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Abstract 

Background: Eosinophils, a type of white blood cell originating from the bone marrow, are widely believed to 
play a crucial role in inflammatory processes, including allergic reactions and parasitic infections. However, the 
relationship between eosinophils and liver cancer is not well understood. 
Methods: Tumor immune infiltration scores were calculated using single-sample Gene Set Enrichment 
Analysis (ssGSEA). Key modules and hub genes associated with eosinophils were screened using Weighted 
Gene Co-expression Network Analysis (WGCNA). Univariate and multivariate Cox analyses, along with 
LASSO regression, were used to identify prognostic genes and create a risk model. The Tumor Immune 
Dysfunction and Exclusion (TIDE) score was used to evaluate the immunotherapeutic significance of the 
eosinophil-associated gene risk score (ERS) model. Experiments such as flow cytometry, immunohistochemical 
analysis, real-time quantitative PCR (RT-qPCR), and Western blotting were used to determine gene expression 
levels and the status of eosinophil infiltration in tumors. 
Results: A risk trait model including 4 eosinophil-associated genes (RAMP3, G6PD, SSRP1, PLOD2) was 
developed by univariate Cox analysis and Lasso screening. Pathologic grading (p < 0.001) and model risk scores 
(p < 0.001) were found to be independent predictors of hepatocellular carcinoma (HCC) patient survival. 
Western blotting revealed higher levels of eosinophil peroxidase (EPX) in HCC tissues compared to adjacent 
normal tissues. Immunohistochemistry showed that eosinophils mainly infiltrated the connective tissue around 
HCC. The HCC samples showed low expression of RAMP3 and high expression of G6PD, SSRP1, and PLOD2, 
as detected by IHC and RT-qPCR analysis. The in vivo mouse experiments showed that IL-33 treatment induced 
the recruitment of eosinophils and reduced the number of intrahepatic tumor nodules. 
Conclusion: Overall, eosinophil infiltration in HCC is significantly correlated with patient survival. The risk 
assessment model based on eosinophil-related genes serves as a reliable clinical prognostic indicator and 
provides insights for precise treatment of HCC. 
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Introduction 
HCC accounts for 80-90% of primary liver 

cancers, and despite advances in screening and 
treatment technologies, the mortality rate for HCC 
continues to rise [1]. The prognosis for HCC patients 
remains unsatisfactory, and the 5-year survival rate 
was less than 18% [2]. Although surgery is considered 

the most effective means of treating cancer, only 
5-15% of liver cancer patients meet the criteria for 
surgical resection [3]. Recently immunotherapy has 
emerged as a promising way for HCC therapy. These 
include clinically administered targeted PD-L1/PD-1 
inhibitors and anti-CTLA4 antibodies [4]. However, 
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the problem with immunotherapy is that only a small 
proportion of HCC patients achieve a sustained 
response [5]. Therefore, there is a clinical need for new 
approaches to identify patients who respond to 
immunotherapy in order to further increase the 
benefit of immunotherapy for patients.  

Pathologic staging and the Barcelona Clinic 
Liver Cancer (BCLC) staging system are commonly 
used to predict patients' prognosis [6, 7], but clinical 
studies have shown that patients may have different 
risk of recurrence and death even if they belong to the 
same pathologic grade and stage [8]. The 
development and progression of malignant tumors 
are complicated processes in which various internal 
and external factors crosslink. Therefore, we can 
construct prognostic models from multiple 
perspectives to select and evaluate treatment methods 
targeting immunological, metabolic, epigenetic, and 
tumor microenvironment-related biomarkers [9–11].  

