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Abstract 

Background: Long non-coding RNA (lncRNA), a crucial regulator in breast cancer (BC) development, is 
intricately linked with cellular senescence. However, there is a lack of cellular senescence-related 
lncRNAs (CSRLs) signature to evaluate the prognosis of BC patients. 
Methods: Correlation analysis was conducted to identify lncRNAs associated with cellular senescence. 
Subsequently, a CSRL signature was crafted in the training cohort. The model's accuracy was evaluated 
through survival analysis and receiver operating characteristic curves. Furthermore, prognostic 
nomograms amalgamating cellular senescence and clinical characteristics were devised. Tumor 
microenvironment and checkpoint disparities were compared between low-risk and high-risk groups. 
The correlation between these signatures and treatment response in BC patients was also investigated. 
Finally, functional experiments were conducted for validation. 
Results: A signature comprising nine CSRLs was devised, which demonstrated adept prognostic 
capability in BC patients. Functional enrichment analysis revealed that tumor and immune-related 
pathways were predominantly enriched. Compared to the low-risk group, the high-risk group could 
benefit more from immunotherapy and certain chemotherapeutic agents. The expression of the 9 CSRLs 
was validated through in vitro experiments in different subtypes of BC cell lines and tissues. AC098484.1 
was specifically verified for its association with senescence-associated secretory phenotypes. 
Conclusion: The CSRLs signature emerges as a promising prognostic biomarker for BC, with 
implications for immunological studies and treatment strategies. AC098484.1 has potential relevance in 
the treatment of BC cell senescence, and these findings improve the clinical treatment levels for BC 
patients. 
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1. Introduction 
BC is the most common cancer, and the leading 

cause of tumor-associated morbidity and mortality in 
women [1]. In 2020, BC became the second most 
commonly diagnosed cancer worldwide, second only 
to lung cancer. Although treatments such as targeted 

therapy, radiation and chemotherapy are evolving, 
more than 7.7 million women have a survival time of 
only five years after diagnosis [2]. Therefore, the 
identification of predictive markers, prognostic 
factors and new therapeutic targets for BC is of 

 
Ivyspring  

International Publisher 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

4701 

importance for clinical management.  
Cellular senescence refers to a state of permanent 

cell growth arrest in response to various damaging 
stimuli [3]. It is a multifaceted process. On the one 
hand, senescent cells suppress tumor development by 
inhibiting the proliferation of harmful cells while on 
the other hand, they can secrete senescence-associated 
secretory phenotypes (SASP), including interleukin-6 
(IL-6), interleukin-1α (IL-1α) and interleukin-8 (IL-8) 
[4-6], which promote tumor growth via 
immunosuppression and inflammation [7]. SASP can 
also play the opposite role by promoting senescent 
cells through autocrine or paracrine peri cells to 
undergo senescence, thereby suppressing tumor cells 
[8,9]. Cellular senescence plays an important role in 
BC development [10]. However, it has not been fully 
established whether cellular senescence is a potential 
biomarker for clinical prognosis and treatment 
outcomes. 

LncRNAs are non-coding RNAs over 200 
nucleotides in length that do not encode for proteins, 
but regulate gene expressions at multiple levels. They 
have been shown to affect cell growth and senescence 
through multiple pathways. LncRNAs play important 
regulatory roles in BC biological processes, such as 
proliferation, invasion, and metastasis [11-13]. They 
have become a major focus of cellular senescence 
research, a process in which they are actively 
regulated [14-16]. For instance, lncRNA 7SL inhibits 
p53 translation, promotes cell cycle progression and 
suppresses cellular senescence as well as autophagy, 
while its silencing promotes p53 translation and 
accumulation, contributing to cell cycle arrest and 
cellular senescence in cervical cancer cells [17]. 
Lnc-IL7R inhibits lipopolysaccharide-induced 
inflammatory responses and expressions of 
pro-inflammatory factors. Moreover, lnc-IL7R 
negatively regulates inflammatory TNF-α and IL-8 
cytokines [18]. The significance of cellular senescence 
in the tumor immune microenvironment has not been 
fully characterized. For example, LncRNA Lethe, 
which is induced by nuclear factor κB (NF-κB) or 
glucocorticoid receptor agonists, is involved in 
inhibition of NF-κB-induced signaling and 
inflammation [19]. The lncRNA HOTAIR regulates 
NF-κB activation by inhibiting the activities of Iκ-Bα, 
inducing NF-κB activation and NF-κB target gene 
expressions in response to DNA damage [20]. 
Therefore, the roles of cellular senescence in the BC 
immune microenvironment should be further 
explored. 

