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Abstract 

Background: Lung adenocarcinoma (LUAD) is the predominant pathological subtype of non-small cell lung 
cancer (NSCLC). The four primary forms of RNA adenosine modifications, N6-methyladenosine (m6A), 
N1-methyladenosine (m1A), alternative polyadenylation (APA) and adenosine-to-inosine (A-to-I) RNA editing, 
play a critical role in tumor progression. However, the clinical significance of RNA modification writer-related 
long non-coding RNAs (lncRNAs) in LUAD remains unclear.  
Methods: The Cancer Genome Atlas (TCGA) database was used to obtain transcriptomic and 
clinicopathological data. Univariate Cox regression analysis, consensus cluster analysis, and least absolute 
shrinkage and selection operator (LASSO) Cox regression were used to establish the molecular subtypes and 
prognostic signatures of LUAD based on the expression levels of lncRNAs. ESTIMATE, CIBERSORT, ssGSEA, 
and TIDE algorithms were used to investigate immune cell infiltration and immunotherapy. In addition, IC50 of 
chemotherapeutic agents were calculated for different risk subgroups using the "pRRophetic" R package. 
Finally, the expression of prognosis-associated lncRNAs in lung cancer tissues was verified using qPCR. 
Results: A prognostic risk signature containing seven lncRNAs associated with four types of RNA modification 
writers was established. The high-risk group had a poorer prognosis and higher clinicopathological grade. Most 
immune checkpoint genes and immune cell infiltration differed significantly between the two risk groups. The 
high-risk group had a higher tumor mutation burden (TMB), lower TIDE score, and was more sensitive to 
immunotherapy.  
Conclusion: We developed an RNA modification writer-related seven-lncRNA signature prognostic model 
that was associated with prognosis, tumor microenvironment, and response to immunotherapy in LUAD 
patients. Among them, LINC01352, AC024075.1, AC005070.3, AL133445.2, AC005856.1, and LINC00968 
were downregulated in LUAD, whereas AC092168.2 was upregulated. This model may be a valuable tool for 
personalized LUAD therapies. 

Keywords: lung adenocarcinoma; RNA modification writer; long non-coding RNA; prognosis; immunotherapy; tumor 
microenvironment 

1. Introduction 
Lung cancer is a common cause of cancer-related 

deaths [1]. Approximately 85% of lung cancers are 
non-small cell lung cancer (NSCLC), and lung 
adenocarcinoma (LUAD) is a major subtype of 
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NSCLC [2]. Despite considerable achievements in 
cancer treatment, lung cancer remains one of the most 
aggressive and fatal tumor types, with a 5-year 
survival rate of less than 15% [3]. Therefore, a precise 
prognostic model, based on epigenetic features, is 
required. 

RNA modification is a novel form of 
post-transcriptional regulation. More than 100 types 
of epigenetic modification are present in RNA [4], 
including mRNA, tRNA, rRNA, lncRNA, small 
nuclear RNA (snRNA), and microRNA (miRNA) [5]. 
RNA modifications regulate RNA metabolism, 
including RNA processing, splicing, nuclear export, 
transcript stability and translation efficiency [6]. 
Dysregulation of RNA modification is involved in 
tumor progression, suggesting that RNA modification 
could be used for tumor prognosis [4].  

Among the various RNA modifications, 
adenosine is the most heavily modified nucleotide, 
and m6A, m1A, APA, and A-to-I are the commonly 
studied adenylate modifications [7, 8]. M6A 
modification is a methylation that occurs at the sixth 
nitrogen position of adenosine. This modification is 
catalyzed by methyltransferases, so called “writers,” 
including METTL3, METTL14, METTL16, VIRMA, 
and WTAP. M6A modification affects the expression 
of oncogenes or tumor suppressors and plays 
important roles in many cancer types, such as tumors 
of the prostate [9], breast [10], and lungs [11]. The 
M1A modification is performed by writers such as 
TRMT61A, TRMT61B, TRMT10C, and TRMT6 [12]. 
M1A modification, responsible for RNA stability and 
translation efficiency, promotes tumor progression by 
regulating gene expression and signal transduction 
[13, 14]. APA is regulated by CPSF, CSTF, CFI, CFII, 
NUDT21, and the PABPN1 protein complex [15]; 
A-to-I is mediated by ADARs [16]. APA and A-to-I are 
also involved in tumorigenesis. Notably, cross-talks 
between different RNA modifications have been 
reported. Molinie et al. showed that the presence or 
absence of m6A modifications in transcripts results in 
different distributions of APA modification sites [17]. 
Xiang et al. found a negative relationship between 
m6A and A-to-I [18]. RNA modification writers can 
modulate tumor immunity, which may provide a new 
strategy for immunotherapy of tumors [19].  

LncRNAs are transcripts over 200 nucleotides in 
length with limited or no protein-coding roles. The 
lncRNAs regulate gene expression, and influence 
cellular homeostasis, including proliferation, survival, 
migration, and genomic stability, and play important 
roles in tumorigenesis and tumor progression. The 
association between RNA modifications and lncRNAs 
in cancer has been demonstrated. Wen et al. found that 
high m6A levels in the lncRNA NEAT1-1 were 

associated with bone metastasis in prostate cancer [9]. 
Xue et al. showed that METTL3-catalyzed m6A 
modification in lncRNA ABHD11-AS1 promotes the 
Warburg effect in NSCLC [20]. Interestingly, lncRNAs 
also regulate RNA modification. Zhu et al. reported 
that the peptide produced by LINC00266-1 interacts 
with the m6A reader IGF2BP1 to increase mRNA 
stability and c-Myc expression, thereby promoting 
tumorigenesis [21].  

To understand the roles of RNA modification 
writer-related lncRNAs in the prognosis and immune 
response of LUAD, we systematically profiled four 
types of RNA modification (m6A, m1A, A-to-I, and 
APA) writer-related lncRNAs in LUAD for the first 
time. We classified LUAD patients into two 
subgroups (clusters 1 and 2) with distinct clinico-
pathological features and immune microenvironment 
infiltrative profiles. Furthermore, we constructed a 
prognostic signature consisting of seven RNA 
modification writer-related lncRNAs, which may help 
improve the treatment of LUAD patients in the future. 

