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Abstract

Skin cutaneous melanoma (SKCM), a malignant melanocyte-derived skin cancer, potentially leads to fatal
outcomes without effective treatment. The variability in immunotherapy responses among melanoma
patients is significantly influenced by the intricate immune microenvironment, particularly due to the
status of tumor T cells, encompassing their activity, exhaustion levels, and antigen recognition capabilities.
This study utilized single-cell RNA sequencing (scRNA-seq) to analyze 34 melanoma samples from two
public datasets (GSE215120 and GSE115978). Herein, we extracted 706 marker genes associated with
immune checkpoint (ICP) therapy from these T cells, 509 markers of T cells from 11 melanoma tissues,
and eventually identified 33 candidate genes. These genes underwent LASSO and COX regression
analyses to identify the signature genes. Of the initial 33 candidate genes, we successfully isolated six
distinct T cell-associated immunotherapy-related genes (IRTGs). Additionally, the computation of each
patient risk score proved beneficial in evaluating the immune cell infiltration level and functions as an
independent prognostic factor for melanoma patient survival. The risk score results revealed promising
predictive outcomes in determining the response of melanoma patients to immunotherapy. Notably, our
study is the first to reveal the potential correlation between signature gene PEB4B and the immune
microenvironment in melaoma, which was explored with multiple immunofluorescence (IF) and Immune
Infiltration Assessment. In a conclusion, our findings demonstrate the potential utility of a risk score
dependent on signature genes as a predictive tool for assessing the prognosis and response to
immunotherapeutic interventions in melanoma patients.
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Introduction

Skin cutaneous melanoma (SKCM) originates caused by exposure to natural sunlight and ultraviolet
from the malignant conversion of melanocytes located ~ radiation[2]. The SKCM represents the most lethal
in the basal layer of the skin epidermis[1], usually  skin cancer type, and its occurrence is elevatings
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globally, especially among White populations[3]. The
main treatment option is surgery combined with
immunotherapy, but there is a high risk of relapse for
thicker melanomas and patients with local lymph
node involvement[4]. The immune response in the
tumor microenvironment (TME) is essential in
determining tumor invasion, development, and how
the tumor responds to immunomodulators. Extensive
research has been conducted on SKCM prognostic
biomarkers,  particularly = focusing on  the
tumor-infiltrating immune cell density and type as
well as the immune gene expression levels[5]. In
addition, utilizing immune-related genes or
tumor-infiltrating immune cell characteristics has
granted great value in predicting recurrence and
prognosis in SKCM patients[6, 7].

Moreover, T cells substantially contribute to
tumor suppression and elimination and influence
their prognosis and progression|[8, 9].
Cancer-associated fibroblast (CAF) has been shown to
inhibit cytotoxic T lymphocyte (CTL) activity through
arginase in melanoma[10]. Furthermore, Zhang et al.
have conducted single-cell RNA sequencing
(scRNA-seq) analysis for 11 melanoma patients,
revealing the gene expression levels in T cells, CAFs,
and malignant cells. Remarkably, these samples
included pre- and post-immunotherapy tumor
patients, who provided genetic changes in T cells
before and after immunotherapy[11].

Immune checkpoint inhibitors (ICls) have
revolutionized the therapeutic landscape for many
cancers, especially melanoma[12]. Immunotherapy
with many ICls targeting programmed cell death
protein 1 (PD-1), PD-1 ligand (PD-L1), and CTL
antigen-4 (CTLA-4) has significantly increased the
clinical outcomes of melanoma patients[13]. This

therapeutic strategy, which is central to the
management of melanoma, employs immune
checkpoint ~ (ICP)  inhibition to  stimulate

T-cell-mediated tumor elimination, representing a
pivotal advancement in the field[14]. Additionally,
Jerby-Arnon et al. have conducted scRNA-seq analysis
for 33 melanoma tumors, identifying a malignant cell
resistance program in melanoma patients to promote
immune escape, leaving patients unable to benefit
from ICIs[15]. Notably, this malignant cell program
was related to T-cell exclusion and was predictive of
ICI resistance. Therefore, exploring its predictive role
in the prognosis of melanoma patients is possible.
This study first screened 33 immunotherapy-
related genes in in the T cells (IRTGs) of melanoma
tumors that were highly associated with
immunotherapy response. From the list of candidate
genes, we further identified six signature genes and
constructed a prognostic signature to generate a

predictive risk score, which was strongly correlated
with immunotherapy response and prognosis. Then,
the prognostic model was confirmed to serve as an
independent prognostic factor for melanoma patients.

