding to the DEGs. (E-F) Enrichment results of GSEA gene set in DPF2 high expression group. (G-H) Enrichment results of 
GSEA gene set in the DPF2 low expression group. GO:Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes. ns: p ≥ 0.05; *p < 0.05; **p < 0.01; ***p < 0.001. 

 
We investigated the association between DPF2 

expression and diverse biological processes by 
conducting GSEA using both c2.cp.all.v2022.1.Hs. 
symbols.gmt and c5.all.v2022.1.Hs.symbols.gmt 
datasets. The findings revealed that elevated DPF2 

expression was significantly correlated with processes 
such as the cell cycle, Wnt signaling pathway, T cell 
receptor signaling pathway, cancer pathways, DNA 
replication, immunoglobulin complex, circulating 
immunoglobulin complex, immunoglobulin receptor 
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binding, B cell receptor signaling pathway, and 
antigen-binding (Figure 5E-F). Conversely, a 
significant association was observed between reduced 
DPF2 expression and various processes and 
pathways, including the complement and coagulation 
cascades, fatty acid metabolism, oxidative 
phosphorylation, peroxisome, primary bile acid 
biosynthesis, organic acid catabolic process, electron 
transfer activity, cellular amino acid catabolic process, 
monocarboxylic acid catabolic process, and 
respirasome (Figure 5G-H). 

 

Table 1. Relationship between DPF2 expression and 
clinicopathological features in the TCGA database.  

Characteristics Low expression 
of DPF2 

High expression 
of DPF2 

P 
value 

 X2 

n 187 187   
Age, n (%)   0.070 3.283 
<= 60 80 (21.4%) 97 (26%)   
> 60 107 (28.7%) 89 (23.9%)   
Missing 0 1   
Gender, n (%)   0.912 0.012 
Female 60 (16%) 61 (16.3%)   
Male 127 (34%) 126 (33.7%)   
Missing 0 0   
Race, n (%)   0.193 3.292 
Asian 71 (19.6%) 89 (24.6%)   
Black or African American 7 (1.9%) 10 (2.8%)   
White 99 (27.3%) 86 (23.8%)   
Missing 10 2   
BMI, n (%)   0.140 2.177 
<= 25 82 (24.3%) 95 (28.2%)   
> 25 87 (25.8%) 73 (21.7%)   
Missing 18 19   
AFP(ng/ml), n (%)   < 

0.001 
13.472 

<= 400 122 (43.6%) 93 (33.2%)   
> 400 20 (7.1%) 45 (16.1%)   
Missing 45 49   
Albumin(g/dl), n (%)   0.111 2.542 
< 3.5 41 (13.7%) 28 (9.3%)   
>= 3.5 112 (37.3%) 119 (39.7%)   
Missing 34 40   
Prothrombin time, n (%)   0.440 0.597 
<= 4 102 (34.3%) 106 (35.7%)   
> 4 48 (16.2%) 41 (13.8%)   
Missing 37 40   
Child-Pugh grade, n (%)   0.426 0.634 
A 119 (49.4%) 100 (41.5%)   
B&C 10 (4.1%) 12 (5%)   
Missing 58 75   
Pathologic T stage, n (%)   0.391 3.006 
T1 99 (26.7%) 84 (22.6%)   
T2 42 (11.3%) 53 (14.3%)   
T3 37 (10%) 43 (11.6%)   
T4 6 (1.6%) 7 (1.9%)   
Missing 3 0   
Pathologic N stage, n (%)   0.704 0.144 
N0 120 (46.5%) 134 (51.9%)   
N1 1 (0.4%) 3 (1.2%)   
Missing 66 50   
Pathologic M stage, n (%)   0.614 0.253 
M0 133 (48.9%) 135 (49.6%)   
M1 3 (1.1%) 1 (0.4%)   
Missing 51 51   
Pathologic stage, n (%)   0.152 5.283 
Stage I 93 (26.6%) 80 (22.9%)   
Stage II 40 (11.4%) 47 (13.4%)   
Stage III 36 (10.3%) 49 (14%)   