2. Materials and Methods 
2.1 Data collection and processing  

Data on RNA sequencing and mutation and 
matching clinical information for the TCGA-LUAD 
cohort were obtained from the Genomic Data 
Commons (GDC) Data Portal (https://portal.gdc 
.cancer.gov/), which contains information on 504 
LUAD and 58 normal specimens. In addition, we 
downloaded somatic copy number variation (CNV) 
data from the UCSC Xena database (http://xena 
.ucsc.edu/) and obtained gene annotation files from 
GENCODE (https://www.gencodegenes.org/ 
human/). Immunological subtype files, stemness 
score (DNA methylation-based) files, and stemness 
score (RNA expression-based) files were downloaded 
from the TCGA Pan-Cancer (PANCAN) database. 

We extracted expression profile data of four 
types of RNA modification writers, including eight 
m6A modification enzymes (METTL3, METTL14, 
METTL16, WTAP, KIAA1249, RBM15, RBM15B, and 
ZC3H13), six m1A modification enzymes (TRMT6, 
TRMT61A, TRMT61B, TRMT10C, BMT2, and RRP8), 
twelve APA modification enzymes (PCF11, CFI, 
CLP1, NUDT21, PABPN1, CPSF1/2/3/4, and 
CSTF1/2/3), and three A-to-I modification enzymes 
(ADAR, ADARB1 and ADARB2). Of these, we 
excluded genes with missing sequencing data in the 
TCGA database. In addition, lncRNA sequencing data 
were extracted for subsequent analyses. We excluded 
genes with low expression (average FPKM values 
below 0.1 in all samples).  
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2.2 Mutation analysis and expression of RNA 
modification writer analysis 

We analyzed the mutation data using the 
“maftools” package and plotted the waterfall for the 
writers of RNA modification in LUAD patients. 
Moreover, we analyzed CNV in LUAD patients and 
used the “RCircos” package to generate CNV changed 
locations of RNA modification writers on 23 
chromosomes. The “limma” (R package) was used to 
identify RNA modification writers differentially 
expressed in LUAD in the TCGA-LUAD cohort, and 
the “pheatmap” (R package) was used for 
visualization. 

2.3 Co-expression analysis and identification of 
the prognostic value of m6A/m1A/APA/A-to-I 
writer-related lncRNAs  

Pearson correlation analysis was applied to filter 
four types of RNA modification writer-related 
lncRNAs by setting |R| >0.5 and p <0.001. Univariate 
Cox regression analysis was performed to identify 
four types of RNA modification writer-related 
lncRNAs with prognostic values using a criterion of p 
<0.01. The co-expression network was plotted by the 
“igraph” (R package). The expression differences of 
RNA modification writer-related lncRNAs associated 
with prognostic value between tumor and normal 
tissues visualized with the “pheatmap” and “ggpubr” 
(R packages) and were assessed by the Wilcoxon test. 

2.4 Consensus clustering of RNA modification 
writer-related lncRNAs  

Based on the expression of RNA modification 
writer-related lncRNAs with prognostic significance, 
the "ConsensusClusterPlus" (R package) was used to 
perform unsupervised consensus clustering on 504 
LUAD patients into potential molecular subtypes 
(The clinical information of the two groups of patients 
is presented in Supplementary Table 1) [22]. To 
determine if these samples could be visually 
distinguishable, principal component analysis (PCA) 
and t-distributed stochastic neighbor embedding 
(T-SNE) analysis were performed by using the 
“ggplot” and “Rtsne” (R packages) [23, 24]. The 
Kaplan–Meier (K-M) curve was used to compare the 
overall survival (OS) rate between different clusters 
using the log-rank test with “survival” and 
“survminer” (R packages). Clinical information was 
incorporated to analyze different clinicopathological 
characteristics of different molecular subtypes by 
using the “pheatmap” (R package). Gene set 
enrichment analysis (GSEA) was then used to identify 
distinct pathways of functional enrichment in samples 
from distinct clusters. Moreover, the CIBERSORT 
Algorithm was applied to assess the proportion of 22 

types of tumor-infiltrating immune cells (TICs) for 
each sample [25], and the "limma" (R package) 
proportion was utilized to screen for discrepancies in 
immune cell infiltration of patients in different 
subgroups. To investigate the features of the TME in 
different subtypes of patients, TME scores (including 
immune, stromal, and ESTIMATE scores) were 
calculated using the ESTIMATE algorithm [26]. In 
addition, we explored the expression of 28 immune 
checkpoint genes in different subtypes [27]. 

2.5 Construction and validation of RNA 
modification writer-related lncRNAs signature 

The TCGA-LUAD cohort was randomly divided 
into two sets in a 1:1 ratio, named the training and test 
sets, for risk model construction and validation, 
respectively. No statistically significant differences 
were observed between the two cohorts in terms of 
clinicopathological characteristics (Supplementary 
Table 2). The total TCGA-LUAD cohort was defined 
as the “entire set.” The least absolute shrinkage and 
selection operator (LASSO) Cox regression analysis 
[28] was applied to further shrink the range of 
potential lncRNAs and build up the lncRNAs 
signature associated with RNA modification writers 
with the “glmnet” and “survival” (R packages). The 
following equation was used to derive the risk score: 
Risk score = Σ (βi × Expi) (β: coefficients; Exp: FPKM 
value of each m6A/m1A/APA/A-to-I -related 
lncRNA). Subsequently, the K-M curves were plotted 
with the R package “survival” and “survminer” to 
assess the availability of the prognostic model, and 
the receiver operating characteristic (ROC) curves 
were created with the R package “timeROC” to 
evaluate the prognostic sensitivity and accuracy of the 
signature construction. Univariate and multivariate 
regression were performed to evaluate whether the 
risk score in both cohorts could serve as an indicator 
of independent prognosis. The survival status of both 
risk subgroups was assessed in the training subset, 
and the outcomes were validated in the test subset. To 
explore the potential differences between the high- 
and low-risk subgroups, PCA analysis was performed 
with the R package "scatterplot3d.” 