Elucidation of the role of LncRNA in cellular 
senescence is important for its potential impact in 
aging and related diseases as well as its use as a 
biological marker for prevention, screening, diagnosis 

and prognosis of aging-related diseases. Therefore, 
we constructed a model of CSRLs, analyzed and 
assessed the relevance of prognostic and 
clinicopathological features in BC patients, and 
explored the value of BC patients in tumor immune 
infiltration and immunotherapy. Our findings show 
the regulatory mechanisms of CSRLs in BC, which 
may inform clinical decisions. 

2. Materials and Methods 
2.1 Patients and Datasets 

We downloaded standardized RNA-seq data 
from The Cancer Genome Atlas Breast Cancer 
(TCGA-BRCA; https://portal.gdc.cancer.gov/). A 
total of 1085 BC patients were included in this study. 
Complete clinical and prognostic information were 
downloaded from TCGA. Subsequently, we selected a 
total of 1,022 patients with complete clinical 
information and an overall survival (OS) of more than 
30 days. Using the R package "caret", 1022 BC patients 
were randomly divided into training (512 patients) 
and validation (510 patients) cohorts at a 1:1 ratio. 
Table 1 presents the distribution of clinical 
characteristics among patients in different groups. A 
total of 279 cellular senescence-related genes (CSRGs) 
were acquired from the Cellular Senescence Database 
(https://genomics.senescence.info/cells/). The site is 
a genetic database developed to facilitate the study of 
cellular senescence by integrating a large number of 
data sets to allow for a systems biology analysis of 
cellular senescence. We collected cancer and 
paraneoplastic tissues from six BC patients. This 
study was approved by the Ethics Committee of 
Tianjin Medical University, and each patient provided 
written informed consent. 

2.2 Identification of CSRLs 
Correlation between CSRGs and lncRNAs was 

analysed. Pearson correlation coefficient > 0.4 and p < 
0.001 as thresholds for identification of CSRLs. The 
“ggalluvial” in R was used to obtain Sankey plots. 

2.3 Establishment and Validation of the CSRLs 
Prognostic Signature 

For the identified 1391 CSRLs, first, we used 
univariate Cox regression analysis and LASSO 
regression to obtain CSRLs that were associated with 
the prognosis of BC patients, the LASSO regression 
method used the “glmnet” package for R. Then used 
multivariate Cox regression analysis to establish risk 
scores for construction of CSRLs prognostic models. 
Patient risk scores were calculated using the following 
formula: Risk score = Σ (each gene's expression × 
corresponding coefficient). We employed linear 
regression analysis to assess the survival relationship 
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between the low-risk and high-risk groups. The 
accuracy of the model was evaluated using the 
receiver operating characteristic (ROC) curve. We 
analyzed the differences in OS between the low-risk 
and high-risk groups using the "survival" package in 
R. 

2.4 Construction of Nomogram and 
Calibration 

Risk scores were combined with clinical 
pathological characteristics, including age, clinical 
stage, T stage, N stage, and M stage, we used the 
"rms" package in R to construct a nomogram for 
predicting 1-, 3-, and 5-year survival outcomes in BC 
patients. The accuracy of the nomogram was 
determined using calibration curves. 

2.5 Functional Enrichment Analyses of CSRLs 
Signature 

Based on the median risk score, BC patients were 
assigned into low-risk and high-risk groups. The 
“limma” package was employed to identify the 
differentially expressed genes (DEGs). Gene Set 
Enrichment Analysis (GSEA) was employed to 
identify pathways that were enriched in both groups, 
utilizing the gene set “c2.cp.kegg.v7.4.symbols.gmt”. 
And Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) analyses were employed 
using "clusterProfiler" package. 

2.6 Estimation of Tumor Microenvironment 
Single-sample gene set enrichment analysis 

(ssGSEA) was used to analyze the abundance of 
immune cell infiltration in BC. The "estimate" 

algorithm was used to calculate stromal, immune, and 
ESTIMATE scores for patients. 