Eosinophils are granulocytes induced by 
GATA-1 from bone marrow hematopoietic stem cells 
[12], participating in tissue homeostasis and repair, 
parasite clearance, as well as the pathophysiology of 
various diseases, including allergic asthma and 
autoimmune diseases [13]. Many tumors are 
accompanied by infiltration of eosinophils in the 
tissues and increased levels in the blood. However, 
the role of eosinophils appears to differ across various 
tumors, they can either have antitumor effects or 
promote tumor progression [14, 15]. During the 
occurrence and development of malignant tumors, 
the production of eotaxin-1/CCL11 [16, 17], IL-5, 
eotaxin-2/CCL24 and RANTES/CCL5 can activate 
the chemokine receptors CCR3 and CCR1 on 
eosinophils [18, 19]. This activation promotes the 
migration and recruitment of eosinophils into the 
tumor microenvironment (TME) and activates 
eosinophils. In a study on colorectal cancer, 
eosinophils were found to indirectly promote the 
recruitment of CD8+ T cells into the TME by secreting 
chemokines, and they stimulate macrophages 
towards a pro-inflammatory (M1) phenotype [20]. 
The direct contact between human eosinophils and 
natural killer (NK) cells leads to an upregulation of 
NK cell effector functions and thus to an increased 
production of interferon (IFN)-γ. Recent studies have 
shown that increased eosinophil levels during ICB 
therapy are associated with responses to PD-1, PD-L1, 
or CTLA-4-targeted antibodies in patients with 
metastatic melanoma [21, 22], renal cell carcinoma 
[23], and non-small cell lung cancer [24]. However, 
the relationship between the development of HCC 
and eosinophil infiltration has not yet been clarified. 

Here, we found that eosinophil infiltration is 
associated with the prognosis of HCC patients. To 

explore additional prognostic biomarkers related to 
immune cells, we applied WGCNA to identify genes 
associated with eosinophil infiltration and used 
LASSO, univariate and multivariate Cox regression, 
to select four genes (RAMP3, G6PD, SSRP1, and 
PLOD2). We then established a prognosis model 
based on eosinophil infiltration. The model was 
validated against the GSE14520 database and 
experimental expression analysis and showed that it 
is able to stratify the risk of cancer patients. The model 
is also capable of distinguishing patient populations 
that respond to immunotherapy. The in vivo 
experiments have shown that IL-33-mediated 
eosinophil recruitment therapy can significantly 
control the number of liver tumor nodules in mice. 
Furthermore, we found that IL-33-mediated 
recruitment of eosinophils is also associated with the 
infiltration of CD8+ T cells and macrophages. The 
study reveals the effect of eosinophil infiltration on 
the development of HCC, constructs a risk model 
based on eosinophil-associated genes and suggests 
that this is important to improve the efficacy of 
personalized treatment for HCC patients. 

Methods and materials 
Data downloading and filtering 

The mRNA expression data and clinical 
information used for the analysis were downloaded 
from the TCGA-LIHC database and the GEO database 
GSE14520. The former contains 379 HCC samples and 
59 adjacent normal samples, while the latter contains 
241 tumor samples and 52 adjacent non-tumor 
samples. Prior to data analysis, samples from patients 
who had undergone chemotherapy were excluded to 
avoid potential effects of chemotherapy on the 
patients' immunologic microenvironment. The 
analyzed data excludes samples with missing survival 
information and samples with a survival time of less 
than 30 days. Finally, the analysis is performed on 327 
tumor samples from the TCGA-LIHC database. Data 
for all boxplots and correlation plots were derived 
from RNAseq data in fragments per kilobase of 
transcript per million mapped reads (FPKM) format 
from the Liver Hepatocellular Carcinoma (LIHC) 
project. Subsequently, the RNAseq data in FPKM 
format were transformed into log2 format. R software 
(version 3.6.3) was used to generate the box plots and 
correlation plots. TIDE analysis of the 
TCGA-processed data was downloaded to predict the 
potential response to immune checkpoint blockade in 
HCC [25].  

The landscape of immune cell infiltration 
Single-sample Gene Set Enrichment Analysis 

(ssGSEA) allows the calculation of enrichment scores 
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for each sample and gene set [26]. In this analysis, 28 
immune gene sets from the TISIDB were used as 
marker genes for immune cells [27]. The ssGSEA 
algorithm, implemented using R packages, was then 
used to assess immune infiltration scores for each 
sample. Scores were calculated for the 28 
immune-related cell types in each sample. Survival 
algorithms in R were then used to assess the 
relationship between the score of each immune cell 
type and patient survival, with a significance level of 
p < 0.05. 