2.6 Prognostic value and clinical correlation 
analysis of risk scores 

To further elucidate the prognostic value of the 
risk scores, we performed survival analysis of patients 
with different clinicopathological characteristics, 
including sex (male, female), grade (I-II, III-IV), T 
stage (T1-2, T3-4), N stage (N0, N1-2) and M stage 
(M0, M1). Heatmaps were created to assess the clinical 
characteristics of high- and low-risk subgroups. 
Differences in the risk scores of patients with different 
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clinicopathological features were analyzed using 
“ggpubr” (R package). Furthermore, Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) analyses were performed.  

2.7 Immune landscape evaluation of the risk 
scores 

As previously described, the CIBERSORT 
Algorithm was performed to value the proportion of 
22 types of TICs in each tumor sample, and the R 
package “limma” was applied to screen the 
differences in immune cell infiltration of patients with 
varying risk scores. The correlation between the risk 
scores and immune cell infiltration was assessed 
using the Spearman correlation test. In addition, we 
used seven algorithms (xCELL, Timer, Quantiseq, 
MCPcounter, EPIC, CIBERSORT-ABS, and 
CIBERSORT) to systematically analyze and demons-
trate the relationship between risk scores and tumor 
microenvironmental cell infiltration. Subsequently, 
the expression of immune checkpoint genes in 
different risk subgroups was investigated. Immune 
function-related datasets were acquired from the 
MSigDB database (https://www.gsea-msigdb.org/ 
gsea/index.jsp) and analyzed using the “GSVA” (R 
package).  

2.8 Mutation analysis and evaluation of 
response to antitumor therapy 

Genes with remarkable mutations in both risk 
subgroups were assessed and visualized using 
“maftools” (R package). Differences in tumor 
mutation burden (TMB) across risk subgroups were 
assessed using the Wilcoxon rank-sum test. The 
tumor immune dysfunction and exclusion (TIDE) 
algorithm [29] (http://tide.dfci.harvard.edu) was 
used to predict the possibility of an immunotherapy 
response. To predict the sensitivity of immuno-
therapy, we downloaded the immunophenoscores 
(IPS) of LUAD patients from the TCIA database 
(https:// tcia. at home) to compare the differences in 
IPS between the high- and low-risk groups receiving 
different immunotherapy regimens. Furthermore, we 
downloaded data from the Genomics of Drug 
Sensitivity in Cancer (GDSC) database to predict the 
reactions of LUAD patients to common antineoplastic 
drugs. The “pRRophetic” (R packages) was 
performed to calculate the half-maximal inhibitory 
concentration (IC50) of chemotherapy drugs in 
different risk subgroups [30]. 

2.9 Prognosis and tumor microenvironment 
correlation analysis of single lncRNA 

Samples from LUAD patients were divided into 
high- and low-expression groups based on the 
median expression of individual lncRNAs in the 

prognostic signature of RNA modification 
writer-related lncRNAs. The R package “survival” 
was used to obtain the survival profiles of the 
individual lncRNAs. Subsequently, we analyzed the 
differential expression of individual lncRNAs in the 
different immune subtypes. We further evaluated the 
correlation of seven m6A/m1A/APA/A-to-I-related 
lncRNAs with the TME score calculated using the 
ESTIMATE algorithm and stemness index (including 
RNA stemness scores [RNAss] and DNA stemness 
scores [DNAss]). 

2.10 qPCR 
qPCR was conducted to detect lncRNA 

expression levels. RNA was isolated from the tissues 
of lung cancer patients using trizol (Invitrogen), and 
reverse transcription was performed using a Takara 
kit (Dalian, China). LncRNA expression was assessed 
by qPCR using the Power SYBR Green Master Mix 
(Thermo Fisher Scientific). Primer sequences are listed 
in Supplementary Table 3. GAPDH was used for 
normalization. This study was approved by the Ethics 
Committee of TMUGH. 

2.11 Statistical Analysis 
The R language software (version 4.2.1) 

(http://www.r-project.org/) was used to analyze and 
visualize the data. P <0.05 was considered statistically 
significance, unless otherwise stated. 

3. Results 
3.1 Gene mutation landscape and expression 
of four types of RNA modification writers in 
LUAD 

First, we investigated the occurrence of somatic 
mutations in 29 RNA modification writers from the 
TCGA-LUAD database. Of the 173 samples, 138 
(79.77%) exhibited genetic mutations in RNA 
modification writers. Figure 1A summarizes the top 
26 mutant genes. Among these, ZC3H13 (14%) was 
the most frequently mutated gene, followed by DMT2 
(10%) and PCF11 (9%). Moreover, all RNA 
modification writers had prevalent CNV alterations 
(Figure 1B). Among these, ADAR, CPSF1, and 
PABPN1 showed remarkable copy number 
amplification, whereas ZC3H13, RBM15, and 
METTL14 showed significant copy number depletion. 
The locations of CNV changes in these genes on the 
chromosome are shown in Figure 1C.  

Next, we examined the expression of 
m6A/m1A/A-to-I/APA writers in TCGA-LUAD 
samples. As shown in Figure 1D, 27 RNA 
modification writers were differentially expressed in 
LUAD tissues. Among these genes, 20 genes were 
upregulated in LUAD tissues, whereas 7 genes were 
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downregulated in LUAD tissues. These data indicated 
that RNA modification writers are highly 
heterogeneous in terms of genetic variation and 
expression, suggesting that they may play important 
roles in the initiation and progression of LUAD.  

3.2 m6A/m1A/A-to-I/APA modification 
writers-related lncRNAs 

The expression matrix of 10,233 lncRNAs was 
extracted from our transcriptome FPKM data, which 
were obtained and sorted from the TCGA database. 
Using Pearson correlation analysis with filtering 
standards of | Pearson R| > 0.5 and p-value < 0.001, 
we screened 269 lncRNAs that were co-expressed 
with four RNA modification writers (m6A, m1A, 

A-to-I, and APA) (Figure 2A). We further analyzed 15 
lncRNAs with potential prognostic significance from 
the 269 co-expressed lncRNAs using Cox regression 
analysis (p < 0.01). Forest plots indicated that 14 
lncRNAs had a protective effect with a hazard ratio 
(HR) < 1, except for AC092168.2 which was a risk 
factor with HR > 1 (Figure 2B). The heatmap and box 
plot showed that the expression of 15 lncRNAs 
differed significantly between normal and LUAD 
samples, and that most of them were expressed in 
tumor tissues at a lower level than in normal samples 
(Figure 2C, D). These results suggested that most of 
the 15 lncRNAs acted as protective factors.  