2.7 Roles of the Predictive Signature in 
Predicting Clinical Treatment Outcomes 

To determine the roles of predictive signals in BC 
treatment responses, we calculated the half-maximal 
inhibitory concentrations (IC50) of common targeted 
and chemotherapeutic agents for BC treatment using 
"pRRophetic" package. The Wilcoxon signed rank test 
was used to compare IC50 values between high-risk 
and low-risk groups. 

2.8 RNA Extraction, Reverse Transcription, 
and Quantitative Real-time PCR (qRT-PCR) 

MCF-7, T47D, SK-BR-3, MDA-MB-231 human 
BC cells and MCF-10A human breast epithelial cells 
were cultured in MEM medium + 10% FBS + 1% 
pyruvate (purchased from gibco) to above 90% 
confluence. Extract RNA from the above cell lines and 
BC tissues according to the instructions provided with 
the Feijer Biotechnology RNA Extraction Kit. cDNA 
was reverse transcribed using a high volume cDNA 
kit (Thermofisher). GAPDH was used as an 
endogenous control. The primers were purchased 
from Shanghai Biotechnology Co. The sequences are 
shown in Supplementary Table 1. We silenced 
AC098484.1 expression by using siRNA-mediated 
silencing. siRNA duplexes targeting AC098484.1 were 
transfected into tumor cells using Lipofectamine 2000 
(Invitrogen, USA) in serum-free medium according to 
the manufacturer’s instructions. 

 

Tabel 1. Clinical pathological parameters of patients with breast cancer 

Characteristics Overall Training cohort Validation cohort P 
(n = 1022) (n = 512) (n = 510) 
No. of patients (%) No. of patients (%) No. of patients (%)  

Age     0.648 
≤65 736(72.0) 372(72.7) 364(71.4)  
>65 286(28.0) 140(27.3) 146(28.6)  
Pathologic Stage    0.086 
Ⅰ 187(18.3) 93(18.2) 94(18.4)  
Ⅱ 583(57.0) 297(58.0) 286(56.1)  
Ⅲ 232(22.7) 107(20.9) 125(24.5)  
Ⅳ 20(2.0) 15(2.9) 5(1.0)  
T Stage    0.906 
T1 278(27.2) 143(27.9) 135(26.5)  
T2 581(56.8) 288(56.3) 293(57.5)  
T3 128(12.6) 65(12.7) 63(12.4)  
T4 35(3.4) 16(3.1) 19(3.7)  
N Stage    0.581 
N0 480(47.0) 245(47.7) 235(46.1)  
N1 345(33.8) 178(34.8) 167(32.7)  
N2 109(10.6) 49(9.6) 60(11.8)  
N3 71(6.9) 31(6.1) 40(7.8)  
Nx 17(1.7) 9(1.8) 8(1.6)  
M Stage    0.070  
M0 847(82.8) 423(82.6) 424(83.1)  
M1 20(2.0) 15(2.9) 5(1.0)  
Mx 155(15.2) 74(14.5) 81(15.9)  
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2.9 Senescent Cell Assay 
Using β-galactosidase staining (senescence 

β-galactosidase staining kit), analysis of senescent 
cells was conducted. Fresh SA-β-Gal staining solution 
was prepared according to the manufacturer's 
instructions (YEASEN), then BC cells, transfected or 
not with siRNA, were seeded into 6-well plates for 
staining. Images of stained cells were captured under 
a microscope, and the percentage of senescent cells 
was quantified by Image J software, based on the 
percentage of SA-β-Gal-positive cells in randomly 
selected areas (n=3). 

2.10 Statistical Analysis 
All statistical analyses were performed using R 

(version 4.3.1). Statistical significance was set at P < 
0.05. 

3. Results 
3.1 CSRLs with Prognostic Values in BC 

Figure 1 is a flow chart of our research. First, we 
screened 279 CSR genes, of which 274 genes had their 
expression data in TCGA-BRCA (Supplementary 
Table 2). Then, 1391 CSRLs were identified by Pearson 
correlation analysis (|R2| > 0.4, p < 0.001). Sixty four 
lncRNAs were screened by univariate Cox regression, 
and their expressions correlated with patient 
outcomes, indicating that they had a prognostic value 
for BC (Figure 2A). We ultimately identified 7 
lncRNAs associated with poor prognosis in BC (HR > 
1) and 57 lncRNAs associated with favorable 
prognosis in BC (HR < 1). 