Characteristics Low expression 
of DPF2 

High expression 
of DPF2 

P 
value 

 X2 

Stage IV 4 (1.1%) 1 (0.3%)   
Missing 14 10   
Tumor status, n (%)   0.062 3.490 
Tumor free 110 (31%) 92 (25.9%)   
With tumor 68 (19.2%) 85 (23.9%)   
Missing 9 10   
Residual tumor, n (%)   0.136 2.222 
R0 168 (48.7%) 159 (46.1%)   
R1&R2 6 (1.7%) 12 (3.5%)   
Missing 13 16   
Histologic grade, n (%)   < 

0.001 
18.236 

G1 40 (10.8%) 15 (4.1%)   
G2 91 (24.7%) 87 (23.6%)   
G3 49 (13.3%) 75 (20.3%)   
G4 4 (1.1%) 8 (2.2%)   
Missing 3 2   
Vascular invasion, n (%)   0.057 3.631 
No 116 (36.5%) 92 (28.9%)   
Yes 49 (15.4%) 61 (19.2%)   
Missing 22 34   
Adjacent hepatic tissue 
inflammation, n (%) 

  0.610 0.990 

None 64 (27%) 54 (22.8%)   
Mild 48 (20.3%) 53 (22.4%)   
Severe 9 (3.8%) 9 (3.8%)   
Missing 66 71   
OS event, n (%)   0.082 3.018 
Alive 130 (34.8%) 114 (30.5%)   
Dead 57 (15.2%) 73 (19.5%)   
Missing 0 0   
DSS event, n (%)   0.345 0.892 
No 148 (40.4%) 139 (38%)   
Yes 36 (9.8%) 43 (11.7%)   
Missing 3 5   
PFI event, n (%)   0.179 1.808 
No 102 (27.3%) 89 (23.8%)   
Yes 85 (22.7%) 98 (26.2%)   
Missing 0 0   

Abbreviations: AFP, alpha-fetoprotein; OS, overall survival; DSS, disease-specific 
survival; PFI, progress free interval. Bold values are used to highlight statistical 
significance, and P <0.05. Missing cases: Some of TCGA clinical data are missing. 

 

Table 2. Logistic regression analysis of DPF2 expression.  

Characteristics Total 
(N) 

OR (95% CI) P value 

Age (> 60 vs. <= 60) 373 0.686 (0.456 - 1.032) 0.070 
Gender (Male vs. Female) 374 0.976 (0.633 - 1.505) 0.912 
Race (Black or African 
American&Asian vs. White) 

362 1.461 (0.966 - 2.211) 0.073 

BMI (> 25 vs. <= 25) 337 0.724 (0.472 - 1.112) 0.141 
AFP(ng/ml) (> 400 vs. <= 400) 280 2.952 (1.633 - 5.334) < 0.001 
Child-Pugh grade (B&C vs. A) 241 1.428 (0.592 - 3.444) 0.428 
Pathologic T stage (T3&T4 vs. T1&T2) 371 1.197 (0.748 - 1.916) 0.454 
Pathologic N stage (N1 vs. N0) 258 2.687 (0.276 - 26.173) 0.395 
Pathologic M stage (M1 vs. M0) 272 0.328 (0.034 - 3.197) 0.338 
Pathologic stage (Stage III&Stage IV 
vs. Stage I&Stage II) 

350 1.309 (0.809 - 2.119) 0.273 

Histologic grade (G3&G4 vs. G1&G2) 369 2.011 (1.307 - 3.095) 0.001 
Tumor status (With tumor vs. Tumor 
free) 

355 1.495 (0.980 - 2.280) 0.062 

Vascular invasion (Yes vs. No) 318 1.570 (0.986 - 2.499) 0.057 

Bold values are used to highlight statistical significance, and P <0.05. 

 