 

 
Figure 1. Gene mutation landscape and expression of four types of RNA modification writers in LUAD. (A) Mutation waterfall in lung adenocarcinoma patients 
from the TCGA-LUAD cohort. (B) CNV frequency of RNA modification writers in the TCGA-LUAD cohort. (C) The location of CNV alterations for RNA modification writers 
on chromosomes in the TCGA-LUAD cohort. (D) The heatmap of differential expression of RNA modification writers between normal (n = 58) and lung adenocarcinoma 
tissues (n = 504) in the TCGA-LUAD cohort. 
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Figure 2. Identification of m6A/m1A/A-I/APA modification writers-related lncRNAs. (A) 269 lncRNAs co-expressed with m6A/m1A/A-I/APA modification writers. 
Green represented lncRNAs, while red represented m6A/m1A/A-I/APA modification writers. (B) The forest plot showing the 15 lncRNAs with prognostic value screened by 
univariate Cox regression analysis. (C, D) The heatmap and box plot of differential expression of 15 lncRNAs with prognostic value between normal (n = 58) and tumor samples 
(n = 504) in the TCGA-LUAD cohort. 

 

3.3 Consensus clustering of RNA modification 
writers-related lncRNAs identified two 
clusters of LUAD patients  

Based on consensus clustering analysis, we 
divided the patients in the TCGA-LUAD cohort into 
two clusters (Clusters 1 and 2) based on the 
expression levels of the 15 m6A/m1A/A-to-I/ 
APA-associated lncRNAs with prognostic value. 
Optimal clustering stability and least crossover 
between the LUAD samples were observed when the 
consensus matrix k value was equal to 2 (Figure 3A). 
PCA and T-SNE was performed to characterize the 
typed samples and the samples were visually 
distinguishable (Figure 3B and Supplementary Figure 
S1A). K-M survival curves constructed by “survival” 
and “survminer” revealed that the OS of Cluster 1 
was worse than in Cluster 2 (p = 0.013) (Figure 3C). 
The heatmap showed that most of the above 15 
prognostic lncRNAs were highly expressed in cluster 
2 subgroup. Moreover, clinical correlation analysis 
showed that two clinical features, nodal metastasis 
status (N) and sex, were statistically different across 
subtypes, with Cluster 1 mostly comprising men and 
patients with lymph node metastases, whereas 
Cluster 2 included women and patients without 
lymph node metastases (Figure 3D). The GSEA results 

revealed that the pathways in Cluster 2 were 
primarily enriched in proteasomes, oxidative 
phosphorylation, and glyoxylate and dicarboxylate 
metabolism. The functional enrichment pathways for 
Cluster 1 were mainly enriched in the phosphatidyl-
inositol signaling system, GnRH signaling pathway, 
and nitrogen metabolism (Figure 3E).  

To investigate the effect of m6A/m1A/A-to-I/ 
APA-associated prognostic lncRNAs on the immune 
microenvironment of patients with LUAD, we 
examined the differential levels of immune cell 
infiltration and TME score between Clusters 1 and 2 
using the CIBERSORT and ESTIMATE algorithms, 
respectively. We found that resting CD4+ memory T 
cells and resting mast cells infiltrated notably less in 
Cluster 1 than in Cluster 2 (p<0.001), whereas 
activated mast cells, activated neutrophils, and 
activated CD4+ memory T cells infiltrated more in 
Cluster 1 than in Cluster 2 (p=0.002; p=0.012; p=0.012) 
(Figure 3F). Box diagrams of statistically significant 
immunocyte infiltration in the subgroups are shown 
in Supplementary Figure S1B. Compared with Cluster 
1, the average immuneScore, stromalScore, and 
ESTIMATE Score were higher in Cluster 2 (Figure 3G, 
Supplementary Figure S1C, D).  
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Figure 3. Overall survival, clinical features and tumor microenvironment among different subtypes of LUAD. (A) Consensus clustering matrix at optimal k = 2. 
(B) Principal component analysis (PCA) between cluster1 and cluster2. (C) Kaplan-Meier curve of overall survival (OS) time for Cluster 1 and Cluster 2 (p = 0.013). (D) The 
heatmap of the variability of clinical features between subtypes. (E) GSEA analysis of two clusters. (F) The violin plot of differential infiltration of immune cells between cluster 
1 and cluster 2. (G) The boxplot of the difference in ESTIMATE scores between the two subgroups. (H) The heatmap showed the differential expression of 28 immune 
checkpoint genes in cluster 1 and cluster 2. 
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Figure 4. The RNA modification writers-related lncRNAs prognostic signature. (A, B) Least absolute shrinkage and selection operator (LASSO) cox regression for 
lncRNAs with prognostic value. (C, D) Principal component analysis (PCA) and t-distributed stochastic neighbor embedding (T-SNE) analysis of high risk group and low risk 
group. (E, F) Kaplan-Meier curves of OS of training set and testing set. (G, H) ROC curves of predicting 3-year survival for patients in the training and testing sets, the AUCs 
of the training and testing sets were 0.712 and 0.679, respectively. (I, J) Multivariate Cox regression analysis for the training and testing sets. (K, L) Univariate Cox regression 
analysis for the training and testing sets. 

 
We then analyzed the mRNA levels of immune 

checkpoint genes in each subtype and found that 15 
genes were significantly different between the two 
subtypes. HHLA2, TNFSF14, VSIR, CD27, CD40LG, 
NCR3, BTLA, ENTPD1, CTLA4, and ICOS expression 
were lower in Cluster 1 than in Cluster 2, whereas the 
expression levels of TNFSF9, TNFSF4, TNFRSF18, 
FGL1, and CD276 were higher in Cluster 1 (Figure 
3H).  

These results indicated that these two subtypes 
were identified based on the expression of 15 
prognostic RNA modification writer-related lncRNAs 
that differed significantly in terms of prognosis, 
clinicopathological features, and immune 
microenvironment. Such differences may be used to 
predict the different immunotherapeutic responses 
between the subgroups. 