3.2 Prognostic CSRLs Signature 
CSRLs with P <0.05 in univariate analysis were 

included in the LASSO regression. LASSO regression 
identified 24 CSRLs (Figure 2B,C). LASSO results 
were then included in multivariate Cox models to 
create risk scores. Nine CSRLs were identified by 
multivariate Cox proportional risk regression analysis 
in training cohort. Correlations between expressions 
of these 9 lncRNAs and CSR genes are shown in 
Figure 3A. Two lncRNAs (LINC01235 and 
AC098484.1) were identified as independent adverse 
prognostic factors, while the remaining lncRNAs 
(LINC00987, LINC01871, AP000851.2, MAPT-AS1, 
SEMA3B-AS1, AL358472.3, and EGOT) were 
independent favorable prognostic factors (Figure 3B). 
The risk scoring formula is as follows: 
(0.3913×LINC01235)+(-0.7395×LINC00987)+(-0.6437×
LINC01871)+(-0.4137×AP000851.2)+(-0.5358×MAPTA
S1)+(-0.3491×SEMA3BAS1)+(-0.4013×AL358472.3)+(-
0.3817×EGOT)+(-0.6652×AC098484.1). Risk scores for 
each patient were calculated based on formula. 

Patients in the training cohort were divided into 
low-risk and high-risk groups using the median risk 
score as the cutoff point. The distributions of risk 
score, survival status, and nine lncRNAs expression 
between the low-risk and high-risk groups in training, 
validation and all cohorts are shown in Figure 4A-C. 
Kaplan-Meier survival curves revealed significant 
differences in OS between low-risk and high-risk 
groups in training, validation and all cohorts (p < 
0.001, Figure 4D), indicating that the newly developed 
signal effectively predicted survival. The ROC curves 
of the training cohort indicated AUC values of 0.773, 
0.773, and 0.776 for 1-, 3-, and 5-year OS rates 
respectively. In the validation cohort, the AUC values 
were 0.641, 0.731, and 0.751 for 1-, 3-, and 5-year OS 
rates, while for the all cohort, the AUC values were 
0.693, 0.750, and 0.764 for 1-, 3-, and 5-year OS rates, 
respectively (Figure 4E). Kaplan-Meier survival 
analysis showed the OS of 9 CSRLs at high and low 
expression (Supplementary Figure 1). We performed 
a survival analysis of the risk model by using different 
physiological and clinical factors (e.g., age, stage, T, N, 
M). The Kaplan-Meier survival curves showed that 
OS was better in almost all low-risk groups compared 
to the high-risk group (Supplementary Figure 2). 
Stage Ⅳ (p=0.723), T4 (p=0.624), N3 (p=0.240), M1 
(p=0.723) were not statistically significant, which we 
believe is due to the lower number of patients, but 
overall the high-risk group had worse OS. 

3.3 Construction of a Predictive Nomogram 
Univariate and multivariate Cox regression 

analyses were performed on risk score and clinical 
features. The results indicate that both the risk score 
and age are independent factors impacting the 
prognosis of BC patients (Figure 5A, B). And a 
nomogram using a combination of CSRLs Signature 
with other clinicopathological factors was constructed 
to estimate 1-, 3-, and 5-year survival outcomes in BC 
patients (Figure 5C). A time-dependent ROC curve for 
5-year OS was generated, and an AUC value of 0.772 
for risk score was significantly higher than that for 
age, clinical stage, T stage, M stage, and N stage. 
These findings imply that the established nomogram 
had a good ability to predict BC survival outcomes 
(Figure 5D). Calibration plots of nomogram at 1, 3, 
and 5 years showed that mortality rates estimated by 
the nomogram were close to actual mortality rates in 
training, validation and all cohort (Figure 5E-G).  

3.4 Pathway Enrichment Analysis 
GSEA showed that the DEGs between high-risk 

and low-risk groups were significantly enriched on 
Folate biosynthesis, Galactose metabolism, Maturity 
onset diabetes of the young, Nicotine addicion, and 
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the Steroid biosynthesis in high-risk group (Figure 
6A). And Allograft rejection, Asthma, Cardiac muscle 
contraction, Intestinal immune network for igA 
production, and Primary immunodeficiency in low 
risk group (Figure 6B). The GO enrichment analysis 
revealed that pathways were highly enriched on 
external side of plasma membrane, immunoglobulin 
complex, production of molecular mediator of 
immune response, and leukocyte mediated immunity 

(Figure 6C). KEGG analysis revealed that DEGs were 
mostly associated with Cytokine-cytokine receptor 
interaction, Viral protein interaction with cytokine 
and cytokine receptor, Primary immunodeficiency, 
Dilated cardiomyopathy, and Graft-versus-host 
disease (Figure 6D). These results suggest that the 
DEGs between high-risk and low risk groups may be 
associated with the tumor immune 
microenvironment. 