Methods and Materials

Collection of data for Single-cell analysis

A total of 7 acral and 4 cutaneous melanoma
RNA sequencing data were obtained from the public
dataset provided by Zhang et al. These processed
single-cell/bulk RNA data are accessible at the GEO
database with the accession number GSE215121[11].
The samples included one patient with CM1 and
CM1-lym as well as one with AM3-pre and AM3-post
tissues. Additionally, we incorporated 23 samples
from GSE115978, comprising 13 pre-immunotherapy
and 10 post-immunotherapy specimens[15].

Identifying cell clusters of scRNA-seq

The gene expression in each cell was calculated
relative to the gene multiplied by 10,000 using the
natural log transformation applied using the log(x+1)
technique. The resulting normalized expression
matrix was used to determine the top 2000 highly
variable genes (HVGs). Subsequently, the genes
underwent scaling before conducting a principal
component analysis (PCA). The R Harmony package
was employed to eliminate batch effects, utilizing the
top 30 PCA components. Utilizing harmonized data,
the k-nearest neighbors (KNN) algorithm was
employed to calculate distances, subsequently leading
to the construction of a shared nearest neighbor
(SNN) graph. In order to perform cluster recognition,
the modular function was modified according to the
clustering algorithm that was used. The clusters
obtained were then visualized on a two-dimensional
map generated employing uniform manifold
approximation and projection (UMAP).

The "Find AllMarkers" function was employed to
find each cluster marker gene, employing the
subsequent parameters: logfc.threshold = 0.25,
min.pct = 0.25, and min.diff.pct = 0.25. The DotPlot
and featureplot tools from the Seurat package were
employed to represent these marker gene expression
patterns visually across clusters. The annotation of
cell clusters was performed employing the previously
reported DEGs and well-recognized cellular
markers[11].  Furthermore, to  explore the
heterogeneity of melanoma cells, re-clustering was
performed.

Cell-cell communication

Our study utilized the CellChat package to infer
cell-cell communication across all cell types using
scRNA-seq data[16]. The prediction of cell-cell
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interactions between the various cell types was
established witha significant threshold of 0.05
(P-value).

CNYV evaluation of melanoma cells

The InferCNV package was used to deduce
CNVs in melanoma cells and identify cancerous cells
using the default settings. Genes having an average
count of < 0.1 between all cells were excluded before
analysis. The calculation of the CNV score follows the
previous methodology[17]. The melanoma cells were
categorized into two groups, namely low and high
scores, based on their accumulation scores of CNV.

GO and KEGG enrichment analyses of DEGs

Herein, we conducted a comparative analysis of
the upregulated and downregulated genes with
respect to the associated terms in the GO
(http:/ /www.geneontology.org/) and the KEGG
databases. These analyses aimed to ascertain the
functional and pathway significance of the DEGs
among high- and low-CNYV subtypes. In addition, the
KEGG analysis was also performed in the 33
candidate genes (metascape; https://metascape.org/
gp/index.html).

Gene set enrichment analysis (GSEA) and
GSVA

The inquiry into gene function was conducted
using the GSEA program and the MSIGDB database
obtained from the GSEA website (http://software
.broadinstitute.org/gsea/msigdb). The process of
differential gene induction was used to rank
pathways, and GSEA was conducted employing the
Pi package and MsigdbH. The GSVA package was
employed to assign estimates of pathway activity to
particular cells.

Scenic analysis

The SCENIC tool was employed to leverage
scRNA-seq data for rebuilding gene regulatory
networks and ascertaining stable cell states. The
analysis was conducted using the pySCENIC package
in Python (version 3.8), wherein the enrichment of
transcription factors and the regulons activity were
evaluated[18]. The gene regulatory network was
constructed employing co-expression and DNA motif
analysis. The cell state identification included
examining the network activity occurring inside each
cell. To establish the search space for transcription
factor regulatory networks around the transcription
start site, the gene motif ranking within a 10 kb radius
was employed as a guiding parameter. The human
gene-motif  rankings were  obtained from
https:/ /resources.aertslab.org/cistarget/.