3.4 Construction of a risk prognostic signature 
by RNA modification writers-related lncRNAs 
in LUAD patients 

In order to select the most prognostically 
significant lncRNAs and build a model predicting the 
prognosis of LUAD patients, Lasso Cox regression 
analysis was carried out based on the above 15 
prognostic RNA modification writers-related 
lncRNAs. The partial likelihood deviance of the 

prognostic model is shown in Figure 4A, and the 
coefficients for these lncRNAs are shown in Figure 4B 
and Table 1. Seven lncRNAs (AC092168.2, 
LINC01352, LINC00968, AC024075.1, AC005070.3, 
AL133445.2, and AC005856.1) were included in our 
model construction using the minimum lambda 
criterion, and their coefficients were used to obtain the 
risk score. The calculation formula was as follows: 
risk score = (2.1239 * AC092168.2 expression) + 
(-0.6041 * LINC01352 expression) + (-0.0807 * 
LINC00968 expression) + (-0.0210 * AC024075.1 
expression) + (-0.9854 * AC005070.3 expression) + 
(-1.3688 * AL133445.2 expression) + ( -1.777 * 
AC005856.1 expression). The TCGA-LUAD cohort 
was randomly divided into two sets in a 1:1 ratio, 
named as the training set and the test set, respectively, 
for risk model construction and validation. And the 
total TCGA -LUAD cohort was defined as the “entire 
set”.  Based on the median risk score, the patients 
were divided into high- and low-risk subgroups. PCA 
and t-SNE analysis showed that the two risk 
subgroups were well-distinguished across the entire 
set (Figure 4C, D). K-M survival curves showed that 
the overall survival was worse for patients in the 
high-risk group than for those in the low-risk group, 
whether in the training subset (p < 0.001) or the 
validation subset (p=0.006) (Figure 4E, F), with an 
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AUC of 0.712 and 0.679, respectively (Figure 4G, H). 
Univariate and multivariate Cox regression analyses 
showed that both clinical stage characteristics and risk 
scores could serve as independent prognostic factors 
in the training subset (p < 0.01) (Figure 4I, J). This 
conclusion was confirmed in the validation subset 
(Figure 4K, L). These results demonstrated that RNA 
modification writer-related lncRNAs can predict the 
prognosis of LUAD patients. In addition, based on 
PCA, no significant differences in gene expression 
were found between the two risk subgroups for all 
genes (Figure 5A), RNA modification writer-related 
genes (Figure 5B), or RNA modification writer-related 
lncRNAs (Figure 5C). In contrast, the expression of 
seven lncRNAs used to construct the prognostic 
model showed remarkable differences between the 
high- and low-risk groups (Figure 5D). 

 

Table 1. Gene coefficients 

Gene Coefficient 
AC092168.2 2.12389597858716 
LINC01352 -0.604139640810565 
LINC00968 -0.0806516681426186 
AC024075.1 -0.0210146370337467 
AC005070.3 -0.985434252364944 
AL133445.2 -1.36875743747402 
AC005856.1 -1.77741270225117 

 
Furthermore, the distribution map of the risk 

scores and survival status in the training and testing 
subsets showed that patients in the high-risk 
subgroup had a worse prognosis than those in the 
low-risk subgroup. The expression levels of 
AC092168.2 were higher in the high-risk group, 
whereas protective m6A/m1A/A-I/APA-related 
lncRNAs, including LINC01352, LINC00968, 
AC024075.1, AC005070.3, AL133445.2, and 
AC005856.1, were lower in the high-risk group in both 
the LUAD training and testing sets (Figure 5E, F). 

The above results indicated that the prognostic 
model consisting of seven RNA modification 
writers-related lncRNAs could well predict the 
prognosis of LUAD patients. LUAD patients in the 
high-risk group have a worse prognosis than those in 
the low-risk group. 

3.5 Risk prognostic signature was associated 
with clinical characteristics 

The entire set was stratified into low- and 
high-risk patients based on the median risk score. 
According to different clinical characteristics, LUAD 
patients were sequentially classified into different 
strata: male and female; stage I-II and stage III-IV; 
T1-2 and T3-4; N0 and N1-3; M0 and M1. Then the 
differences in OS between the high- and low-risk 
subgroups in each stratum were analyzed. OS was 

better for low-risk patients than for high-risk patients 
in both sexes (Figure 6A). In addition, the prognostic 
model could predict the OS of LUAD patients at 
different TNM stages, except for M1 (limited by an 
inadequate sample size). The K-M survival curves 
showed that patients in the high-risk subgroup had a 
poorer prognosis than those in the low-risk subgroup 
(Figure 6B-E).  

The heatmap displays the differential expression 
of the seven selected lncRNAs in high- and low-risk 
patients. Furthermore, differences in clinical stages, 
immune scores, and cluster subtypes were observed 
between the high- and low-risk groups. More 
specifically, patients in the early clinical stages were 
mostly distributed in the low-risk group, patients 
with low immune scores were mostly distributed in 
the high-risk group, and most patients in cluster 1 
belonged to the high-risk group (Figure 6F). These 
findings were verified using a Sankey diagram 
(Figure 6G). 

By comparing the risk scores of patients 
stratified by different clinical characteristics, we 
found that patients in Cluster 1 had higher risk levels 
than those in Cluster 2, and patients with lower 
immune scores had higher risk scores than those with 
higher immune scores (Figure 7A, B). In addition, the 
risk increased with clinical stage, T-stage, and N-stage 
(all p-values ≤ 0.05); however, no difference was 
observed in M-stage (limited by the absence of 
information on M1 stage) or sex (Figure 7C-G). 

Furthermore, the GO analysis revealed that 
genes in the high- and low-risk groups were enriched 
to the following molecular functions: heparin binding, 
growth factor activity, lipopeptide binding, 
immunoglobulin binding and glycosaminoglycan 
binding.  (Figure 7H). KEGG pathway analysis 
showed that the DEGs between the high- and low-risk 
groups belonged to the following signaling pathways: 
hematopoietic cell lineage, ECM receptor interaction, 
and the renin-angiotensin system (Figure 7I). Taken 
together, these results showed that the 
clinicopathological grading was higher in the 
high-risk group compared to the low-risk group. 