3.6 PPI Network and Ferroptosis related 
analysis 

The protein interaction network for genes 
associated with DPF2 was constructed using the 
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STRING database. This analysis highlighted ARID1A, 
SMARCE1, SMARCB1, SMARCA4, SMARCD1, 
SMARCC2, ARID1B, SMARCC1, SMARCA2, DPF1, 
SMARCD2, ACTL6A, SMARCD3, BCL7A, and 
BCL7C as the genes most significantly associated with 
DPF2 (Figure 6A-B,D). Comparative expression 
analysis of these genes in HCC showed that all related 
genes, except for SMARCA2, were significantly 
overexpressed in HCC compared to adjacent 
non-tumor tissues (p < 0.001) (Figure 6C). Subsequent 
prognostic analysis in HCC indicated that elevated 
expression of the majority of these genes was 
associated with poorer prognosis (Figure S3). Further 
analyses using GO and KEGG pathways revealed that 
DPF2 and its associated genes primarily participate in 
biological functions and pathways such as 
nucleosome disassembly, protein-DNA complex 
disassembly, chromatin remodeling, SWI/SNF 
complex, SWI/SNF superfamily-type complex, 
ATPase complex, nucleosome binding, nucleosomal 
DNA binding, chromatin DNA binding, Hepato-
cellular carcinoma, and Thermogenesis (Figure 6E). 
Additionally, the GeneMANIA database, which 
facilitates the discovery of functionally similar genes 
and prediction of gene function using extensive 
genomics and proteomics data [30], was used to 
validate the functions of DPF2-related genes, 
confirming their involvement in the aforementioned 
biological functions (Figure 7A). 

Ferroptosis is an iron-dependent form of 
programmed cell death, distinct from other forms 
such as necrosis, apoptosis, and autophagy [31]. 
Cancer cells, unlike normal cells, tend to utilize 
elevated levels of iron to promote growth and 
invasion [32]. Ferroptosis has been shown to play a 
pivotal role in treating HCC and has emerged as a 
potent therapeutic approach [33, 34]. Studies have 
established that certain genes are associated with 
ferroptosis in cancer [35]. Using the TCGA database, 
our study examined the relationship between DPF2 
and 25 genes related to ferroptosis. The analysis 
revealed a strong positive association between the 
expression of DPF2 and the genes HSPA5, EMC2, 
SLC7A11, NFE2L2, HSPB1, FANCD2, CISD1, FDFT1, 
SLC1A5, TFRC, RPL8, NCOA4, LPCAT3, DPP4, CS, 
CARS1, ATP5MC3, ALOX15, ACSL4, and ATL1. On 
the other hand, the expression of DPF2 was found to 
be negatively linked to MT1G, SAT1, and GLS2 
(Figure 7B-E).  

3.7 DPF2 gene mutation and methylation 
Genetic mutations are one of the primary 

etiological factors for cancer [36]. In our study, we 
analyzed DPF2 mutations and copy number 
variations (CNVs) in two HCC datasets (INSERM, 

Nat Genet 2015, n=243; TCGA, Firehose Legacy, 
n=379) accessed from the cBioPortal. The study 
showed that the DPF2 gene exhibited missense 
mutation, amplification, and deep deletion at a 
frequency of 1.3% (Figure 8A-B). Further analyses 
using the Kaplan-Meier method indicated that 
mutations in the DPF2 gene did not correlate with 
differences in OS (p = 0.820) or DFS (p = 0.651) (Figure 
8C-D). Additionally, it is well-established by various 
studies that abnormal DNA methylation significantly 
contributes to the early stages of HCC development 
[37, 38]. We observed elevated DNA methylation 
levels of DPF2 at the promoter region in HCC tissues 
compared to normal liver tissues using the UALCAN 
database; however, this difference was not statistically 
significant (p = 0.114) (Figure 8E). A comprehensive 
examination of the DNA methylation level of the 
DPF2 gene and the prognostic relevance of CpG 
islands within the gene was conducted using the 
MethSurv database. The results indicated that the 
majority of these CpG sites exhibited 
hypomethylation (Figure 8F). Specifically, three CpG 
sites—cg02186298, cg02574952, and cg06382930— 
showed methylation levels correlated with the 
prognosis of HCC (Figure 8G). Hypermethylation of 
cg02186298 and cg02574952 was associated with a 
poorer prognosis, whereas hypomethylation of 
cg06382930 was also correlated with a poorer 
prognosis (Figure 8H-J). 

3.8 DPF2 expression is considerably associated 
with immune infiltration and immune 
checkpoints 

It has been proved that immune cells play a 
significant role in cancer [39]. Initially, we used 
TIMER to explore the relationship between DPF2 
expression, tumor purity, and immune cell 
infiltration. The results revealed a significant positive 
correlation between DPF2 expression in HCC and 
tumor purity (r=0.133, p=1.81e-02), B-cell infiltration 
(r=0.418, p=5.15e-16), CD8+ T-cell infiltration 
(r=0.269, p=4.34e-07), CD4+ T-cell infiltration 
(r=0.482, p=2.15e-21), macrophage infiltration 
(r=0.448, p=2.89e-18), neutrophil infiltration (r=0.388, 
p=7.86e-14), and dendritic cell (DC) infiltration 
(r=0.436, p=3.48e-17) (Figure 9A). 

