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Abstract 

Background: Currently, there is few literature comprehensively analyzing landscape of cuproptosis- 
related genes (CRGs) in liver hepatocellular carcinoma (LIHC) with multiple omics approaches. 
Aims: Using comprehensive analysis, we aim to find out how CRGs works on LIHC. 
Method: With data from The Cancer Genome Atlas (TCGA) database, we constructed a prognostic 
prediction model for CGRs using LASSO regression analysis and performed immune infiltration analysis using 
the same dataset. To validate findings, we utilized RNA expression data from the International Cancer Genome 
Consortium (ICGC). Furthermore, we analyzed the enrichment and features of CRGs in epithelial cells using 
single-cell RNA sequencing (scRNA-seq) data. To validate the reliability of findings, we performed several 
experiments including RT-PCR, cloning formation assay, scratch assay, and Transwell assay.  
Result: We have constructed a high-precision risk scoring model composed of CRGs for predicting prognosis 
in TCGA-LIHC. Reliability of the risk prognosis model was confirmed through Kaplan-Meier curve analysis, 
time-dependent ROC analysis, and multivariate regression analysis. Furthermore, we found knocking down 
PDSS1 increased sensitivity of LIHC cells to copper ions, and both proliferation and migration abilities were 
significantly reduced. Finally, we comprehensively characterized the features of CRGs in LIHC through 
scRNA-seq. 
Conclusion: In this study, we introduce PDSS1 as a novel CRG in HCC. Utilizing scRNA-seq, we provide a 
comprehensive landscape of cuproptosis across various cell subtypes within the HCC tumor 
microenvironment. Furthermore, we detailed the characteristics of high PDSS1-expressing tumor cells, 
including their distinctive transcription factors, metabolic profiles, and interactions with different subtypes 
within the tumor microenvironment. This work not only elucidated the role of PDSS1 in HCC but also 
enhanced our understanding of cuproptosis dynamics during tumor progression. 

Keywords: liver hepatocellular carcinoma, cuproptosis -related prognostic signature, PDSS1, tumor-associated macrophages, 
tumor-related transcription factors, high metabolic microenvironment 

Introduction 
LIHC is one of the most common and lethal 

cancer worldwide, with a 5-year survival rate of 
approximately 18, about 830,000 deaths each year, 
representing it one of the leading causes of 
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cancer-related deaths globally [1]. Despite significant 
advancements in diagnostic techniques and treatment 
strategies for LIHC in recent years, improvement in 
the prognosis of LIHC patients is still limited [2,3]. 
LIHC is not only a conglomerate of malignant 
proliferating cells, but also a complex tumor 
microenvironment consisting of immune cells, 
stromal cells, endothelial cells, and cancer-associated 
fibroblasts, among others. This further contributes to 
the complexity of LIHC treatment and early tumor 
recurrence [2]. Tumor associated macrophages 
(TAMs) are the main inflammatory cells in the tumor 
microenvironment. They can suppress anti-tumor 
immunity, promote tumor angiogenesis, and alter 
tumor metabolic status [3]. T cells can differentiate 
into various subtypes and coordinate various immune 
responses, targeting and destroying tumor cells, or 
inhibiting anti-tumor immune responses through the 
secretion of cytokines [4]. Therefore, there is an urgent 
need to identify novel effective biomarkers and 
integrate comprehensive analyses of single-cell 
transcriptomics and spatial transcriptomics for early 
detection and risk prediction, to improve patient 
prognosis. 

Copper is an essential trace element in human 
body, serving as a cofactor for various metabolic 
enzymes and playing a crucial role in multiple 
biological processes. However, inappropriate 
concentrations of copper can be toxic to cells and 
associated with various diseases, including Wilson's 
disease, hepatolenticular degeneration, and the 
occurrence and development of tumors [5]. In liver 
cells of patients with Wilson's disease, it has been 
found that autophagy-related genes are upregulated 
in response to intracellular copper overload, thereby 
preventing copper-induced cell apoptosis [6]. 
Additionally, studies have found a significant 
relationship between copper ion levels in the blood 
and the occurrence of non-alcoholic fatty liver disease 
(NAFLD). Low copper concentration is an 
independent risk factor for the development of 
NAFLD in male patients with metabolic syndrome 
[7]. Recently, a novel cell death mechanism has been 
discovered that is dependent on intracellular copper 
levels and differs from other known cell death types, 
named cuproptosis [8]. This indicates that copper 
concentration may be an important mechanism 
affecting cancer progression. However, there is still 
little comprehensive analysis of these CRGs and their 
impact on the tumor microenvironment. 

Currently, the rapid development of 
bioinformatics technology guarantees us more 
effective methods to comprehensively analyze 
molecular mechanisms and network relationships 
involved in LIHC prevention, diagnosis, and 

progression monitoring. With advancement of 
single-cell RNA-seq analysis, we can identify 
disease-relevant cell subtypes within tumor tissues in 
a high-resolution and unbiased manner. It allows us 
to comprehensively unravel tumor microenvironment 
in different states through a series of analyses [9]. 
However, despite studies utilizing bioinformatics 
technology to investigate CRGs in LIHC, there is no 
research yet that comprehensively analyzes CRGs 
through integrating single-cell transcriptomics. This 
may provide a new avenue for further research on 
LIHC.  