Pseudo-temporal ordering of CAFs

The Monocle package was employed to analyze
the pseudotime trajectories of CAFs. Monocle uses
pseudo-temporal profiling of scRNA-seq data to
detect cellular changes throughout the CAF
differentiation. The raw UMI counts, along with their
clustering information, were incorporated into the
"newCellDataSet" function and subsequently
transformed into a reduced dimensional space
employing the discriminative  dimensionality
reduction with trees (DDRTree) technique, a
contemporary manifold learning approach. Then, the
CAFs were arranged based on their pseudo-time.

Construction and assessment of the prognostic
IRTs_score model

The glmnet R package was deployed to conduct
LASSO and multiple COX regression analyses on 33
candidate genes to identify signature genes that may
accurately predict the melanoma patient prognosis. A
predictive IRTs_score model was constructed using
these signature genes.

IRTs_score was evaluated as follows:

IRTs_score = 2 (Expi * coefi)

where Expi and Coefi represent each gene
expression and the corresponding risk coefficient,
respectively.

KM survival curves of high and low-risk
melanoma patients

Bulk transcript data of the TCGA-SKCM cohort
were obtained by accessing the TCGA database
(https:/ /portal.gdc.cancer.gov/), and melanoma
cohort of GSE54467, GSE65904, GSE22153, and
GSE59455 were acquired from the GEO database.
Depending on the risk scores, patients were
categorized into high- and low-risk groups. The initial
steps involved the construction of KM survival curves
to evaluate the discrepancy in survival outcomes. The
survival analysis was conducted using the survival
package (version 3.4.0) and the survminer package
(version 0.4.9), enabling the identification of signature
genes exhibiting contrasting survival rates between
the high- and low-risk groups.

Comparison of immune condition between
high- and low-risk groups

The CIBERSORT algorithm was utilized to
quantify the immune cell infiltration extent in
melanoma tissues, subsequently leading to an
examination of the immune cell infiltration and risk
score correlation. Furthermore, a comparison was
conducted between immune cell infiltration and six
signature genes. Additionally, immune-related scores,
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such as stromal, immune, and ESTIMATE scores,
were compared between both risk groups.

Differences in ICP gene expression and IPS
between both risk groups

The Wilcoxon signed-rank test was employed for
comparing the ICP gene expression between both
groups. Various types of immunotherapy
management, including PD-1/PD-L1/PD-L2 and
CTLA-4 blockers, were predicted by IPS in patients.
Additionally, = the  iMvigor210, = PRJEB25780,
PRJEB23709, and GSE35640 cohorts were used to
calculate values for complete response (CR)/partial
response (PR) and SD/PD.

The scRNA-seq analysis of the six signature
genes

The analysis of scRNA-seq was performed on ten
cohorts  (GSE115978,  GSE120575,  GSE123139,
GSE134388, GSE139249, GSE148190, GSE159251,
GSE166181, GSE179373, and GSE72056) obtained from
the GEO database. Moreover, we used the TISCH2
(https:/ /tisch.comp-  genomics.org/home/)  to
visualize the six signature gene expression in various
single-cell transcriptome datasets.

Melanoma tissue microarray and multiple
immunofluorescence staining (IF)

The 44 human melanoma and 4 normal skin
tissue microarrays (Cat No. ZL-MEL962) were

acquired from ShangHai Zhuoli Biotech Company
(China). The slides were processed using the
following sequence: immersed in 100% xylene for two
10-min intervals, immersed in 100% ethanol for two
3-min intervals, immersed in 95% ethanol for two
2-min intervals, immersed in 70% ethanol once, and
rinsed with distilled water twice. Moreover, we
conducted the antigen retrieval by subjecting the
sample to boiling in a citrate pH 6 (Dako) solution for
10 min and cooled to room temperature (RT). Then,
the slides were cleansed with TBST (1 x TBS 0.1%
Triton-X) and subjected to blocking in 1% NDS
solution diluted in TBST for 1 h at RT and then
incubated. Subsequently, the slides were exposed to
primary antibodies overnight at 4 °C followed by
being removed by washing the slides utilizing TBST
for 5 min 4 times. The secondary antibodies, labeled
with fluorophore gating, were diluted in a solution
containing 1% NDS and went through incubation
with the slides for 1 h at RT. Nuclei were treated with
DAPI (1 p g i1 L-1). The slides were washed four times
with TBST before mounting and imaging.