Weighted gene co-expression network analysis 
The hierarchical clustering algorithm (hclust) 

was used to remove outlier samples, finally leaving 
the gene expression matrix with 300 samples. The R 
package WGCNA was applied to calculate the gene 
expression matrix for the selected 5000 representative 
genes from the TCGA-LIHC center. The optimal 
range for setting the soft threshold power (β-value) is 
between 1 and 20, and the pickSoftThreshold function 
was used to calculate the optimal power value and 
construct the adjacency matrix. By considering 
connectivity, it can be ensured that the distribution of 
genes corresponds to a scale-free network [28]. 

After obtaining the Topological Overlap Matrix 
(TOM) from the gene expression data, hierarchical 
clustering is used again to cluster the genes. The 
minimum size of gene modules is set to 50, and the 
threshold for merging modules is set to 0.15. 
Subsequently, the clustered gene results are divided 
to acquire distinct gene modules. To perform the 
correlation analysis between module characteristic 
genes and sample traits, a Pearson correlation test was 
performed. Then, the eosinophils are focused and the 
two modules that correlate most strongly with 
eosinophils were extracted for further analysis 
(p<0.05).  

Lasso-Cox regression analysis 
We found two modules containing 1039 genes 

that were correlated with eosinophils by WGCNA 
analysis. We combined these modules with the 
survival data and performed a univariate Cox 
analysis with gene expression levels as independent 
variables (p<0.001). To select the genes, we used the 
LASSO-Cox regression method, which prevents 
overfitting of the model and fine-tunes the model to 
avoid excessive compression of the coefficients. 
Ultimately, 4 genes were selected. Using the R 
package “My.stepwise”, we performed a stepwise 
regression analysis to select the optimal gene 
combination for multivariable regression analysis. 
Their coefficients were extracted to calculate a risk 
score for each patient. The formula for calculating the 

eosinophil-associated gene risk score (ERS) model is 
as follows: 

 
In the formula for calculating the risk, "X" stands 

for the mRNA level of the gene, and "Coefi" for the 
coefficient of the gene selected. The same calculation 
is also applied to the validation cohort in the 
GSE14520 database.  

Characteristic analysis of the 
eosinophil-related risk prediction model 

According to the risk assessment formula, each 
sample is assigned a risk assessment score. Patients 
with risk assessment scores above the median are 
categorized as the high-risk group, while patients 
with scores below the median are categorized as the 
low-risk group. Kaplan-Meier survival curves are 
generated using survival analysis algorithms in R to 
compare the differences in prognosis between the two 
subgroups. In addition, ROC curves are plotted to 
show the performance of the risk model. Univariate 
and multivariate Cox regression analyses are then 
performed to confirm whether ERS is a significant 
independent factor for the prognosis of patients with 
HCC.  

The expression of immune checkpoint-related 
genes and the clinical characteristics of patients in the 
high-risk and low-risk group are compared. This 
analysis evaluates the prognostic significance of the 
risk score, examines its independent impact on the 
survival of HCC patients, and explores the 
relationship between the expression of immune 
checkpoint-related genes and clinical characteristics in 
different risk groups. 

Validation of the risk prognosis models 
Based on the risk scoring model of the training 

dataset, the GSE14520 dataset was divided into 
high-risk group and low-risk group. A ROC curve 
was plotted to assess performance. Univariate Cox 
regression analysis was then performed to show that 
ERS is a meaningful independent prognostic factor for 
HCC patients [29]. An integrated column chart was 
constructed, combining the risk features with other 
clinicopathological characteristics. Finally, the 
performance of the nomogram was validated by 
plotting calibration curves. 