Therefore, we designed this study to employ a 
multi-omics approach to identify and elucidate 
function of CRGs in LIHC prognosis and remodeling 
of the tumor microenvironment. First, we constructed 
a LIHC prognosis prediction model based on the 
composition of CRGs. Additionally, we analyzed the 
TME of LIHC using expression profile data from 
TCGA and ICGC. Furthermore, we validated and 
expanded analysis of bulk sequencing data through 
experimental validation and single-cell transcriptomic 
analysis. These findings may contribute to a 
comprehensive understanding of the landscape of 
cuproptosis in LIHC, and potentially improve 
treatment outcomes and prognosis based on 
underlying molecular mechanisms. 

Materials and Methods 
Data sources 

Data for LIHC were retrieved from two 
comprehensive genomic databases: TCGA and ICGC. 
Initially, the TCGA dataset comprised 374 samples, 
from which we systematically averaged data from 
repeated sequencing efforts. Furthermore, samples 
lacking complete clinical data were excluded, 
resulting in a final cohort of 365 samples for inclusion 
in our study. From the ICGC dataset, out of the initial 
243 samples, those lacking mRNA expression 
matrices but containing only somatic mutation data 
were excluded. This filtering criterion led to the 
retention of 231 samples, which were subsequently 
used for validation purposes. Table 1 listed the 
clinical data for all patients across the two cohorts. 
Transcriptome profiling from TCGA was used to 
quantify gene expression (RNAseq) and the results 
were harmonized to Fragments per Kilobase Million 
(FPKM). Training and validation were conducted 
using the TCGA dataset (N = 365) and ICGC dataset 
(N = 231) of LIHC patients, respectively. The TCGA 
cohort was utilized as the training set, and the ICGC 
cohort was employed as the external validation set. 
Our analysis of different gene expression was 
conducted using the Bioconductor limma package of 
R software (version 4.0.2). 
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Table 1 Clinical information of the LIHC patients included in this 
study. 

  TCGA ICGC(LIRI-JP) 
Number of patients 365 231 
Age (median, range) 61 (16-90) 69 (31-89) 
Gender 

  

Female 119 61 
male 246 170 
Grade 

  

Grade1-2 230 NA 
Grade3-4 130 NA 
Unknown 5 NA 
Stage 

  

Stage I 170 36 
Stage II 84 105 
Stage III 83 71 
Stage IV 4 19 
Unknown 24 0 
Survival status 

  

OS days 598.5 (0-3675) 780 (10-2160) 
AFP 

  

<=200 201 NA 
>200 75 NA 
Unknown 89 NA 
Vascular tumor 

  

Macro/Micro 106 NA 
None 205 NA 
Unknown 54 NA 

 

Consensus clustering analysis of copper 
metabolism-related genes 

Two-hundred CRGs were retrieved from the 
Molecular Signatures Database, MSigDB 
(https://www.gsea-msigdb.org/gsea/msigdb). 
Detailed information on these gene sets can be found 
in Table S1. Consensus unsupervised clustering was 
performed to explore the potential molecular 
subtypes between the LIHC patients according to 
CRG expression using the R package 
“ConsensusClusterPlus.” The optimal number of 
clusters (K) was determined by commonly applied 
methodology including cumulative distribution 
function (CDF) and relative change in area under CDF 
curve. 

Establishment of CRG signature 
The prognostic signature based on CRGs was 

performed in three steps: First, we used differential 
expression analysis to find the differential expression 
genes (DEGs) of copper metabolism. Second, we used 
Cox regression analysis to find the genes with 
significant differences in univariate analysis linked to 
LIHC OS. Then, a signature based on the LASSO Cox 
regression algorithm, employed to reduce the risk of 
over-fitting based on the “glmnet” R package, was 
developed in the training set using 64 copper 
metabolism related prognostic genes. To establish a 
prognostic CRG score, candidate genes were chosen 
using multivariate Cox analysis. The following 
formula was used to calculate the CRG score: 
CRG_score = Σ(Expi * Coefi) where the coefficient 

value and gene expression level were represented by 
Coefi and Expi, respectively. Depending on the 
median risk score, 374 patients in the training set were 
separated into high and low risk groups and carried 
out to Kaplan–Meier survival analysis. Accordingly, 
the validation set, also divided into low- and high-risk 
groups, was subjected to Kaplan–Meier survival 
analysis and receiver operating characteristic (ROC) 
curves. 

Development and validation of prognostic 
nomogram 

Cox regression analysis was performed to screen 
clinical prognostic factors along with risk score status 
as the prognostic parameters to generate a nomogram 
model for predicting the probability of survival at 1, 3 
and 5 years in LIHC patients and plotted the 
nomogram using the “rms” R packages. Calibration 
plots were employed to assess the discriminative 
ability of the nomogram. To estimate the accuracy of 
the actual observed rate with the predicted survival 
for 1-year, 3- and 5- year OS of the nomogram, the 
ROC curve and calibration curve fluctuating with 
time were also drawn. 

Immune profile analysis 
We performed immune infiltration analysis 

using a deconvolution method, the CIBERSORT 
algorithm, to identify immune cell populations in 
both high-risk and low-risk cohorts from the TCGA 
and ICGC datasets. The standardized microarray 
profiles of the high-risk and low-risk groups were 
input into the CIBERSORT online analysis platform 
(https://cibersort.stanford.edu/) to obtain the 
corresponding immune cell composition profiles. 
Subsequently, statistical analysis was conducted to 
determine the differences in immune cell infiltration 
between the two risk groups, yielding reliable 
conclusions.  