Results
Workflow of the present study

melanoma

Construction of scRNA-seq atlases of

trajectories analysis of CAFs

CAF classification and pseudo- temporal

. | _l.
v a = L
- L

b | s

Functional analysis of T cell subtypes SR

L _“
S ™

The IRTG prognostic signature
construction and validation

y

[ -

) | ot 4 i gy
f) e T ek, e

|

TME and immunotherapy efficacy between
both risk groups

The scRNA-seq analysis of the six
signature genes

‘-l.l-. |

PED4B expression positively correlates with
tumor CD8+ T cell infiltration in SKCM

Figure 1. Workflow of the present study
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Construction of scRNA-seq atlases of
melanoma

The results identified 28 distinct cell clusters,
including immune, stromal, and melanoma cells
(Figure 2A). Further analysis revealed that (Figure
2B) the immune cells could be categorized into T cells
(IL7R, CD8B/3D, TRAC, and NKG?7), B cells (CD79A,
BANK1, and MS4Al), and monocytes (LYZ and
CD14/68). Additionally, the stromal cells were
classified into endothelial cells (PECAM1 and VWEF)
and fibroblasts (COL1A2/3A1). Notably, these cell
cluster compositions, particularly the melanoma cells
and T Iymphocytes, were distinct in different
melanoma samples (Figure 2C). Subsequently, we
examined differentially expressed genes (DEGs)
across various cell types and labeled markers specific
to each cell type. (Figures 2D-E).

Following the classification of melanoma
samples at the cellular level, our objective is to
establish a communication network between subtypes
of melanoma, immune, and stromal cells. The
comprehensive outcomes of the CellChat analysis are
visually represented in Figure 2 through Sankey
diagrams, dotplot, and chordal graphs. Subsequent
examination of incoming communication among
these cells unveiled a shared pattern between stromal
and melanoma cells (Supplement Figures 1A-B).
Furthermore, Supplementary Figures 1C-E provide
detailed insights into potential molecular interactions.
We can observe functional connections between these
clusters of cells.

Copy number variation (CNYV) analysis of
melanoma cell subtypes

The melanoma cells were divided into ten
clusters using cluster analysis and were visualized
according to the tumor samples (Figure 3A).
Moreover, we visualized the top ten marker genes for
each melanoma cell cluster (Figure 3B). Subsequently,
the CNV status from various cell types was
determined utilizing T and B lymphocytes as
reference controls using InferCNV analysis (Figure
3C). Consistent with the findings of Zhang et al. in
pre- and post-treatment samples of a single patient
who received immunotherapy, variations in CNV
were found on chromosome 4. The CNV observed in
tumor specimens displayed significant heterogeneity,
with varying degrees of CNV accumulation among
various patients and tissue types (Figure 3D).
Subsequently, we categorized all melanoma cells into
high- and low-CNV groups. Compared with
cutaneous melanoma (CM1) and melanoma cells
derived from cutaneous melanoma lymphatic
metastasis tissues (CMI1-lym) as well as pre-
(AM3-pre) and post-immunotherapy acral melanoma

tissues (AM3-post), CM1-lym and AM3-post tissues
exhibited significantly elevated CNV levels,
suggesting a more aggressive phenotype (Figure 3E).
The Gene ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) analyses for the DEGs
between both CNV tumor samples showed the related
pathways and functions (Figure 3F). Figure 3G-H
depicts that differences in gene expression patterns
were significant between CM1 and CM1-lym as well
as AM3-pre and AM3-post for melanoma cells.

CAF classification and pseudo-temporal
trajectories analysis of CAFs

The CAFs were classified into six distinct cell
subtypes (CAFsl-6) depending on biological
functions, cellular interactions, marker genes, and
spatial distribution in the TME. These subtypes
included vascular CAF (vCAF), pericyte, matrix CAF
(mCAF), inflammatory CAF (iCAF), tumor-like CAF
(tCAF), dividing CAF (dCAF), antigen-presenting
CAF (apCAF), and epithelial-like CAF (epi-CAF)
(Figures 4A-B)[19]. Figure 4C shows the respective
marker genes of different CAF subtypes.
Subsequently, we found that the differentiation
trajectory of different CAF cell subtypes was different
through pseudo-temporal trajectories analysis
(Figures 4D-E). Then, we applied gene set variation
enrichment analysis (GSVA) to reveal CAF functions,
demonstrating the related pathways of CAFs (Figure
4F). Besides, the markers of the four reclassified CAF
subtypes based on the pseudotime trajectories
analysis were shown in heatmaps (Figure 4G). The
main transcription factors for the CAF subtypes were
evaluated (Figure 4H). A multivariate COX regression
analysis for the CAFs1-6 identified the risk factors
depending on the individual gene expression levels
(Figure 4I).