 
 

 
Figure 1. The flow chart of this study. 
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Figure 2. The construction of a prognostic signature in BC patients. (A) Forest plots showing the results of the univariate Cox regression analysis between the 64 CSRLs and 
OS of BC. (B) 24 CSRLs were selected by the LASSO regression model according to minimum criteria. (C) The coefficient of CSRLs were calculated by LASSO regression. 
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Figure 3. Screening of prognostic CSRLs in BC. (A) A prognostic co-expression network of the 9 CSR lncRNAs-mRNAs. (B) The Sankey diagram of the relationship between 
lncRNA and mRNA. 
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Figure 4. Prognosis values of the 9 CSRLs signatures in the train, test, and entire cohorts. The distribution of (A) risk scores, (B) survival time and survival status, (C) heat maps 
of 9 lncRNAs expression. (D) Kaplan–Meier survival curves of overall survival of BC patients between low-risk and high-risk groups in the train, test, and entire cohorts, 
respectively. (E) The AUC of the ROC curve shows the accuracy of the prognostic model in the train, test, and entire cohorts. 

 

3.5 Immune Cell Infiltrations 
To determine correlations between risk scores of 

immune cells and functions, we callculated the score 
of different immune cell subpopulations. Activated 
dendritic cells (aDCs), B cells, CD8+ T cells, DCs, 
immature dendritic cells (iDCs), macrophages, mast 
cells, neutrophils, natural killer cells, plasmacytoid 

dendritic cells (pDCs), T helper cells, T follicular 
helper cells (Tfh), T helper type 1 (Th1) cells, T helper 
type 2 (Th2) cells and tumor-infiltrating lymphocytes 
(TIL) were significantly different in the high- and 
low-risk groups (Figure 7A). Antigen-presenting cell 
(APC) co-inhibition, chemokine receptor (CCR), 
checkpoint, cytolytic activity, human leukocyte 
antigen (HLA), inflammation promotiong, 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

4708 

parainflammation, T cell co-inhibition, T cell 
co-stimulation, and type II IFN responses were 
significantly different in the high- and low-risk 
groups (Figure 7B). Therefore, we assessed the 
expression of checkpoint genes, found that most (e.g., 

TNFRSF9, CD70, LAG3, CD274, etc.) were highly 
expressed in the low-risk group (Figure 7C). These 
findings suggest that immune cell infiltrations of BC 
was closely correlation of risk score. 

 

 
Figure 5. Construction of nomogram and calibration. (A, B) The hazard ratio (HR) and 95% confidence interval of risk score and clinical features were calculated using the 
univariate and multivariate Cox regression analysis. (C) Clinical prognostic nomogram was developed to predict 1-, 3-, and 5-year survival. (D) Time-dependent ROC curve 
analyses for predicting OS at 5 years by risk score age, stage, T stage (tumor size), M stage (distant metastasis), N stage. (E-G) Calibration curves showing nomogram predictions 
for 1-year, 3-year, and 5 year survival in the train, test, and all cohorts. 
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Figure 6. The results of functional analysis based on DEGs between low-risk and high-risk groups. (A, B) The enriched gene terms in GSEA. (C) Column diagrams of Gene 
Ontology analysis for the DEGs. (D) Column diagrams of KEGG analysis for for the DEGs. 

 

3.6 Correlations Between the Predictive 
Signature and BC Therapy 

The patients in the high-risk group exhibited 
lower estimate scores, immune scores, but there was 
no difference between the two groups in stromal 
scores (Figure 8A–C). Using the R package 
"pRophetic," the IC50 values of chemotherapeutic 
drugs commonly used in the treatment of BC were 
compared, and the results showed that patients with 
low risk scores were more sensitive to cisplatin, 
doxorubicin, etoposide, gefitinib, gemcitabine and 
paclitaxel (Figure 8D–I). 