Cell culture and transfections 
The LIHC cell lines, namely HCC-LM3 and 

SK-Hep-1, were procured from the American Type 
Culture Collection and cultured in Dulbecco's 
Modified Eagle Medium supplemented with 10% 
(v/v) fetal bovine serum. The cells were maintained 
under optimal conditions at 37 °C in an environment 
with 5% CO2. Regular screenings confirmed the 
absence of mycoplasma contamination in all cell lines. 
For the introduction of siRNA and plasmids, 
Lipofectamine 3000 Reagents (Thermo Fisher 
Scientific, Waltham, MA) were utilized following the 
provided manufacturer's guidelines. The transfection 
procedure was performed in accordance with the 
recommended protocols. 
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Colony formation assay 
Cell clone formation was evaluated through a 

colony formation assay. In essence, a batch of tumor 
cells (1.0×103 cells/60 mm culture dish) was seeded in 
triplicate and cultivated at 37 °C over a span of two 
weeks to facilitate the formation of distinct colonies. 
Subsequently, the cells were subjected to a PBS wash, 
followed by fixation with 4% paraformaldehyde for a 
duration of 15 minutes. A 30-minute staining 
procedure with a solution of crystal violet 
(comprising 1% paraformaldehyde, 0.5% crystal 
violet, and 20% methanol in PBS) ensued. The count 
of distinct colonies on each culture dish was tallied, 
serving as a quantifiable indicator of cell viability and 
survival capacity. 

Quantitative real-time PCR (qRT-PCR) 
Total RNAs were meticulously extracted from 

tissues or cells using the TRIzol reagent. Subsequent 
to the extraction process, reverse transcription was 
diligently carried out utilizing the Takara RNA PCR 
kit, following the established guidelines furnished by 
the manufacturer. To quantitatively analyze the 
transcripts of specific target genes, real-time PCR was 
meticulously executed employing the Hieff 
UNICON® qPCR SYBR Green Master Mix. This 
amplification procedure was undertaken using the 
Roche LightCycler 480 QPCR apparatus within 
specialized 96-well QPCR plates, provided by Roche 
Diagnostics Corp. in Indianapolis, IN. 

Wound healing assay 
To assess the migratory capacity of cells, we 

conducted the wound-healing assay. Cells that had 
undergone transient transfection were meticulously 
placed in both chambers (at a seeding density of 
1 ~ 2 × 105/well) within the wound healing assay 
chamber. This chamber was situated within a 6-well 
plate, and the experiment was carried out in triplicate. 
Once the cells adhered to the culture surface, the 
wound healing assay chamber was delicately 
removed. Subsequently, photographs of the spaces 
created between the two chambers were taken at 
intervals of 12 hours. This allowed us to closely 
monitor and document the progressive movement of 
the cells as they migrated to close the gaps. 

Migration assay 
Cells transiently transfected were gently 

suspended in serum-free medium and subsequently 
introduced into the upper chamber of 24-well 
transwell inserts. These inserts featured 8 μm-pore 
size membranes and were obtained from Corning Inc. 
The cell seeding density ranged from 2–6 × 104 cells 
per well. The assembled transwell chambers were 

incubated at 37 °C in an atmosphere containing 5% 
CO2, allowing for cell migration to take place over a 
span of 24 to 48 hours. Following the incubation 
period, the chambers were meticulously fixed using 
ice-cold 100% methanol for 20 minutes. Subsequently, 
staining was conducted using a solution of 0.1% 
Crystal Violet for an additional 20 minutes at room 
temperature. Each well was then imaged at a 
magnification of 20×. This experiment was performed 
three times to ensure consistency and reliability of the 
results. We have provided representative images to 
visually depict the outcomes of these assays. 

Dimension reduction and clustering analysis 

We downloaded scRNA-seq data of LIHC from 
GSE149614 for further analysis. First, we performed 
quality control on the GSE149614 data based on the 
following criteria: nFeature_RNA > 200, percent.mt < 
20, percent.HB < 5. Next, we applied the 
LogNormalize method to normalize the data. 
FindVariableFeatures function in R package “Seurat” 
v4.0.1 was applied to identify top 2000 most variable 
genes which was used to scale our data. Principal 
Component Analysis (PCA) was also performed 
based on the top 2000 most variable genes mentioned 
above. The ElbowPlot function in the R package 
“Seurat” was used to select the optimal number of 
principal components (PCs). Before identifying cell 
types, we utilized R package “Harmony” to eliminate 
batch effect. Based on selected number of PCs, we 
used the FindNeighbors function in the Seurat package 
to explore nearest neighbors and then performed cell 
clustering using the FindClusters function. Finally, we 
applied the uniform manifold approximation and 
projection (UMAP) algorithm for dimensionality 
reduction and visualization of cell subtypes. Cells 
were clustered into 10 types based on the gene 
markers.  

Gene and gene set expression analysis 

We utilized the AddModuleScore function in 
Seurat package to score the CRGs and the gene set 
they comprised. Next, we visualized the enrichment 
levels of CRGs in different cells and tissues by 
FeaturePlot function and VlnPlot function. 

TF regulon analysis 

The enrichment TFs and the regulatory network 
in cell subtypes was analyzed by R package 
“SCENIC” v1.3.1. We identified potential TFs by 
performing the GENIE3 method based on the 
standard SCENIC analysis workflow. The regulon 
activity in each cel measured in AUC was determined 
by AUCell module of the R package “SCENIC”. 
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Metabolic pathway identification 
The R package “scMetabolism” v0.2.1 was 

employed to calculate the differences of metabolic 
state between epithelial cell types with different 
PDSS1 expressions. Based on the integrated metabolic 
gene sets from the Reactome database, we assessed 
the average gene expression of metabolic genes and 
median pathway scores for the two types. 