Previous studies have emphasized the 
importance of intratumoral immune cells in human 
cancers [24]. Our study examined the associations 
between DPF2 and 24 types of intratumoral immune 
cells using the ssGSEA algorithm. The analysis 
identified significant positive associations between 
DPF2 and T helper cells (r=0.317, p=4.27e-10), Th2 
cells (r=0.311, p=1.01e-09), central memory T cells 
(Tcm) (r=0.252, p=8.90e-07), and effector memory T 
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cells (Tem) (r=0.151, p=3.53e-03) (Figure 9B, D-E) 
(Figure S4). In contrast, DPF2 expression showed a 
significant negative correlation with dendritic cells 
(DC) (r=-0.328, p= 1.07e-10), cytotoxic cells (r=-0.304, 
p=2.32e-09), Th17 cells (r=-0.287, p=1.82e-08), 
plasmacytoid dendritic cells (pDC) (r=-0.281, 
p=3.29e-08), neutrophils (r =-0.261, p=3.51e-07), mast 
cells (r=-0.221, p=1.65e-05), B cells (r=-0.204, 
p=7.26e-05), gamma delta T cells (Tgd) (r=-0.169, 
p=1.05e-03), regulatory T cells (Treg) (r=-0.124, 

p=1.68e-02), immature dendritic cells (iDC) (r=-0.117, 
p=2.33e-02), and NK CD56dim cells (r=-0.102, 
p=4.97e-02) (Figure 9B, F-G) (Figure S4). We 
compared the enrichment scores of the 24 immune 
cells in groups with high and low DPF2 expression. 
The results indicated that the DPF2 high-expression 
group had higher enrichment scores in 4 types of 
immune cells, whereas the low DPF2 expression 
group exhibited higher scores in 11 types of immune 
cells (Figure 9C). 

 

 
Figure 6. DPF2-related genes and their functional analysis. (A) PPI network of DPF2‐related genes. (B) Annotation and correlation coefficients of 15 DPF2-related genes. 
(C) Expression of DPF2-related genes in HCC. (D) Correlation between DPF2 and related genes. (E) GO/KEGG functional enrichment analysis of DPF2-related genes. ns: p ≥ 
0.05; *p < 0.05; **p < 0.01; ***p < 0.001. 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

4679 

 
Figure 7. Correlation of DPF2 with related genes in ferroptosis pathway. (A) GeneMANIA Gene Interaction Network related to DPF2. (B) Heat map of the 
correlation between DPF2 expression and ferroptosis-related genes. (C-E) Expression of ferroptosis-related genes in the high and low DPF2 expression groups. ns: p ≥ 0.05; *p 
< 0.05; **p < 0.01; ***p < 0.001. 
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Figure 8. Mutations and DNA methylation levels of DPF2 and their impact on the prognosis of HCC. (A-B) Mutation levels of the DPF2 in cBioPortal 
OncoPrint.(C) Association between DPF2 gene mutation and overall survival (OS) in HCC. (D) Association between DPF2 gene mutation and disease-free survival (DFS) in HCC. 
(E) DPF2 methylation levels in HCC form the UALCAN database. (F) Correlation between DPF2 mRNA expression level and methylation level form the MethSurv database. (G) 
Correlation between DPF2 methylation level and prognosis of HCC. Kaplan-Meier survival curve of DPF2 in (H) cg02186298, (I) cg02574952, (J) cg06382930. 
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Figure 9. Correlation of DPF2 expression with immune infiltration and immune checkpoints. (A) Correlation of DPF2 in TIMER with tumor purity and immune cell 
infiltration status. (B) Bubble plot of the correlation between DPF2 and 24 immune cells. (C) Degree of immune infiltration of different immune cells in high and low DPF2 
expression. Scatter plots of correlation between DPF2 expression levels and (D) T helper cells, (E) Th2 cells, (F) DCs and (G) cytotoxic cells. Scatter plots of correlation between 
DPF2 expression levels and (H) TP53, (I) CTLA-4, (J) PD-1 and (K) PD-L1. ns: p ≥ 0.05; *p < 0.05; **p < 0.01; ***p < 0.001. 