3.7 Expression of Nine Prognostic CSRLs 
Signature in BC 

To study the expression of LINC01871, 
LINC01235, LINC00987, EGOT, SEMA3B-AS1, 
AL358472.3, AC098484.1, AP000851.2 and 
MAPT-AS1, BC cell lines (MCF-7, T47D, SK-BR-3, 
MDA-MB-231) and normal breast cell lines 
(MCF-10A), and in BC tissues and paraneoplastic 
tissues. The expression of LINC01871, LINC01235, 
LINC00987, EGOT, SEMA3B-AS1, AL358472.3, 
AC098484.1, AP000851.2 and MAPT-AS1 is shown in 
Figure 9 A-I. Among them, patients with high 
expression of AC098484.1, LINC01235, EGOT, 
AL358472.3, and AP000851.2 had a poor prognosis. 
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Patients with low expression of LINC01871, 
SEMA3B-AS1, and LINC00987 had a poor prognosis. 
This differs from the results of the online analysis. In 
particular, the validation of MAPT-AS1 expression in 
the MCF-7 cell line showed no statistically significant 
difference, while the validation of AL358472.3, 
AP000851.2, and EGOT expression contradicted the 
results of the online survival analysis. The expression 
trends of the above 9 CSRLs in BC tissues are 
consistent with those in the cell lines (Figure 9J). 

3.8 Knockdown of AC098484.1 Promotes 
Cellular Senescence in BC 

SA-β-gal levels were measured using a 
Senescence β-Galactosidase Staining Kit. Compared to 
the control group, both the percentage and intensity 
of SA-β-gal-positive cells significantly increased in the 
AC098484.1 knockdown group (Figure 10 A-C). 

4. Discussion 
Globally, BC is the leading cause of morbidity 

and mortality among women [21], which necessitates 
the identification of effective prognostic biomarkers. 
Some mRNAs and lncRNAs play an important role as 
prognostic molecular markers for malignancy [22,23]. 
By combining various biomarkers for survival 
prediction of disease, we can individualize patient 
treatment and improve survival outcomes. 

Cellular senescence is an anti-proliferative 
program that leads to permanent cell growth arrest 
[24], and with increasing research on cancer 
suppression mechanisms, stopping tumor 
development by inducing tumor cell senescence is 
gaining attention. Lleonart et al. [25] reported that 
cellular senescence can achieve anti-tumor effects. In 
BC cells, MALAT1 down regulation blocked G1 phase 
and inhibited cell growth as well as proliferation [26]. 

 

 
Figure 7. TME, and checkpoint analysis in BC. (A) The box plots of immune cells between the low-risk and high-risk groups. (B) The box plots of immune related pathways 
between the low-risk and high-risk groups. (C) The box plots of checkpoint related genes between the low-risk and high-risk groups. Nsp ≥ 0.05, *p < 0.05, **p < 0.01, ***p < 
0.001. 
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Figure 8. Immune score and drug sensitivities between low-risk and high-risk groups in BC. (A-C) Differences in ESTIMATE scores, immune scores, and stromal scores between 
the different risk score groups. Boxplots depict differences in estimated IC50 levels of (D) cisplatin, (E) doxorubicin, (F) etoposide, (G) gefitinib, (H) gemcitabine, and (I) paclitaxel 
between risk score groups. 

 
Studies have reported on BC-related lncRNA 

signaling, including autophagy [27] and iron death 
[28], but there are no signaling studies on CSRL. 
Therefore, we constructed a model using 9 CSRLs 
(LINC01235, AC098484.1, LINC00987, LINC01871, 
AP000851.2, MAPT-AS1, SEMA3B-AS1, AL358472.3, 
and EGOT). This signature could clearly distinguish 
between the groups, suggesting the models’ accuracy. 

LINC01235, AC098484.1, LINC00987, 
LINC01871, AP000851.2, MAPT-AS1, SEMA3B-AS1 
and EGOT have been studied in BC and other cancers. 
LINC01235 is an independent prognostic factor in BC 
patients [29]. Hypoxia-related LINC01235 affects the 
prognostic outcomes for BC patients and may be a 
potential target for cancer therapy [30]. In patients 
with clear cell renal cell carcinoma, AC098484.1 was 
associated with autophagy and was established to be 