Functional analysis of T cell subtypes.

Herein, we also focused on the immune cell
subtypes and classified them into five groups of
natural killer (NK) cells, seven groups of CD4 T cells,
four groups of CD8 T cells, and two groups of cycling
T cells depending on the marker gene expression
levels (Figures 5A-C). Moreover, we used Z-score to
show the expression of major genes in T cells in
melanoma samples (Figure 5D). The percentage of T
cell clusters between AM3-pre and AM3-post tissues
was represented on a proportion chart (Figure 5E).
The scRNA-seq data of gene expression levels in T
cells were collected from the GEO database for 33
melanoma patients with immunotherapy resistance
(GSE115978).  Furthermore, we divided the
immunotherapy-related T cells into two clusters:
CD4/8 T cells (Figure 5F). Meanwhile, we extracted
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706 marker genes associated with ICP therapy from  tissues, and eventually identified 33 IRTGs
these T cells, 509 markers of T cells from 11 melanoma  (Supplementary Table 1; Figure 5G).
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The IRTG prognostic signature construction
and validation

The results indicated 33 prognostic genes mainly
enriched in some immune-related pathways using a
KEGG analysis (Figures 6A-B). The LASSO and COX
regression analyses were conducted for these 33 genes
to identify six signature genes: IL27RA, PIM2,
PRDM1, LTB, GBP5, and PDE4B (Figures 6C-E). The
risk score was determined depending on the signature
gene expression levels alongside their corresponding
risk coefficient value as follows: [IL27RA expression

level x (-0.254915516014614)] + [PIM2 expression
level x (-0.333557686339427)] + [PRDM1 expression
level x (0.61377881693067)] + [LTB expression level x
(0.195208657137769)] + [GBP5 expression level x (-
0.443593637428344)] + [PDE4B expression level x (-
0.326705622270952)]. Depending on the risk score, 469
SKCM patients acquired from the TCGA database
were allocated into high- and low-risk groups. The
low-risk groups had higher ICP gene expression
levels (Figure 6F) as well as overexpressed IL27RA,
PIM2, PRDM]1, LTB, GBP5, and PDE4B, indicated by a
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heatmap (Figure 6G). Furthermore, the high-risk
group exhibited a heightened death incidence (Figure
6H). Multivariate COX regression analysis elucidated
that age, sex, tumor stage, and risk score could serve
as independent predictive factors (Figure 6I). The
Kaplan-Meier (KM) curves for the training cohort
from TCGA manifested that low-risk patients had a
significantly extended overall survival (OS; p < 0.001),
with 1-, 3-, and 5-year AUC values of 0.654, 0.659, and
0.683, respectively (Figure 6]). The outcomes from the

A B

four validation cohorts, GSE54467 (p = 0.036, 1-, 3-,
and 5-year AUC = 0451, 0559, and 0.595,
respectively), GSE65904 (p < 0.001, 1-, 3-, and 5-year
AUC = 0.615 0.656, and 0.634, respectively),
GSE22153 (p = 0.012, 1-, 3-, and 5-year AUC = 0.630,
0.658, and 0.539, respectively), and GSE59455 (p =
0.113, 1-, 3-, and 5-year AUC = 0.694, 0.583, and 0.619,
respectively), indicated that patients with a low-risk
score experience longer disease-free survival (DFS).
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TME and immunotherapy efficacy between
both risk groups