Cell–Cell interaction analysis 
In order to investigate the potential interactions 

between epithelial cells with different PDSS1 
expressions and tumor microenvironment cells, the R 
package “CellChat” v1.5.0 was utilized for the 
analysis of intercellular communication. Based on 
annotated cell gene expression profiling data, the 
abundance level of the interactions between the two 
cell types was inferred by analyzing the expression of 
ligands and receptors between cells. The 
netVisual_circle function was used to visualize the 
differences in network communication quantity and 
strength, while the netVisual_bubble function was 
utilized to display the intensity of communication 
between ligands and receptors.  

Pseudotime and trajectory analysis 
We performed the pseudotime and trajectory 

analysis among epithelial cells by using R package 
“Monocle2” v2.16.0 with default settings. By applying 
reduceDimension and orderCells functions in Monocle2 
package, we pseudo‐temporally ordered cells. Next, 
the expression changes of CRGs along the trajectory of 
pseudotime were visualized using the plot_genes_in_ 
pseudotime function. The cell density plot along the 
time axis was visualized using ggplot2 package. 

Pathway enrichment analysis 
For bulk RNA-seq analysis, we employed R 

package “limma” v3.54.0 to identify the DEGs 
between high-risk and low-risk groups. Then, for the 
identified DEGs, we used the R package 
“clusterProfiler” v4.9.0.002 to perform gene ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) analysis. For scRNA-seq analysis, we 
identified globally DEGs of cell subpopulations using 
the FindAllMarker function in the Seurat package, 
based on the filtered gene expression matrix obtained 
from Seurat. To investigate the functional and 
mechanistic differences of epithelial cells with 
different PDSS1 expressions, we performed 
subsequent analysis using the R package “irGSEA” 
v2.1.5 on the Hallmark gene set from MSigDB 
(http://www.gsea-msigdb.org/gsea/index.jsp). This 
analysis was conducted to determine the enrichment 
of biological pathways in the clusters of the cells. 

Results 
Identification of copper metabolism-related 
prognostic genes in LIHC patients 

The results showed that a total of 154 genes were 
differentially expressed. Subsequently, we identified 
73 genes related to prognosis using univariate Cox 
regression analysis and took an intersection for 65 
same genes (Figure 1A). Based on the TCGA cohort, 
Figure 1B showed the heatmaps of levels of 65 genes 
comparing LIHC and non-cancerous liver tissues. As 
shown in Figure 1C, a forest plot illustrating the 
prognostic effects of these 65 DEGs was presented. As 
shown in Figure 1D, there was a correlation between 
these genes. 

Establishment and validation of copper 
metabolism-related prognostic genes 

LASSO regression analysis was employed on 65 
potential prognostic copper metabolism-related 
genes, and 12 copper metabolism-related genes 
remained according to the least partial likelihood 
deviance. (Figure 1E, F). Then, using multivariate Cox 
regression analysis, an optimal predictive signature 
containing 12 copper metabolism-related genes was 
identified (Figure 1C). A risk score was produced for 
each patient to examine the prognostic signature's 
prediction performance. Each patient's risk score was 
computed as follows: risk score = (0.06703× Exp 
BIRC5) + (0.01196 × ExpME1) + (-0.00818 × 
ExpACOT12) + (-0.03017 × ExpFTCD) + (0.18916 × 
ExpPDSS1) + (0.11806 × ExpABCB6) + (0.03387 × 
ExpMT3) + (-0.05582 × ExpLCAT) + (0.00089× 
ExpLOX) + (0.01486 × ExpADAM9) + (0.09132 × 
ExpMAPT) + (0.01952 × ExpDLAT). Nine genes were 
regarded as risk factors, while the remaining three 
genes were identified as protective factors. Based on 
the median value of the risk score, patients were 
separated into two groups: high-risk and low-risk. A 
scatter plot was used to illustrate the distribution of 
risk score, OS status, and OS time in LIHC patients 
(Figure 1G). The low-risk group had a lower mortality 
rate than the high-risk group (Figure 1H). As 
indicated by time-dependent ROC curves, the 
signature had a remarkable predictive performance in 
LIHC OS in the TCGA cohort (1-year AUC = 0.780, 
2-year AUC= 0.767, 3-year AUC= 0.730; Figure 1I). 

Validation of the 10-gene signature in the 
ICGC cohort 

Based on the median value calculated in the 
same formula as the TCGA cohort, the patients from 
the ICGC cohort were also grouped into high- or 
low-risk groups to test the prognostic accuracy of the 
model constructed based on the TCGA cohort (Figure 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

5033 

2A). As with the TCGA cohort, similar Kaplan–Meier 
survival analysis results were obtained that high-risk 
group seemed to have a dramatically worse prognosis 
than the low-risk group (Figure 2B). Furthermore, 
patients in the high-risk group were more likely to die 

earlier than their counterparts in the low-risk group 
(Figure 2C). According to the time-dependent ROC 
curves, the AUC reached 0.717 at 1 year, 0.755 at 2 
years, and 0.759 at 3 years (Figure 2D), indicating 
good survival prediction performance.  