Functional enrichment analysis 
To calculate the logFC (log-fold change) value, 

we performed enrichment analysis using the 
clusterProfiler R package for Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways and Gene 
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Ontology (GO), with a P threshold of < 0.05. Using the 
KEGG database, we analyzed the significantly 
enriched pathways in low and high risk populations 
using Gene Set Enrichment Analysis (GSEA) software 
[30], with a threshold P-value < 0.05. 

Cell culture and intrahepatic mouse model  
The authenticated murine hepatocellular 

carcinoma cell line Hepa1-6 was purchased from 
Servicebio. Cells were cultured in Dulbecco's 
Modified Eagle Medium (DMEM, Thermo Science, 
USA) supplemented with fetal bovine serum (FBS, 
Thermo Scientific), penicillin G, and streptomycin 
(Invitrogen Life Technologies, USA). Cells were 
maintained in a humidified atmosphere containing 
5% CO2 at 37˚C. 1×10^6 tumor cells were injected into 
the left hepatic lobe of randomly selected male 
C57BL/6 mice aged 6-7 weeks. Three days after 
injection, recombinant IL-33 (rIL-33, PeproTech, USA) 
or PBS were administered intraperitoneally (IP) at a 
dose of 0.4 μg per mouse, three times a week for two 
consecutive weeks. After 17 days, mice were 
sacrificed and tumor weight and volume were 
recorded, followed by tumor tissue analysis. 

Flow cytometry analyses 
To detect eosinophils recruitment, mice were 

intravenously injected with rIL-33 or PBS at a dose of 
0.5 μg per mouse at 10:00 am and 7:00 pm. To isolate 
liver and lung parenchymal cells from mice, liver was 
perfused with HBSS buffer containing EDTA at 37°C 
for 5 min the following day at 14:00, followed by 
perfusion with 0.5 mg/mL collagenase IV (Coolaber, 
China) for 10 min. Cells were then isolated with 35% 
Percoll at 1.04 g/mL (Sigma-Aldrich, USA). The liver 
tissue was then incubated with NH4 lysis buffer at 
room temperature for 3 min to remove red blood cells, 
and the single cell suspensions were obtained by 
passed through a 70 μm filter. Cells were resuspended 
in PBS solution containing 1% BSA and stained with 
antibodies targeting various markers on ice and in the 
dark for 40 min. Anti-CCR3-APC (144511) and 
anti-Siglec F-PE (155505) antibodies were purchased 
from BioLegend, and anti-CD45-FITC (30-F11) from 
Elabscience. Flow cytometry analysis was performed 
using a MoFlo Astrios EQ flow cytometer 
(Beckman-Coulter, USA). Data analysis was carried 
out using FlowJo v10.8 software. 

Real-time quantitative PCR analysis 
Total RNA was extracted from HCC tissues 

using TRIzol reagent (Thermo Fisher Scientific), and 
reverse transcription to cDNA was performed using 
MMLV reverse transcriptase and random primers 
(Sangon, China). RT-qPCR based on SYBR Green 
(Invitrogen) was performed using the ABI 7900 

thermal cycler (Thermo Fisher Scientific) [31]. The 
reaction mixture was incubated at 95°C for 5 min, 
followed by 15 sec at 95°C and 20 seconds at 60°C. The 
PCR primers are listed in Supplementary Table 1. The 
relative expression values of the genes compared to 
the controls were calculated using 2-ΔΔCt. 

Western blots  
HCC tissues were homogenized and lysed in 

RIPA buffer [32]. The primary antibodies are rabbit 
polyclonal antibodies against EPX (bs-3381R, 1:2000, 
Bioss) and mouse monoclonal antibodies against 
GAPDH (AP0063, 1:5000, Abbkine). The secondary 
antibodies were HRP-conjugated goat 
anti-mouse/rabbit antibodies from ABclonal. The 
grayscale values were analyzed using Image J 
software. 