 
Genes with TP53 mutations have been linked to 

poor prognosis in HCC [40]. Immune checkpoints 
play crucial roles in tumor immune evasion, and 
immune checkpoint inhibitors have become 
important therapeutic agents in liver cancer treatment 

[41]. We further investigated the correlations between 
DPF2 and TP53, CTLA-4, PD-1 (PDCD-1), and PD-L1 
(CD274) using the TCGA database. In HCC, DPF2 
expression showed significant positive correlations 
with several key immune-related molecules. 
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Specifically, we observed strong associations between 
DPF2 and TP53 (r=0.423, p<0.001), CTLA-4 (r=0.220, 
p<0.001), PD-1 (r=0.253, p<0.001), and PD-L1 (r=0.276, 
p<0.001) (Figure 9H-K). 

3.9 Immunohistochemical verification of high 
DPF2 expression in HCC 

To corroborate DPF2 expression in HCC 
patients, we performed immunohistochemical 
validation on 17 pairs of HCC and corresponding 
paracancerous tissues obtained from the First 
Affiliated Hospital of Guangxi Medical University. 

The findings indicated that DPF2 was primarily 
expressed in the nucleus and that its expression was 
higher in HCC tissues compared to paracancerous 
tissues (Figure 10A). Using a semi-quantitative 
evaluation method [42, 43], we calculated the average 
optical density (AOD) of DPF2 immunohistochemical 
(IHC). The results showed that the AOD of DPF2 in 
HCC tissues was significantly higher than in the 
surrounding non-cancerous tissues (p<0.0001) 
(Figures 10B-C). 

 

 
Figure 10. Validation of DPF2 protein expression in Guangxi patients with hepatocellular carcinoma. (A) Representative immunohistochemical (IHC) images of 
DPF2 expression in HCC and adjacent liver tissues. (B-C) Average optical density (AOD) of immunohistochemical staining of DPF2 in HCC and adjacent liver tissues. ****p < 
0.0001. 
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4. Discussion 
Hepatocellular carcinoma (HCC) is 

characterized by high morbidity, mortality, and 
heterogeneity, posing a significant threat to global 
health [44]. According to the Cancer Statistics Report 
2024, there has been a slight decrease in morbidity 
and mortality among male liver cancer patients. 
However, for female patients, both the morbidity and 
mortality rates of HCC continue to rise year after year 
[45]. Typically, liver cancer patients are often 
diagnosed at an advanced stage, which significantly 
contributes to the disease's poor prognosis. This issue 
primarily stems from the lack of effective early 
diagnostic tools for liver cancer [46, 47]. As a result, 
the search for effective biomarkers to improve early 
detection of HCC is urgently needed. 

DPF2, a transcription factor, has been 
demonstrated in prior studies to activate the 
non-classical NF-κB pathway by binding to subunits 
of the SWI/SNF complex [48]. NF-κB is persistently 
activated in various tumors [49], and inhibition of the 
SWI/SNF complex has been shown to suppress 
NF-κB activation, leading to tumor-suppressing 
effects [50]. Consequently, DPF2 may be associated 
with certain cancers. Previous studies have confirmed 
that DPF2 is strongly linked with cancers such as 
glioblastoma [51] and acute myeloid leukemia [52]. 
Our current research utilizes a pan-cancer analysis 
through the TCGA database, which revealed a 
significant up-regulation of DPF2 across 17 types of 
malignant tumors, primarily including conditions 
such as hepatocellular carcinoma, breast carcinoma, 
cholangiocarcinoma, pancreatic carcinoma, and 
melanoma among others. These findings align with 
the outcomes of an earlier study [15], suggesting that 
DPF2 may be a potential oncogenic gene for a broad 
range of cancers. In our analysis of DPF2 expression 
and prognosis in several hepatocellular carcinoma- 
related databases, DPF2 was found to be significantly 
overexpressed in both paired and unpaired group 
samples of HCC. This overexpression was strongly 
correlated with adverse clinicopathological features 
and poor prognosis in HCC. These results were 
further validated by immunohistochemistry 
experiments on the Guangxi hepatocellular carcinoma 
cohort, which confirmed the findings. Additionally, 
ROC analysis of several databases and the 
construction of a Nomogram model demonstrated 
that DPF2 has good diagnostic value, suggesting that 
DPF2 may serve as an effective diagnostic and 
prognostic biomarker for hepatocellular carcinoma. 