 

 
Figure 1. Constructions of CRGs signature in LIHC patients. (A) Venn plot conveys that there are 65 genes in intersection between the results of DEGs and prognostic genes. 
(B, C) Heat map and the forest plot of the 65 genes. (D) The correlation between the 65 genes. (E, F) The LASSO regression analysis and partial likelihood deviance of the 65 
genes. (G, J) The distribution of the risk scores and patient living status. (H) Kaplan–Meier survival estimates of OS according to the signature. 
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Table 2. Clinical information of the patients in high- and low-risk groups in the two cohorts. 

  TCGA ICGC 
High Risk Low Risk P High Risk Low Risk P 

Gender       0.4133     0.605 
  Female 63 56   53 8   
  Male 119 127   143 27   
Age       0.4332     0.0866 
  <60 86 79   41 3   
  ≥60 96 104   155 32   
Grade       < 0.0001     - 
  Grade1-2 95 135   - -   
  Grade3-4 85 45   - -   
Stage       0.0001     0.1712 
  Stage I-II 111 143   116 25   
  Stage III-IV 59 28   80 10   
Vascular_Tumor       0.0033     - 
  None 124 126   - -   
  Macor/Micro 79 41   - -   
AFP       0.008     - 
  ≤200 ng/mL 82 119   - -   
  >200 ng/mL 44 31   - -   

 
In both TCGA and ICGC cohort, PCA analysis 

demonstrated that patients were divided into a clear 
distinction on their risk score (Figure 2E, F). Results 
from the TCGA cohort indicated that patients in the 
high-risk group presented with more advanced tumor 
stages, higher tumor grades, increased vascular 
invasion, and elevated AFP levels (Table 2, p < 0.05). 
The specific information and interconnections of the 
12 genes included in the calculation formula for risk 
score based on LASSO regression analysis and 
multivariate Cox regression analysis were shown in 
Figure 2G, H. 

Functional analysis and immune infiltration 
analysis of DEGs 

In order to better understand the functional 
characteristic and pathways associated with the risk 
score, GO enrichment and KEGG pathway analysis 
were performed in DEGs. As in Figure 3A, genes were 
mainly enriched in several cell division-related 
biological process (BP), such as organelle fission, 
nuclear division and chromosome segregation. There 
was a significant enrichment in tubulin binding and 
microtubule binding among the above-mentioned 
DEGs regarding molecular function (MF). As for the 
cellular component (CC) group, the genes were 
particularly enriched in chromosome region, spindle 
and microtubule. KEGG pathway analysis also 
uncovered that the pathways enriched by DEGs were 
strongly associated with cell cycle, oocyte meiosis and 
cellular senescence (Figure 3B).  

To further investigate the relationship between 
prognostic risk score and immune infiltration status, 
we quantified the enrichment score of different 
immune cell subpopulations, related functions or 
pathways. As illustrated in Figure 3C, D the 
enrichment score of B cells, Mast cells, Neutrophils, 
NK cells, Cytolytic activity, MHC class 1, type I IFN 

response and type II IFN response was statistically 
different between two risk group in TCGA cohort 
(P-value < 0.05). A comparison with the ICGC cohort 
verified that there was a significant difference of B 
cells, Neutrophils, NK cells, type I IFN response and 
type II IFN response between high risk and low risk 
group (P-value < 0.05, Figure 3E, F). Notably, similar 
to the TCGA cohort, in the ICGC cohort score of 
neutrophils and NK cells showed the most statisti-
cally significant differences between two risk groups. 
In accordance with expectations, high-risk scores 
were associated with an absence of immune infiltra-
ting cells including B cells, Neutrophils and NK cells, 
while the score of macrophages was opposite. 

Consensus clustering identified two clusters of 
patients with LIHC 

An analysis of the consensus cluster consisting of 
65 genes associated with cuproptosis was conducted 
and we identified two new clusters of patients with 
LIHC based on the expression of prognostic genes 
related to cuproptosis. In Figure 4A, we demonstrated 
the diverse trends in the cumulative distribution 
function (CDF) of consensus clustering from k = 2 to 9 
in the TCGA dataset. Besides, k = 2 appeared to be the 
most appropriate selection to divide LIHC patients 
into different cluster due to clustering stability 
increasing from k = 2 to 9 (Figure 4B). Besides, the OS 
and DFS of LIHC patients in cluster 2 were 
significantly lower than those in cluster 1 (Figure 4C, 
D). Additionally, there was statistically significant 
difference in the clinicopathological characteristics 
and the expression of CRGs between clustering 
subgroups (Figure 4E). The result showed that the 
different subgroups weren’t related to the M stage 
and gender but T stage, N stage, TNM stage, tumor 
grade, age, and survival status were significantly 
different between the two subgroups.  
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Figure 2. Validation of the signature in the ICGC dataset and evaluation of the 12 genes. (A, C) The distribution of the risk scores and patient survival status. (B) Kaplan–Meier 
survival estimates the Overall Survival according to the signature. (D) The 1-,2- and 3-year ROC curves of the signature in predicting OS of LIHC patients. (E, F) PCA results of 
the signature in TCGA and ICGC. (G) The summary sheet of the 12 genes in LASSO. (H)The correlation analysis of the 12 genes in LASSO. 
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Figure 3. Functional analysis and immune infiltration analysis of DEGs (A, B) Dotplot of GO enrichment and KEGG pathway analysis in DEGs in DEGs. (C, D) Boxplot of immune 
cells and immune function between high and low risk groups in TCGA. (E, F) Boxplot of immune cells and immune function between high and low risk groups in ICGC. 
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Tumor mutation burden and immune 
infiltration in consensus cluster subgroups 