3.6 Analysis of the relevance of the 
m6A/m1A/A-to-I/APA model to the tumor 
immune microenvironment 

We found 15 genes with different expression 
levels in the high- and low-risk groups, including 
HHLA2, TNFSF14, VSIR, CD27, CD40LG, NCR3, 
BTLA, ENTPD1, CD40, CD274, CTLA4, ICOS, 
TNFRSF4, TMIGD2, and CD276 by analyzing 
different immune checkpoint gene expression. In 
particular, HHLA2, TNFSF14, VSIR, CD27, CD40LG, 
NCR3, BTLA, ENTPD1, CD40, CD274, CTLA4, ICOS, 
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TMIGD2, and TNFRSF4 were all highly expressed in 
the low-risk group, with the exception of CD276, 
which was highly expressed in the high-risk group. 

Ten of these genes overlapped in Cluster 2 and the 
low-risk groups (Figure 8A). 

 

 
Figure 5. Validation of lncRNAs-based prognostic risk models in training set and testing set. Principal component analysis (PCA) based on the expression of (A) all 
genes, (B) RNA modification writers-related genes, (C) four types of RNA modification writers-related lncRNAs and (D) seven lncRNAs that constitute the prognostic 
signature. (E, F) Risk score curves, survival state distribution and expression heatmap of RNA modification writers-related lncRNAs in the training and testing sets. 
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Figure 6. Correlation analysis of risk signature subgroups with different clinical characteristics and OS of stratification based on clinical characteristics. 
(A-E) Kaplan-Meier curves for overall survival of patients stratified by clinical characteristics in the high-risk and low-risk groups. (F) The heatmap of correlation between seven 
prognostic lncRNAs expression levels and clinicopathological features. (G) The Sankey diagram of the relationship between survival status, risk score and clustering typing. 
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Figure 7. Correlation of different clinical characteristics with risk scores. (A-G) Differential analysis of risk scores for subgroups stratified based on clinicopathological 
characteristics. (H, I) GO and KEGG analysis. 

 
 
We used the CIBERSORT algorithm to calculate 

immune cell infiltration in different patients and 
created violin plots showing the differences between 
the high- and low-risk groups. CD8+ T cells, CD4+ 

activated memory T cells, macrophages M0, and mast 
cells activated had a higher level of infiltration in the 
high-risk group. In contrast, resting CD4+ memory T 
cells, monocytes, resting dendritic cells, and resting 
mast cells infiltrated less in the high-risk group 
(Figure 8B). Subsequently, we performed a relevance 
analysis of the risk score and immune cell infiltration. 
Figure 8C shows the infiltration levels of CD8+ T cells, 
M0 macrophages, M1 macrophages, activated mast 
cells, and activated CD4+ memory T cells, and the risk 
score was consistent, whereas the infiltration levels of 
resting CD4+ memory T cells, monocytes, resting 
dendritic cells, and resting mast cells and the risk 
score were opposite. For further comprehensive 
analysis, we used different algorithms, including 
xCELL, Timer, Quantiseq, MCPcounter, EPIC, 

CIBERSORT-ABS, and CIBERSORT, to assess cellular 
infiltration in the tumor microenvironment using the 
TCGA database. Bubble plots showed that 
hematopoietic stem cells, cancer-associated 
fibroblasts, and myeloid dendritic cells were 
negatively correlated with the risk score, whereas 
CD4+ Th1 T cells, CD4+ Th2 T cells, and common 
lymphoid progenitors were positively associated with 
the risk score (Figure 8D). 

Furthermore, ssGSEA immune function analysis 
indicated that several pathways involved in immune 
function, such as the Type II IFN Response, HLA, 
APC co-stimulation, CCR, T cell co-inhibition, 
checkpoint, and T cell co-stimulation, were notably 
activated in the low-risk group (Figure 8E). The 
differences in immune checkpoint genes and immune 
cell infiltration in different risk groups reflect the 
potential value of prognostic models in predicting 
response to immunotherapy.  
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Figure 8. Differences in immune microenvironment between high- and low-risk score groups. (A) The heatmap showed differential expression of 28 immune 
checkpoint genes in the high- and low-risk groups. (B) The violin plot of differential infiltration of immune cells between different risk subgroups. (C) Scatter plots display of 
statistically significant correlation between immune infiltrating cells and risk scores. (D) Seven algorithms for quantifying the tumor microenvironment assessed the correlation 
between tumor microenvironment infiltrating cells and risk scores. (E) The heatmap demonstrated the differences in immune function between high and low risk groups. 

 

3.7 Analysis of gene mutations and comparison 
of the sensitivity of antitumor drugs 

Because the predictive performance of TMB for 
the OS rate has been reported [31], we analyzed 
somatic mutations in the high- and low-risk groups 
separately and screened the top 20 genes with the 

greatest mutation incidences. TP53 showed the 
highest mutation rate in both subgroups (Figure 9A, 
B). Next, we compared the TMB differences between 
the high- and low-risk subgroups and found that the 
high-risk group had a higher tumor mutation burden 
(Figure 9C). TIDE can predict the response of patients 
treated with first-line anti-PD1 or anti-CTLA4 therapy 
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and is therefore a novel predictive marker for 
immunotherapy [32]. Patients with higher TIDE 
scores are likely to have a lower response rate to 
immunotherapy because their tumor cells are more 
likely to escape the immune system. Our results 
(Figure 9D) showed that the low-risk subgroup had a 
higher TIDE score, suggesting that it was less 
sensitive to immunotherapy. In addition, the effect of 
immunogenicity-based IPS in predicting the response 
to immunotherapy in melanoma patients has been 
reported [33]. Figure 9E shows that the group with 
low-risk scores responded better to anti-PD-1 
treatment (p=0.013), whereas the group with high-risk 
scores responded better to combination treatment 
with anti-PD-1 and CTLA-4 blockade (p=0.028). The 
high-risk group had higher TMB scores and lower 

TIDE scores, suggesting that the high-risk group was 
perhaps more sensitive to immunotherapy than the 
low-risk group. 

To explore the effect of the risk score on 
anticancer drug therapy, the half-maximal inhibitory 
concentrations (IC50) of common drugs were 
compared between the two groups. The results 
showed that the IC50 values of osimertinib, ABT-888, 
AP.24534, AS601245, and ATRA were higher in the 
high-risk group, suggesting that patients in the 
low-risk group were more sensitive to these drugs. In 
contrast, A-443654, A.770041, AG.014699, AUY922, 
AZ628, and AZD.0530 exhibited the highest IC50 
values in the low-risk group. The IC50 values of these 
drugs suggested that they were more effective in the 
high-risk group (Figure 10). 