a potential prognostic marker [31]. Previous findings 
on LINC00987, MAPT-AS1 and LINC01871 suggest 
that they can advance immunotherapy in BC patients 
[32,33], consistent with our findings. AP000851.2 and 
SEMA3B-AS1 are involved in stemness regulation of 
BC stem cells and are novel prognostic factors for BC 
patients [34]. EGOT is involved in regulating the 
expressions of eosinophil protein transcripts, which 
affects the prognostic outcomes for BC patients and is 
a potential biomarker [35]. There are no 
corresponding studies on AL358472.3, and further 
studies are needed to verify whether it is a promising 
predictive marker. The area under the ROC curve of 
the model corresponded to survival rates of 0.773, 
0.773, and 0.776 at 1, 3, and 5 years, respectively, a 
result that indicates the good predictive performance 
of the model and helps to promote individualized 
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treatment of BC patients. The 9 CSRLs were found to 
be markedly related to clinical factors in both 
univariate analyse, LASSO regression and 
multifactorial analyse, followed by the prognostic 

model related to clinical factors, and the calibration 
curve showed good discrimination and accuracy of 
the model, and we speculate that it may be a potential 
predictive tool for BC patients. 

 

 
Figure 9. (A-I) RT-PCR validation of 9 CSRLs using MCF-7, T47D, SK-BR-3, MDA-MB-231 human BC cells and MCF-10A human breast epithelial cells. And (J) RT-PCR validation 
of 9 CSRLs using human BC and paraneoplastic tissues. Expression of nine prognostic factors in BC: AC098484.1, LINC01235, LINC01871, EGOT, SEMA3B−AS1, AL358472.3, 
AP000851.2, MAPT−AS1, and LINC00987. *p < 0.05; **p < 0.01; ns, non-significant. 
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Figure 10. Knockdown of AC098484.1 promotes senescence in BC cells. (A) Reduced expression of AC098484.1 in MCF-7 and SK-BR-3 cells. (B) AC098484.1 was knocked 
down in MCF-7 cells, and its effect on cellular senescence was analyzed using SA-β-gal staining. (C) AC098484.1 was knocked down in MCF-7 cells, and its effect on cellular 
senescence was analyzed using SA-β-gal staining. *p < 0.05; **p < 0.01; ns, non-significant. 
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The most important contribution of this study is 
elucidation of the relationship between the risk score 
and tumor immune microenvironment. Subsequent 
ssGSEA analysis revealed that infiltration abundance 
of macrophages was higher in the high-risk group. 
Macrophages are important innate immune cells that 
maintain tissue homeostasis, defend against 
pathogens and are associated with BC infiltrations 
and adverse outcomes [36]. The low-risk group was 
correlated with the abundance of lymphocyte 
infiltration, suggesting that low-risk patients can 
better fight against tumors through immune defenses 
than high-risk patients and that T-cell-based therapies 
are a top priority in BC clinical practice and 
immunotherapy [37]. These findings link CSRLs 
signature to immune infiltrations in BC, and CSRLs 
may be targets for combination therapy with immune 
checkpoint inhibitors. CSRL can regulate various 
cellular senescence pathways, including telomere 
shortening, DNA damage response, and cell cycle 
regulation [38]. The mechanisms of action of some 
chemotherapy and targeted therapy drugs induce 
apoptosis or proliferation inhibition of tumor cells by 
affecting these cellular senescence pathways. 
Therefore, the expression levels of CSRLs may affect 
the sensitivity of tumor cells to these drugs. Xu et al. 
conducted whole transcriptome sequencing of BC 
specimens, screening out the lncRNA EGOT, and 
experimental validation showed that appropriately 
regulating EGOT may be a novel synergistic strategy 
to enhance paclitaxel sensitivity in cancer treatment 
[39]. For other lncRNAs within CSRL, no information 
related to drug sensitivity was retrieved. Our findings 
also indicate that low-risk patients exhibit higher 
sensitivity to the targeted therapeutic drug (gefitinib), 
in addition to chemotherapeutic agents (cisplatin, 
paclitaxel, etoposide, docetaxel and gemcitabine). 
Therefore, low-risk patients can benefit from a 
combination of immunotherapy, targeted therapy and 
chemotherapy, which can lead to more favorable and 
personalized treatments for BC patients. 