Subsequently, we evaluated the distribution of 
immune cells and stromal score in two subgroups and 
presented them in a heatmap (Figure 4F). Moreover, a 
bar plot was applied to illustrate the difference in 
infiltration levels of immune cells in the consensus 
cluster subgroups, where neutrophil was enriched in 
cluster 1 (Figure 4G). To uncover the changes in risk 
score, gene clusters, and survival status, alluvial 
diagram was utilized to display characteristic changes 
in LIHC patients (Figure 4H). A waterfall plot was 
created to display the differences in the somatic 
mutations profile landscape between two subgroups 
(Figure 4I, K). The result demonstrated that the 
mutation frequency of TP53 was significantly higher 
in cluster 1 than in cluster 2, whereas CTNNB1 was 
more frequently mutated in cluster 2.  

Building a predictive nomogram based on 
clinicopathologic features and risk score 

Based on the clinicopathologic features and the 
risk score, a predictive nomogram was constructed to 
estimate the survival probability. In the TCGA 
database, univariate and multivariate Cox regression 
analyses were conducted for the relationship between 
clinicopathological features and prognosis and 
whether the risk score was an independent indicator 
of prognosis. Univariate and multivariate Cox 
analyses revealed that stage and risk score were 
independent factors influencing the prognosis of 
LIHC patients (Figure 5A, B). Based on the multi-
variate Cox regression analysis described above, we 
constructed a nomogram (Figure 5C) for 1-, 3-, and 
5-year OS prediction in the LIHC patients, which 
incorporated two independent factors (stage and risk 
score). As shown in Figure 5D, E, the ROC curve re-
vealed that the combined nomogram could perfectly 
predict the survival rates for LIHC patients in both 
TCGA cohort and ICGC cohort. Based on the DCA 
(Figure 5F), we observed that the combined nomo-
gram was most frequent in top position, indicating 
that it was the most suitable nomogram for predicting 
the prognosis of individuals with LIHC. In contrast, 
the combined predictive nomogram could fairly 
accurately predict the 5-year overall survival rates in 
both TCGA cohort and ICGC cohort (Figure 5G, H). 

CRGs correlate with metastasis and 
development of human LIHC 

PDSS1, ABCB6 and MAPT were listed as the top 
three genes with the highest weights in the predictive 
nomogram, and we plotted their OS and DFS curves, 
respectively (Figure 6A, B, C). The results also 
showed that the high expression of the 

above-mentioned genes was significantly related to 
worse prognosis in LIHC patients. PDSS1 emerged as 
the most prominent gene in the LASSO regression 
model, and we subsequently carried out functional 
validation specifically targeting it. We investigated 
the potential of PDSS1 knockdown to enhance the 
sensitivity of LIHC cell lines to CuCl2. Our results 
confirmed that knocking out PDSS1 in HCC-LM3 and 
SK-Hep1 cells increased their susceptibility to 
cuproptosis (Figure 6D). Additionally, we observed 
an upregulation of PDSS1 expression in HCC-LM3 
and SK-Hep1 cells with increasing concentrations of 
CuCl2, suggesting its involvement in cuproptosis 
tolerance (Figure 6E). To evaluate the impact of 
PDSS1 knockdown on the proliferation of LIHC cells, 
we conducted a colony formation experiment, which 
revealed a significant reduction in the formed colonies 
upon PDSS1 knockdown in HCC-LM3 and SK-Hep1 
cells (Figure 6F). Additionally, through Transwell 
assay, we observed a significant suppression of 
migration ability in HCC-LM3 and SK-Hep1 cells 
upon PDSS1 knockdown (Figure 6G). 

The landscape of cuproptosis in TME cells in 
LIHC 

We obtained scRNA-seq data of the tumor 
microenvironment in LIHC from the GSE149614 
dataset and performed clustering analysis on ten 
distinct cell types, including epithelial cells, CD4+ T 
cells, CD8+ T cells, B cells, TAMs, Kupffer cells, DCs, 
LVECs, LSECs, and pericytes (Figure 7A). 
Furthermore, we visualized the expression profiles of 
specific marker genes for each cluster of cells (Figure 
7B). To explore the distribution of prognostic genes 
associated with cuproptosis, we employed the 
AddModuleScore function in Seurat to score their 
expression levels. Results from VlnPlot and 
FeaturePlot confirmed that the CRGs are 
predominantly expressed at high levels in epithelial 
cells and TAMs (Figure 7C, D). Furthermore, our 
analysis revealed substantial variations in the average 
RNA expression of CRGs among LIHC samples 
across different categories of sample type, viral 
infection status, and tumor stage. Significantly higher 
expression levels of particular CRGs associated with 
poor prognosis were observed in tumor samples 
compared to normal samples. Additionally, distinct 
patterns of gene expression were observed in LIHC 
samples based on their viral infection status and 
tumor stage, implicating the potential involvement of 
copper death-related genes in LIHC progression and 
response to viral infections (Figure 7E). On the 
contrary, as shown in Figure 7F, the expression of 
CRGs which were associated with good prognosis, 
was relatively high expressed in normal samples. 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