Cancer development is closely linked to gene 
mutations and DNA methylation [53, 54]. Various 
therapies for concurrent cancers have been shown to 
be strongly associated with ferroptosis [55, 56]. To 

investigate the epigenetic mechanisms of DPF2’s 
involvement in HCC development, this study 
analyzed the gene mutation and methylation of DPF2 
and its interaction with ferroptosis-related genes. The 
analysis revealed that the frequency of DPF2 gene 
mutation in HCC was 1.3%, but the mutation of DPF2 
was not significantly correlated with adverse 
outcomes in HCC. Methylation pattern analysis 
showed that DPF2 had higher methylation levels in 
HCC tissues than in adjacent normal liver tissues. 
Additionally, a correlation was observed between 
DPF2 hypermethylation and unfavorable prognosis in 
HCC, consistent with the prognostic outcomes of 
DPF2 in the transcriptome. Among the 25 genes 
associated with ferroptosis, DPF2 expression was 
positively associated with 20 genes and negatively 
correlated with 3 genes, suggesting that DPF2 may be 
involved in the ferroptosis-related process, thereby 
influencing the treatment and prognosis of 
hepatocellular carcinoma. 

In this investigation, we further elaborated on 
the biological roles and associated pathways of DPF2. 
GO and KEGG analyses revealed that DPF2 
predominantly functions in digestion, hormone 
activity, and neurotransmitter receptor activity. It 
plays a crucial role in signaling pathways, including 
neuroactive ligand-receptor interaction, protein 
digestion, and absorption. GSEA demonstrated a 
significant correlation between DPF2 and the cell 
cycle, Wnt signaling pathway, cancer pathways, DNA 
replication, immunoglobulin complex, immuno-
globulin receptor binding, B-cell receptor signaling 
pathway, and antigen binding. Concurrently, we 
assessed genes closely linked to DPF2 and their 
biological roles through protein interaction network 
analysis, which revealed that DPF2 is chiefly 
associated with nucleosome disassembly, 
protein-DNA complex disassembly, SWI/SNF 
complex, and hepatocellular carcinoma. This suggests 
that DPF2 may contribute to the pathogenesis of 
hepatocellular carcinoma through immune-antigen 
binding, involvement in the cell cycle, Wnt signaling 
pathway, and cancer pathways, with the Wnt 
signaling pathway playing a pivotal role in the 
oncogenic activation of HCC [57]. To validate these 
findings, we conducted a deeper investigation into the 
correlation between DPF2 and immune infiltrating 
cells as well as immune checkpoints. Our study 
revealed that DPF2 significantly enhanced the 
immune infiltration levels of T helper cells and Th2 
cells, which are known to increase significantly in 
patients with hepatocellular carcinoma [58]. 
Additionally, this study verified a significant 
correlation between DPF2 expression and TP53, 
CTLA-4, PD-1, and PD-L1. Consequently, DPF2 may 
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facilitate the infiltration of immune cells, such as T 
helper cells and Th2 cells, and the expression of 
immune checkpoints, which mediate the immune 
evasion of hepatocellular carcinoma and foster its 
progression. 

Concurrently, this investigation acknowledges 
certain limitations. Primarily, the expression and 
functional analysis of DPF2 was validated through an 
online database, without corroborating evidence from 
in vitro cellular experiments and in vivo animal 
studies. Therefore, it is imperative to enhance the 
relevant functional experiments to further 
authenticate the biological role of DPF2 in 
hepatocellular carcinoma in future research 
endeavors. 

In conclusion, this investigation pioneered the 
analysis of the relationship between DPF2 and 
hepatocellular carcinoma. The study confirmed that 
DPF2 is notably overexpressed in HCC and shows a 
significant correlation with a poor prognosis. 
Furthermore, DPF2 may participate in immune 
infiltration, immune checkpoint evasion, and other 
related mechanisms in hepatocellular carcinoma. As a 
result, DPF2 could potentially be utilized as a 
biomarker for diagnosing and prognosticating 
hepatocellular carcinoma, and it might also be 
considered as a potential target for immuno-
therapeutic strategies. 
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