The close correlation between lncRNA expres-
sion and prognosis holds significant implications for 
understanding the molecular mechanisms of aging. 
Firstly, lncRNAs have emerged as critical regulatory 
factors in gene expression and cellular processes, 
playing pivotal roles in various biological functions, 
including pathways associated with aging such as 
cellular senescence, inflammation, and genomic 
stability. By elucidating the specific lncRNAs 
associated with prognosis, our findings reveal the 
intricate regulatory networks involved in the 
pathophysiology of aging. Furthermore, our 
discoveries may pave the way for identifying novel 
biomarkers to assess individual risk profiles and tailor 

personalized interventions to promote healthy aging 
and longevity. Integrating lncRNA expression profiles 
into predictive models for assessing age-related health 
outcomes enables clinicians and researchers to better 
stratify individuals based on their susceptibility to 
age-related diseases and implement targeted 
interventions to optimize healthy lifespan and quality 
of life. Compared to previous BC prediction models 
related to cellular senescence, we performed effective 
experimental validation of the constructed model 
[40,41]. Zhang et al. developed a prognostic model 
based on six cellular senescence genes, and the AUC 
values of this model were 0.69, 0.74, and 0.74 for 1-, 3-, 
and 5-year OS, respectively [42]. Our model has 
higher predictive accuracy for 1-, 3-, and 5-year 
survival predictions. We validated the expression of 
nine CSRLs in ER-positive, HER2-enriched, and 
triple-negative BC cell lines (MCF-7, T47D, SK-BR-3, 
MDA-MB-231) through in vitro experiments. 
Compared to normal BC epithelial cells MCF-10A, we 
found that AC098484.1, LINC01235, EGOT, 
AL358472.3, and AP000851.2 were highly expressed in 
different BC cell line subtypes. Furthermore, 
comparison with online analysis data revealed that 
high expression of these genes correlated with poor 
prognosis in patients, while low expression of 
LINC01871, SEMA3B-AS1, and LINC00987 was 
associated with poor prognosis. This was consistent 
with the malignancy levels of the different cell line 
subtypes. However, the expression validation of 
MAPT-AS1 in the MCF-7 cell line was not statistically 
significant, and the validation of AL358472.3, 
AP000851.2, and EGOT expressions contradicted the 
results of the online survival analysis. This highlights 
the importance of relying on real experimental data 
rather than solely on online data for analysis. 

Next, we analyzed the expression of nine CSRLs 
in BC and paraneoplastic tissues and found trends 
similar to those in cell lines. Ultimately, we concluded 
that high expression of AC098484.1, LINC01235, 
EGOT, AL358472.3, AP000851.2, and MAPT-AS1 was 
associated with poor prognosis, while low expression 
of LINC01871, SEMA3B-AS1, and LINC00987 was 
associated with poor prognosis. To understand the 
relationship with cellular senescence, we selected one 
significantly trending lncRNA, AC098484.1, for 
SASP-related experimental validation. Through 
siRNA-mediated knockdown of AC098484.1, we 
observed a significant increase in both the percentage 
and intensity of SA-β-gal positive cells in the 
knockdown group compared to the control group. 
This indicated increased senescence in BC cells MCF-7 
and SK-BR-3, demonstrating that inhibiting 
AC098484.1 plays a crucial role in the senescence of 
BC cells. These findings are expected to improve 
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clinical treatment levels and enhance the prognosis for 
BC patients. 

However, this study has several limitations. 
First, the data used in this study were from a single 
data source, which may lead to some bias in the 
results, and we searched through the GEO database 
and unfortunately did not find a dataset that matched 
the CSRLs we studied, probably due to a shortage of 
external data caused by the relatively few directions 
of this study in BC, but in the future data from 
different cohorts and datasets will be used for this 
model. Secondly, due to insufficient funding, we 
could not realize the staining images of the 9 CSRLs in 
actual BC tissues, but we did a preliminary validation 
of our results by RT-PCR experiments. Further 
molecular and in vivo validation will be performed to 
elucidate the role of 9 CSRLs in BC cellular 
senescence. In the future, we will delve deeper into 
exploring the potential regulatory roles of CSRLs in 
TME-related signaling pathways, aiming to further 
enhance our understanding of their mechanisms in 
tumor development and treatment. 

In conclusion, we developed a prognostic model 
associated with cellular senescence in BC consisting of 
9 CSRLs (LINC01235, AC098484.1, LINC00987, 
LINC01871, AP000851.2, MAPT-AS1, SEMA3B-AS1, 
AL358472.3, and EGOT). The model newly identified 
immune-related lncRNAs in BC patients. AC098484.1 
has potential relevance in the treatment of BC cell 
senescence, and these findings improve the clinical 
treatment levels for BC patients. 
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