5038 

 
Figure 4. Analysis of the consensus cluster of patients with LIHC. (A, B) Consensus matrix CDF shows that k=2 is the most appropriate selection to divide LIHC patients into 
different cluster. (C, D) Kaplan–Meier survival estimates of OS and DFs in LIHC according to the two clusters. (E) Heatmap of the clinicopathological characteristics and the 
expression of CRGs between clustering subgroups. (F) Heatmap of distribution of immune cells and stromal score in two subgroups. (G) Barplot of immune cells between two 
clusters. (H) Alluvial plot of the gene cluster and lasso subgroup (I, J) The waterfall plot of somatic mutation features established with two clusters. Each column represented an 
individual patient. The upper barplot showed TMB, the number on the right indicated the mutation frequency in each gene. The right barplot showed the proportion of each 
variant type. 
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Figure 5. Development of a nomogram for survival prediction of LIHC patients based on signature and clinical characteristics. (A, B) Univariate and multivariate Cox analyses 
simultaneously demonstrated the independent prognostic value of the risk score. (C) The nomogram combining risk signature and clinicopathological factors. (D, E) AUCs on the 
nomogram suggested that this model in TCGA and ICGC had higher sensitivity in OS at 1 ,3 and 5 years. (F) Decision curve analysis for stage and risk scores prediction models 
at 1, 3 and 5 years. (G, H) Calibration plots were established to compare the proposed nomogram with an ideal model in TCGA and ICGC. 
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Figure 6. Correlation of CRGs with Metastasis and Development of Human LIHC. (A) OS and DFS curves of PDSS1 expression shows that the high expression of the 
above-mentioned genes was significantly related to worse prognosis in LIHC patients. (B, C) Two figures are established to show that knocking down PDSS1 in HCC-LM3 and 
SK-Hep1 cells increased their susceptibility to cuproptosis. (D) The correlation between the expression of PDSS1 and the concentration of CuCl2 in HCC-LM3 and SK-Hep1 
cells. (E-G) The proliferative and migration capability of HCC-LM3 and SK-Hep1 cells transfected with siRNA were measured using colony formation assay, healing assay and 
transwell assay. 
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Figure 7. The landscape of cuproptosis in TME cells in LIHC. (A) Clustering analysis on ten distinct cell types. (B) Expression profiles of specific marker genes for each cluster 
of cells. (C, D) Featureplot and Vlnplot of expression of CRGs in the 10 cells. (E) Heatmap of gene expression in LIHC according to the viral infection status and tumor stage. (F) 
Expression of CRGs in different cells. 
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Characteristic profiles of cells with different 
PDSS1 expressions 

Based on the expression of PDSS1, we 
categorized the epithelial cells into two groups: 
PDSS1 high-expressing epithelial cells and PDSS1 
low-expressing epithelial cells (Figure 8A). 
Subsequently, we conducted an exploration of their 
respective characteristics. As shown in Figure 8B, the 
score of the cuproptosis gene set was also higher in 
cells with high PDSS1 expression, indicating that the 
characteristic performance of this group of cells can 
reflect the impact of cuproptosis on the LIHC cells. 
Furthermore, we identified the unique TFs regulatory 
characteristics of the subpopulations through SCENIC 
and calculated their average regulatory activity. The 
results confirmed that in epithelial cells with high 
PDSS1 expression, the regulatory activity of TFs 
related to tumor progression was significantly 
enhanced (Figure 8C). Given that changes in 
metabolites were believed to be closely related to 
cuproptosis, we sought to explore changes in 
epithelial cells with different levels of PDSS1 
expression. Using the scMetabolism package, we 
found that almost all metabolites are enriched in 
epithelial cells with high PDSS1 expression, 
suggesting that PDSS1 constructed a high metabolic 
tumor microenvironment, thereby affecting other cells 
(Figure 8D). Then, Monocle2 was utilized to perform 
pseudotime and single cell trajectory analysis. 
Pseudotime analysis of gene expression in the risk 
model revealed that the expression levels of FTCD 
and LCAT, associated with good prognosis, were 
higher in the late stages of tumor development. This 
suggested that cuproptosis played different roles at 
different stages of tumor progression (Figure 8E). As 
shown in Figure 8F, epithelial cells with high PDSS1 
expression mainly appear in the middle stages of 
tumor development. Furthermore, through GSVA 
analysis, we found that the functional enrichment of 
epithelial cells with high PDSS1 expression was 
mainly concentrated in the Coagulation and KRAS 
signaling pathways (Figure 8G). The interaction 
between epithelial cells and immune cells or stromal 
cells in the tumor microenvironment had a significant 
impact on tumor development. Through CellChat 
analysis, we found that epithelial cells with high 
PDSS1 expression in both tumor tissues and normal 
tissues had stronger cell communication with 
surrounding cells (Figure 8H). Through 
ligand-receptor analysis of cell communication, we 
found that cells with high PDSS1 expression mainly 

interact with endothelial cells and pericytes through 
the extracellular matrix and collagen metabolism 
(Figure 8I). 

Discussion 
The significance of copper ions in the treatment 

of hepatocellular carcinoma (HCC) is an area of active 
research. Copper ions were shown to possess 
anti-tumor properties, which induced oxidative stress 
in cancer cells, causing DNA damage and apoptosis 
(programmed cell death). Recent studies have 
revealed the dual roles of copper in promoting and 
suppressing HCC progression [10, 11]. Previous study 
found a significant upregulation in the expression of 
copper transporter genes in HCC, indicating that 
restricting copper homeostasis effectively hindered 
the growth of HCC cell lines [12]. Accordingly, 
targeting copper-dependent vulnerabilities could 
reveal innovative approaches for HCC treatment. The 
liver plays a central role in copper metabolism, 
controlling the biological processes of copper while 
synthesizing and secreting copper-binding proteins 
[13]. Due to its active involvement in copper 
metabolism, the liver is particularly susceptible to 
imbalances in copper levels.  