 
 

 
Figure 9. Gene mutation analysis and immunotherapy response predictability in the prognostic signature. (A, B) Waterfall plots of tumor mutation burden 
(TMB) for high- and low-risk groups, showing the top 20 genes with the highest mutation frequency. (C) Differences in TMB of patients with LUAD in high- and low-risk groups. 
(D) Differences in TIDE prediction scores between high- and low-risk groups (including TIDE score, dysfunction score, exclusion score). (E) Differences in IPS of patients with 
LUAD in high- and low-risk groups. 
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Figure 10. Antitumor drug sensitivity analysis. Comparison of the sensitivity of antitumor drugs in high and low risk groups. 

 

3.8 Prognostic value of RNA modification 
writers-related lncRNA in tumor 
microenvironment 

To explore the prognostic value of RNA 
modification writer-related lncRNAs in LUAD, we 
assessed their expression levels. Analysis of the 
TCGA database showed that LINC01352, AC024075.1, 
AC005070.3, AL133445.2, AC005856.1, and 
LINC00968 were downregulated in LUAD, whereas 
AC092168.2 was upregulated (Figure 11A). 
Furthermore, we examined the levels of these 
lncRNAs in paired samples obtained from LUAD 
patients. The qPCR results were consistent with the 
TCGA data (Figure 11B). 

Based on the median expression value of each 
prognosis-related lncRNA, patients were divided into 
two groups: high and low expression. K-M survival 
curves showed that the expression levels of 
LINC01352, AC024075.1, AC005070.3, AL133445.2, 
and AC005856.1 in patients were associated with 
better OS (p < 0.05) (Figure 11C).  

The results of the immune infiltration analysis 
demonstrate that high expression of LINC01352, 
LINC00968, AC024075.1, AC005070.3, AL133445.2, 
and AC005856.1 is correlated with the infiltration of 
C3 and C6 immune subtypes (Figure 11D). 

Additionally, we investigated the correlation between 
each lncRNA and the TME score. Figure 11E shows 
that LINC01352, LINC00968, AC024075.1, 
AL133445.2, and AC005856.1 were positively 
correlated with stromal score, immune core, and 
estimate core. Progressive loss of the differentiation 
phenotype and acquisition of the progenitor stem cell 
phenotype are important features in the development 
of cancer, and the stemness score is a new stem cell 
indicator for assessing the degree of tumor 
dedifferentiation [34]. Therefore, we assessed the 
correlation of each lncRNA with RNAss, which 
reflected the gene expression profile of stem cells, and 
DNAss, which reflected the epigenetic profile of stem 
cells. As shown in Figure 11E, LINC01352, 
LINC00968, AC024075.1, AC005070.3, AL133445.2, 
and AC005856.1 were negatively correlated with 
RNAss, and LINC01352, LINC00968, AL133445.2, and 
AC005856.1 were negatively correlated with DNAss. 
These results suggested that LINC01352, AC024075.1, 
AC005070.3, AL133445.2 and AC005856.1 could act as 
protective factors in LUAD patients. 

4. Discussion 
Aberrant RNA methylation promotes tumor 

progression and immune regulation [35], and 
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lncRNAs play critical roles in tumor metastasis and 
drug resistance by regulating gene expression [9]. 
However, the correlation between RNA modifications 
and lncRNAs has not been fully elucidated [36, 37]. In 
this study, seven lncRNAs associated with RNA 
modification writers were used to build a prognostic 
signature for predicting the OS rate of LUAD patients. 

In addition, patients categorized into high- and 
low-risk groups based on this signature showed 
differential immune checkpoint gene expression and 
tumor microenvironment cell infiltration patterns. 
These findings could help identify new prognostic 
markers and guide personalized therapies. 
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Figure 11. Kaplan-Meier curves of overall survival and correlation analysis with immune response, TME and stemness score for each of the seven 
lncRNAs of risk signature. (A) The expression of lncRNAs in TCGA database. (B) The expression of lncRNAs in paired LUAD patient samples by qPCR. (C) The correlation 
between the expression level of AC005070.3, AC005856.1, AC024075.1, AC092168.2, AL133445.2, LINC00968 and LINC01352 in the TCGA database and patient prognosis. 
(D) The correlation between lncRNA expression levels with prognostic value and immune subtypes in patients with lung adenocarcinoma. (E) Correlation of prognostic 
lncRNAs expression with TME (stromal score, immune score and estimation score) and stemness score (including DNAss and RNAss). 
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We first screened 269 lncRNAs from the 
TCGA-LUAD cohort, containing 504 tumor samples 
and 58 normal samples, for co-expression with four 
types of RNA modification “writer” enzymes, and 
further identified 15 lncRNAs with potential 
prognostic significance by univariate regression 
analysis. Based on the expression levels of these 15 
lncRNAs, we used consensus clustering to group the 
samples into two potential subtypes, with a better OS 
rate in Cluster 2 than in Cluster 1. We further selected 
7 of the 15 RNA modification writers-associated 
lncRNAs to construct a prognostic signature using the 
LASSO Cox regression method. Based on their 
correlation coefficients and expression levels, we 
obtained risk scores for each patient, whose median 
value allowed the samples to be classified into high- 
and low-risk subgroups with different OS rates. The 
Sankey diagram showing the relationships between 
risk scores, clusters, and survival status showed that 
patients in Cluster 1 were mostly distributed in the 
high-risk subgroup, whereas patients in the low-risk 
subgroup were mostly from Cluster 2. In both the 
training and validation sets, patients in the high-risk 
group had a worse prognosis than those in the 
low-risk group, which also suggested that both cluster 
typing based on 15 lncRNAs and a prognostic 
signature constructed based on seven lncRNAs had 
promising predictive potential for patients with 
LUAD. Both univariate and multivariate Cox 
regression analyses indicated that the risk score and 
clinical staging could serve as independent prognostic 
factors for LUAD patients. In addition, we validated 
the predictive power of the risk score in patients 
stratified according to clinicopathological parameters. 
Clinical correlation analysis showed that the risk 
scores were positively correlated with the clinical, 
T-stage, and N stages.  