Immunohistochemical (IHC) analysis and 
immunofluorescence staining  

The experiments obtained approval from the 
Ethics Committee of Hunan Normal University and 
informed consent from involved patients. For IHC 
analysis, the HCC tissues were fixed with 
formaldehyde and embedded in paraffin (FFPE) as 
described [31, 33]. The primary antibodies are rabbit 
polyclonal antibodies against EPX, RAMP3 
(bs-11972R, 1:2000, Bioss), G6PD (R26802, 1:1000, 
Zenbio), SSRP1 (ER1901-13, 1:1000, Huabio) and 
PLOD2 (bs-12731, 1:1000, Bioss). 

For immunofluorescence staining, the primary 
antibodies used are anti-CD4 (GB11064, 1:1500), 
anti-CD8 (GB15068, 1:2000), and anti-F4/80 
(GB113373, 1:4000) from Servicebio. Each primary 
antibody was incubated overnight at 4°C. After 
incubation, the slides were washed and incubated at 
room temperature for 50 min with HRP-conjugated 
secondary antibodies. Tyramide signal amplification 
reagents (TSA, G1223/G1231, Servicebio) were then 
applied to amplify the signals for 10 min, which was 
repeated after incubation with the second primary 
and secondary antibodies. Finally, the slides were 
counterstained with DAPI to visualize the nuclei and 
the sections were mounted, followed by observing 
using an upright fluorescence microscope (Nikon 
ECLIPSE C1, Japan). 

Statistical analysis 
Calculations and statistical analyses were 

performed using R software version 4.2.2. The 
Wilcoxon rank-sum test and the Kruskal-Wallis test 
were used for comparisons between two groups and 
more than two groups, respectively. The 
Kaplan-Meier method and the log-rank test were used 
for survival analysis. LASSO, univariate, and 
multivariate Cox regression were performed to create 
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the prognostic model for HCC. The correlation of key 
genes was compared using the Pearson method. A 
p-value of 0.05 or less is statistically significant. 

Results 
Eosinophil infiltration is associated with the 
prognosis of HCC 

To present the infiltration of various immune 
cells in HCC, we used the ssGSEA algorithm to 
calculate the status of immune infiltration for each 
sample in the TCGA-LIHC dataset. The calculation 
revealed that the immune infiltration in adjacent 
tissues was generally higher than in HCC tissues 
(Figure 1A). Among the 28 types of immune cell 
infiltration scores, we found that the infiltration scores 
of eosinophils, activated CD8 T cells, and immature 
dendritic cells were correlated with patient survival (P 
< 0.05) (Figure 1B and Supplementary Figures 1A, B). 
Patients with higher infiltration of eosinophil and 
activated CD8 T cells tended to have longer survival, 
while lower infiltration of immature dendritic cells 
was associated with better survival. Previous reports 
have shown limited research on eosinophil infiltration 
in HCC and its impact on patient prognosis [34–36]. 
Using the ESTIMATE R package, we calculated the 
tumor purity of the samples and found a negative 
correlation between eosinophil infiltration and tumor 
purity scores (Supplementary Figure 1C). Eosinophils 
showed no correlation with memory B cells and 
monocytes but showed correlations with 25 other 
immune cell types (Figure 1C). Based on the 
eosinophil infiltration score, TCGA-LIHC tissues were 
then divided into two subgroups for further analysis 
(Figure 1D). These data suggest that high eosinophil 
infiltration is positively correlated with HCC patient 
survival.  

The four genes RAMP3, G6PD, SSRP1 and 
PLOD2 were selected to construct the risk 
model 

Next, we applied the hclust algorithm to remove 
outliers and obtained 300 liver cancer samples. The 
clinical characteristics of the included HCC patients 
are summarized in Supplementary Table 2. The 
pickSoftThreshold function determined the optimal 
power value of 8. Within each module, a minimum of 
50 genes was set, and an adjacency matrix was 
constructed, resulting in the identification of 8 
modules (Figures 2A-C). And the MEblue and 
MEpink modules had the highest correlation with 
clinical features (Figure 2D). Therefore, we selected 
these two modules for further analysis. 