Excess copper can cause liver damage and 
diseases such as Wilson disease, while copper 
deficiency is observed in disorders of lipid 
metabolism, including nonalcoholic liver disease and 
alcohol-related cirrhosis [6]. Given the interplay 
between liver physiology and copper metabolism, 
copper homeostasis may have broader implications 
for the progression of HCC. 

In our study, we conducted a comprehensive 
analysis of 200 genes linked to copper metabolism and 
cuproptosis in HCC patients, utilizing publicly 
available datasets. Our findings revealed that 65 
CRGs significantly impacted the prognosis of HCC 
patients. To assess the survival risk of HCC patients, a 
predictive model is developed with the Lasso method 
and a nomogram, based on the identification of 12 
critical genes using the Lasso method. Additionally, 
we validated our findings in HCC samples and 
identified potential targets closely associated with 
immune cell infiltration, including B cells, 
neutrophils, NK cells, type I IFN response, and type II 
IFN response. Taken together, these results 
underscore the pivotal roles of CRGs in influencing 
tumor development, while our prediction model 
offers a valuable tool for clinicians to further 
prognosticate HCC patients. 
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Figure 8. Characteristic Profiles of Cells with Different PDSS1 Expressions. (A) Epithelial cells are categorized into 2 groups according to the expression of PDSS1. (B, C) 
Expression of cuproptosis gene and TFs in High PDSS1 group and Low PDSS1 group. (D) Character of Metabolites in epithelial cells with different levels of PDSS1 expression. (E, 
F) Pseudotime and single cell trajectory analysis of genes in CRGs. (G) Heatmap of GSVA analysis (H) Intercellular communication network plot of high PDSS1 expression 
epithelial cells with surrounding cells. (I) Cell chat mediated by Ligand-receptor. 
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The scRNA-seq has emerged as a potent tool in 
the field of oncology, facilitating the analysis of 
intricate cell populations and the development of 
clinical diagnostic markers [6]. In the context of HCC, 
in-depth exploration of the immune cell landscape 
within both intrahepatic and tumor tissues has 
provided valuable insights into disease progression. 
Leveraging a series of single-cell analysis techniques, 
our findings reveal markedly elevated expression 
levels of specific CRGs associated with adverse 
prognoses in tumor samples as compared to their 
normal counterparts. Furthermore, we have 
uncovered distinct patterns of gene expression in 
LIHC samples, stratified by viral infection status and 
tumor stage. These findings suggest the potential 
involvement of copper-regulated genes in LIHC 
progression and their role in responding to viral 
infections. Consequently, these genes may hold 
significant promise as valuable biomarkers for 
predicting the effectiveness of immunotherapeutic 
interventions in patients battling HCC. 

Besides, we have identified PDSS1 as a key 
regulatory factor inducing cuproptosis in HCC cells, 
supported by rigorous experimental validation. This 
discovery marked significant progress in 
understanding the molecular mechanisms of 
cuproptosis pathways. Utilizing single-cell RNA 
sequencing technology, we were able to dissect the 
complex interactions and mechanisms between 
different cell subtypes within the HCC tumor 
microenvironment and their responses to copper 
stress. This detailed characterization provides a 
foundational basis for the theoretical support of 
targeted drug design related to cuproptosis. 

 In our study, the application of scRNA-seq has 
profoundly characterized tumor cells with high 
PDSS1 expression, revealing unique transcriptional 
and metabolic features, as well as interactions with 
the immune microenvironment. This in-depth 
analysis has also uncovered the adaptive mechanisms 
by which tumor cells withstand copper-induced 
stress, directing future efforts to address drug 
resistance associated with cuproptosis. 

Furthermore, our research has explored the 
expression patterns of various cuproptosis-associated 
genes across different stages of tumor progression, 
offering a temporal perspective on how these genes 
facilitate the evolution of the tumor landscape. 
Understanding these dynamics is crucial for 
developing targeted therapies that could disrupt these 
processes and potentially halt tumor progression. 

It is essential to acknowledge limitations of this 
study. Firstly, to elucidate the impact of PDSS1 genes 
on HCC proliferation and metastasis, in vivo 
experiments are imperative. Furthermore, despite 

certain validation experiments related to copper 
metabolism genes in HCC cells, additional 
investigations are warranted for HCC samples. These 
investigations will provide valuable insights for 
scientists delving deeper into the intricate relationship 
between copper metabolism and HCC tumor 
progression. Additionally, while our study revealed 
correlations between CRGs, tumor immune cell 
infiltration, and immune checkpoints at the single-cell 
mRNA level, it remains uncertain whether targeting 
critical CRGs can reverse immune escape and 
immune therapy resistance. Lastly, for validation and 
enhancement of our prognostic model, multicenter 
clinical trials with substantial sample sizes are 
essential prerequisites. 

Our findings not only elucidate prognostic value 
of PDSS1 in HCC but also deepen our understanding 
of the tumor microenvironment and the metabolic 
dependencies of cancer cells. This comprehensive 
view could lead to innovative strategies targeting the 
specific vulnerabilities of high PDSS1-expressing cells, 
such as inhibiting their active interactions with endo-
thelial cells and suppressing their vibrant metabolic 
states, potentially revolutionizing HCC treatment. 
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