Our prognostic signature consisted of seven 
lncRNAs: AC092168.2, LINC01352, LINC00968, 
AC024075.1, AC005070.3, AL133445.2, and 
AC005856.1. Wu et al. built an immune-related 
prognostic signature, which also included 
AC092168.2, and revealed that it was strongly 
correlated with the prognosis of lung adenocarcinoma 
[36]. HBx inhibits the expression of LINC01352, which 
increases the expression of miR-135b, thereby 
reducing adenomatous polyposis (APC) production 
and further activating the Wnt/β-catenin signaling 
pathway, promoting the progression of 
HBV-associated hepatocellular carcinoma [38]. 
Record et al. constructed a ferroptosis-related lncRNA 
prognostic signature, including LINC01352, to predict 
the prognosis of lung adenocarcinoma [39]. These 
results are consistent with our findings that 
LINC01352 is a protective factor against cancer, which 

has been validated in several studies. LINC00968 is 
heterogeneous and plays different roles in various 
cancers. In particular, it inhibits the progression of 
lung adenocarcinoma [40] and attenuates drug 
resistance in breast cancer [41]; however, LINC00968 
promotes epithelial ovarian cancer [42] and 
osteosarcoma [43]. Nevertheless, the other lncRNAs in 
our signature panel have not yet been identified. We 
believe that our work will promote further 
investigation of the role of these RNA modification 
writer-related lncRNAs in tumor progression. 

Immune-infiltrating cells constitute a major 
proportion of tumor stromal cells and are responsible 
for cancer development [26]. RNA modifications and 
lncRNAs play active roles in immune cell infiltration 
and antitumor immune response [44, 45]. Therefore, 
we explored the differences in immune-infiltrating 
cells, immune checkpoint gene expression, and TME 
scores between the different subtypes. Our results 
revealed that the immune scores, stromal scores and 
ESTIMATE scores in group 2 and the low-risk group 
were higher than those in group 1 and the high-risk 
group (Supplementary Figure S1E). In addition, the 
combined multi-algorithm integrated analysis of 
immune cell infiltration in relation to the risk score 
showed that the risk score was negatively correlated 
with most immune cell infiltrations. The ssGSEA 
results demonstrated a higher enrichment of 
immune-related pathways in the low-risk group.  

Compared to classical cancer treatments such as 
surgery, chemotherapy, and radiotherapy, 
immunotherapy is a recently developed approach 
that has shown promising effects. Among the various 
immunotherapeutic strategies, immune checkpoint 
blockage is considered one of the most effective 
treatments for many types of cancers [46]. In this 
study, we found that several common immune 
checkpoint-related genes were differentially 
expressed between high- and low-risk groups. In 
particular, HHLA2, TNFSF14, VSIR, CD27, CD40LG, 
NCR3, BTLA, ENTPD1, CD40, CD274, CTLA4, ICOS, 
TMIGD2, and TNFRSF4 were all highly expressed in 
the low-risk group, and most of these genes were 
more highly expressed in Cluster 2 than in Cluster 1. 
The immune checkpoint genes, including HERV-H 
LTR-associated protein 2 (HHLA2) [47], programmed 
cell death 1 ligand 1 (CD274/PD-L1) [48], cytotoxic 
T-lymphocyte-associated protein 4 (CTLA4) [49], 
inducible co-stimulatory factor (ICOS) [50] all belong 
to the B7-CD28 family, and the first three genes are 
suppressive immune checkpoints. CTLA4 and PD-L1 
inhibitors are effective in cancer treatment [49]. 
Therefore, HHLA2 is a potential target for cancer 
immunotherapy [47]. ICOS has dual roles: it is a 
co-stimulatory receptor responsible for enhanced T 
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cell responses to foreign antigens; in contrast, it 
promotes the immunosuppressive activity of Tregs 
and therefore exhibits pro-tumor activity [50]. 
TNFSF14 [51], CD27 [52], CD40, and CD40LG [53] of 
the TNF superfamily are stimulatory immune 
checkpoints and their targeting may improve the 
efficacy of immunotherapy.  

TMB and TIDE are predictive biological markers 
of immunotherapy [31, 54]. The TMB and TIDE 
algorithms predict that patients in the high-risk group 
may benefit more from immune checkpoint blockade 
(ICB), possibly because of the complex TME and its 
pleiotropy in the low-risk group, where infiltration of 
immunosuppressive cells and expression of 
suppressive immune checkpoints assist tumor cells in 
gaining immune escape.  

Owing to the diversity in patient sensitivity to 
drugs, it is necessary to personalize drug treatments 
for different patients. Therefore, we performed a 
sensitivity analysis of common antitumor drugs in 
different risk subgroups. The results indicated that 
ABT-888, AP.24534, AS601245, and ATRA were more 
effective in low-risk patients, whereas A-443654, 
A.770041, AG.014699, AUY922, and AZ628 were more 
suitable in high-risk patients. 

Most of the seven m6A/m1A/A-to-I/ 
APA-related lncRNAs had an HR >1 for LUAD 
patients, thereby acting as protective factors. This 
prompted us to further explore the prognostic value 
of the expression profile of each lncRNA. We found 
that the five lncRNAs were associated with 
significantly higher OS in the high-expression group 
than in the low-expression group based on the 
median expression level, which demonstrated that 
they were protective factors.  

However, our study had certain limitations. 
First, owing to the limited number of LUAD samples 
in the TCGA database, a larger dataset needs to be 
included to validate our m6A/m1A/A-to-I/APA 
modification writer-related lncRNA model. Second, 
several types of RNA modifications, such as m7G, 
m5C, ac4C are also involved in tumor progression. The 
association between these RNA modifications and 
lncRNAs in cancer requires further investigation. In 
addition, RNA modifications not only depend on 
writer enzymes but also on other regulators such as 
erasers and readers, which requires further validation.  

5. Conclusions 
In summary, we established a risk model using 

four types of RNA modification writer-related 
lncRNAs to predict the prognosis of LUAD and 
revealed the association of this model with the tumor 
microenvironment and immunotherapy response of 
LUAD. This model may be useful for personalized 

therapy for LUAD patients.  
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