Univariate Cox regression analysis showed that 
215 genes associated with patient survival (p<0.001) 

were screened. Lasso analysis was used to narrow the 
selection to 11 genes (Figure 3A). We then used the 
My.stepwise algorithm to determine the optimal 
combination for risk assessment and performed 
multivariable Cox regression analysis to calculate the 
weight of each gene expression in relation to 
prognostic risk (Figure 3B). Finally, four genes 
(RAMP3, G6PD, SSRP1, PLOD2) were selected to 
construct a prognostic risk assessment model as 
eosinophil-associated genes. And RAMP3 showed a 
positive correlation with the favorable prognosis of 
patients, while the expression of G6PD, SSRP1 and 
PLOD2 was inversely correlated with the favorable 
prognosis (Figure 3C). The ERS calculation is as 
follows: 

ERS= -0.159737× RAMP3+ 0.190134× G6PD+ 
0.537636× SSRP1+ 0.238630× PLOD2 

Statistical analysis revealed that the patients 
with an increase in ERS tended to have higher tumor 
grades (Supplementary Figure 1D). The HCC samples 
were then divided into a low-risk group and a 
high-risk group based on ERS.  

Construction of the Prognostic Nomogram 
and validation of the ERS-based risk model 

We used TCGA-LIHC as the training cohort 
while GSE14520 as the validation cohort. Based on the 
median risk score, HCC patients were divided into a 
low-risk group and a high-risk group (Figure 4A). The 
distribution of risk scores in the training cohort and 
the visualization of high-risk and low-risk patients in 
the validation cohort are shown in Figure 4. 
Kaplan-Meier analysis showed that in both the 
TCGA-LIHC and GSE14520 cohorts, the low ERS 
group had longer OS than the high ERS group (Figure 
4B). The model we constructed can distinguish 
high-risk patients in the HCC cohort. The ROC 
analysis revealed that the one-year AUC value for the 
training group (TCGA-LIHC) was 0.819 while the 
one-year AUC value for the validation group 
(GSE14520) was 0.692 (Figures 4C, D). The eosinophil 
infiltration-based risk model provides a higher overall 
AUC in prediction compared with the single gene risk 
prediction models (Supplementary Figures 2A-D), 
multi-gene models have better prognostic 
performance than single-gene models, suggesting that 
our nomogram has good accuracy in predicting 
survival rates. The calibration plot of the nomogram 
displayed good consistency with observed 
probabilities (Figures 4C, D). Multivariate Cox 
analysis revealed that tumor stage and ERS are 
independent risk factors influencing the prognosis of 
patients with HCC (Figure 5A). Then, we constructed 
a prognostic nomogram consisting of gender, RS, 
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tumor grade and clinical stage to quantitatively 
predict the prognosis and survival rate of HCC 
patients (Figure 4E). For example, a 68-year-old male 
was diagnosed with Stage I HCC, with a high-risk 
score of 9.601378. Then we can calculate the patient′s 
total score as 120, which corresponds to survival rates 

of 0.905, 0.78, and 0.624 at 1 year, 3 years, and 5 years, 
respectively. Taken together, these results suggest 
that our constructed nomogram has significant 
prognostic value for HCC patients and predicts the 
risk score of HCC patients based on various 
parameters.  

 

 
Figure 1. Correlation between eosinophil infiltration and patient survival. (A) ssGSEA immune infiltration scores for 28 immune cells in TCGA liver cancer database; 
(B) Kaplan-Meier survival curve for eosinophil infiltration scores; (C) Correlation between 28 immune cells by TCGA-LIHC; (D) Heatmap grouped by eosinophil infiltration 
scores. *, P < 0.05; **, P < 0.01; and ***, P < 0.001. 
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Figure 2. Screening of genes associated with clinical features Using WGCNA. (A) Application of the hclust algorithm to remove outliers. (B) Scale independence and 
average connectivity. (C) Gene clustering dendrogram identifying a total of 8 modules. (D) Heatmap showing the correlation between modules and clinical features, with each cell 
containing the corresponding correlation and P-value. 
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Figure 3. Construction of the ERS risk assessment model. (A) Lasso analysis was performed to find 4 genes related to patient survival. (B) Univariate COX regression 
analysis. (C) Kaplan-Meier survival curves for RAMP3, G6PD, SSRP1 and PLOD2 in the TCGA-LIHC database. *, P < 0.05; **, P < 0.01; and ***, P < 0.001. 