The study revealed a direct correlation between
risk scores and M2/MO0 macrophages and both resting
memory CD4 T cells and NK cells. Conversely, an
adverse association was found between risk scores
and yO T cells, follicular helper T cells, CD8 T cells,

activated memory CD4 T cells, plasma cells, and M1
macrophages (Figure 7A). Furthermore, the six
signature genes were related to several instances of
immune cell infiltrations (Figure 7B). Figure 7C
shows that the low-risk group exhibited elevated
stromal and immunological scores. Further, the
low-risk group that underwent various types of ICP
inhibition treatment had significantly increased
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immunophenoscores (IPSs; Figure 7D), indicating a
more favorable immunotherapeutic response. The
low-risk group had increased ICP gene expression
levels (Figure 7E), suggesting a possibility for
enhanced responsiveness to immunotherapy.
Moreover, we further confirmed the risk score

effectiveness in the prediction of ICI responses in the
PRJEB25780, iMvigor210, PRJEB23709, and GSE35640
cohorts. Patients with stable disease (SD)/progressive
disease (PD) had a lower risk score than those with
high risk (Figure 7F).
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The scRNA-seq analysis of the six signature datasets. The six signature genes were mainly
genes expressed in immune cells compared to stromal cells
(Figure 8A). Furthermore, Figures 8B-J show the
signature genes significantly expressed in the CD4/8
T cells.

Herein, we observed the six signature gene
expression levels in many immune cell types in ten
SKCM immunotherapy-related single-cell sequencing
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Figure 8. (A) The levels of six signature gene expressions in many immune cell types in ten SKCM immunotherapy-related scRNA-seq datasets. (B-J) The expression location of

the six signature genes in ten immunotherapy-related scRNA-seq datasets.

PED4B expression positively correlates with
tumor CD8+ T cell infiltration in SKCM

Differential expression levels were observed in
the six signature genes when comparing SKCM
patients to normal controls (Figure 9A). Patients

exhibiting elevated PED4B expression have a
prolonged OS, as the KM analysis shows (Figure 9B).
Interestingly, pathway analysis based on PDE4B
expression elucidated that PDE4B was mainly
involved in pathways related to programmed cell
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death (Figure 9C). Combined with the localization of
PDE4B in single cells (Figure 8), we speculated that
PDE4B might be involved in the CD8+ T cells effector
function. The TCGA database suggested that high
PDE4B expression was accompanied by higher CD8+
T cell infiltration (Figure 9D). To validate our
conjecture  further, we performed multiple

A B

Type = Normal = Tumor

immunofluorescence (IF) staining of PDE4B and CD8
using tissue microarrays. Excitingly, there was a
co-localized expression of PDE4B and CDS8 in tumor
tissues (Figure 9E), and PDE4B and CD8 expressions
were positively correlated (Figure 9F). Collectively,
our findings indicate that PED4B was correlated with
increased CD8 + T cell infiltration in SKCM.
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Discussion

Recently, the incidence of cutaneous melanoma
has elevated rapidly[3]. Melanoma patients who have
developed distant metastases have a 23% 5-year
survival rate, which makes it important to evaluate
melanoma prognosis[20]. Immunotherapy is now
regarded as a very promising and innovative method
for treating metastatic melanoma. The preferred first
treatment for this condition is using anti-PD1
antibodies[21]. However, the optimal first therapy for
people with advanced melanoma remains
uncertain[22]. Not all melanoma patients exhibit
sensitivity to immunotherapy, and a subset of them
have suboptimal immunotherapy responses and
significant adverse effects. These factors impede
immunotherapy progress in melanoma treatment[23].
Accordingly, developing a prognostic signature to
predict the melanoma patient prognosis and
immunotherapy effect is essential. This study
collected scRNA-seq data from 63,394 cells from the
GEO database of melanoma patients, which consisted
of pre- and post-treatment samples obtained from a
single patient who underwent immunotherapy[11],
and identified 509 DEGs in the T cells. T cells in
cancers have been identified to be related to better
outcomes for patients in many human malignant
tumors[24]. For example, active CD8+ T cell
infiltrations were recognized to be related to
improved OS in melanoma patients[25].

The TME is an intricate ecosystem consisting of
several interdependent cell populations[26]. The cell
populations consist of diverse infiltrating immune,
stromal, and tumor cells[26]. The constitution of the
TME has implications for the advancement and
spread of tumors, the immune response to tumors,
and the effectiveness of therapeutic
interventions[27-29].  Fibroblasts are the main
components of tumor stromal cells. Additionally,
CAFs are a diverse group of cells with multiple roles
in TME[30]. Therefore, to understand interactions
among cell populations and the impact of individual
cells on patient prognosis, it is crucial to study tumor
cell populations through scRNA-seq data. Our study
demonstrated the scRNA-seq atlases of 11 melanoma
tumors by identifying the T cells, CAFs, and
malignant cells. In addition, we found that cell
populations would influence and connect with each
other through CellChat analysis. Besides recognizing
DEGs in T cells, we also collected 706
immunotherapy-related genes by identifying the
marker genes in T cells from the GEO database
(GSE115978)[15]. Moreover, we screened 33 candidate
genes by combining 509 DEGs and 706
immunotherapy-related genes.

We identified six signature genes by performing
Lasso and Cox regression analysis for the 33
candidate genes. These particular methods were
chosen due to their ability to handle high-dimensional
data and their applicability in survival analysis,
respectively. The selected genes are known to have
significant involvement in immune response, making
them potential predictors for immunotherapy
outcomes.

Moreover, we can calculate the risk scores of
individuals based on the expression levels of
signature genes and the risk coefficient, which called
immunotherapy related genes in T cells (IRTGs)
prognostic model. The model can be used to forecast
the prognosis and immunotherapy responses of
melanoma patients. The melanoma patients in various
datasets, including TCGA, GSE54467, GSE65904,
GSE22153, and GSE59455, can be divided in high- and
low- risk groups according to the IRTs risk scores.
This risk stratification has the potential to transform
treatment decision-making processes by allowing
clinicians to tailor therapies based on an individual's
predicted response to immunotherapy. In addition,
we validated the prognostic value of IRTs risk scores
for comparing the survival status and
immunotherapy responses between the patients with
different risk scores. The prognosis and
immunotherapy effect of melanoma patients with
high-risk are worse than those with low-risk, which
may be used for guiding clinical stratified treatment.
For patients with low-risk, adjuvant chemotherapy
and immunotherapy may be considered before and
after surgery. For patients with high-risk, overall
surgical resection and radiotherapy should be
considered, and follow-up examinations should be
conducted frequently to monitor recurrence.

In this study, we identified six signature genes,
PDE4B, GBP5, LTB, PRDM1, PIM2 and IL27RA. The
signature gene PDE4B, higher expressed in patients
with more survival, was positive correlated with T
cells in melanoma tumors. As we mentioned, T cells in
cancers is associated with better outcomes of tumor
patients[31]. This suggests that the upregulation of
these genes may promote a stronger immune
response, potentially leading to improved patient
outcomes. Previous studies have found that lung
cancer patients with high GBP5 respond better to
immunotherapy and have a better prognosis[32], and
we firstly found that GBP5 may be beneficial for
patients in SKCM. Interestingly, inhibiting PIM
kinases, including PIM2, significantly enhanced the
antitumor efficacy of T cells in tumor-bearing mice
undergoing Adoptive T cell therapy. This effect was
further amplified when combined with anti-PD1
antibody treatment[33]. In addition, the PRDM1 and
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IL27RA have also been found to affect the prognosis
and development of tumors, such as hematological
malignancies and hepatocellular carcinomal[34, 35],
and their roles in SKCM have been reported for the
first time. However, the action of PDE4B have never
been reported in tumor, the exploration of PDE4B is
innovative. Further research into the role of PDE4B
and its relationship with T cell activity could yield
novel insights into its potential as a therapeutic target.

It must be noted that there are some limitations
to this study. First, the effect of the prognostic
signature in this study lacks validation of clinical
cases. In addition, this study integrates different
datasets for analysis, which may cause a little of
deviation. Although the number of samples is limited,
the use of single-cell RNA sequencing allows us to
analyze thousands of cells per sample. This extensive
cellular data provides significant statistical power to
our analysis. We recognize that increasing the number
of samples would further validate our findings and
improve statistical significance, which is an area for
future research.

Conclusions

Overall, we constructed a signature that can
stratify ~risk and predict prognosis and
immunotherapy responses in patients with SKCM.
Clinicians can develop individualized treatment plans
with this signature, especially when selecting patients
who could benefit from immunotherapy, which may
improve survival of patients. We also found the
signature gene PDE4B, higher expressed in patients
with more survival, was positive correlated with
CD8+ T cells in melanoma tumors.
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