 

Gene pathway enrichment results based on 
ERS  

To better understand the gene pathway 
enrichment for eosinophil infiltration and associated 
gene expression, we performed GO and KEGG 
analysis by grouping based on gene expression levels, 
eosinophil infiltration scores, and ERS scores. Gene 
enrichment analysis revealed that the four genes were 
related to pathways such as the cell cycle, DNA 
replication, nucleotide repair and amino acid excision 
metabolism (Supplementary Figures 3A-D), 
suggesting that the expression of these genes is 
associated with tumor progression. To investigate the 
differences in gene function and signaling pathways 
between the ERS subgroups, we then performed GO 

analysis and KEGG analysis. The results of GO 
analysis revealed that the differential genes were 
primarily enriched in small molecule catabolism, fatty 
acid metabolism and cell mitosis (Figure 5B). The 
results of KEGG analysis showed that the 
differentially expressed genes (DEGs) were enriched 
in pathways such as cell cycle, non-alcoholic fatty 
liver disease, cofactor biosynthesis, carbon 
metabolism, and amino acid metabolism (Figure 5C). 
The high ERS group exhibited higher activity in 
signaling pathways such as DNA replication, cell 
cycle, homologous recombination and microRNAs in 
cancer, while the low ERS group showed higher 
activity in signaling pathways such as chemical 
carcinogenesis-DNA adducts, fatty acid degradation 
and drug metabolism (Figures 5D-F).  
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Figure 4. Validation of the risk prognostic model in TCGA and GSE14520 Databases. (A) HCC patients from TCGA and GSE14520 databases categorized into 
high-risk group and low-risk group based on median ERS. (B) Kaplan-Meier survival curves for high-risk group and low-risk group in TCGA and GEO databases. (C) TCGA-LIHC 
database: ROC curves predicting 1-year, 3-year, and 5-year survival rates with ERS, and calibration curves of the column chart. (D) ROC curves predicting 1-year, 3-year, and 
5-year survival rates with ERS, and calibration curves of the column chart in GEO database. (E) Nomogram combining common clinical parameters with ERS. 
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Figure 5. Differential gene enrichment analysis. (A) Univariate Cox regression analysis of ERS, age, gender, and pathological grading. (B) Based on the ERS, patients were 
divided into high-risk and low-risk groups. Bubble charts for GO analysis. (C) Bubble charts for KEGG analysis. (D-E) GSEA analysis showing six significantly enriched pathways 
in the high-risk and low-risk groups.  

 
GO analysis and KEGG analysis revealed that 

differential genes between the high/low eosinophil 
infiltration group were enriched in aspects related to 

T cell activation, T cell division and differentiation 
(Supplementary Figures 4A, B), suggesting a potential 
correlation between eosinophil infiltration and T cell 
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activity. These results indicate that the ERS model is 
closely linked to major pathways involved in tumor 
progression. 

The ERS model can predict response to 
immunotherapy 

To visualize the distribution of clinical variables 
in the low/high ERS subgroups, R package 
ComplexHeatmap analysis was performed in Figure 
6A. The clinical subtyping scores of the low-risk and 

high-risk groups based on gender, tumor grade and 
clinical stage are shown in Supplementary Figures 
4C-K. Since the eosinophil score correlated with the 
scores of other immune cells, TCGA-LIHC data 
analysis revealed a significant correlation between the 
eosinophil infiltration score and the expression of 
immune checkpoint genes, suggesting that eosinophil 
infiltration may contribute to the efficacy of 
immunotherapy (Figure 6B). 

 

 
Figure 6. The ERS model and immune therapy response. (A) Heatmap of the distribution of clinical case features in the ERS high group and ERS low group patients; (B) 
Relationship between eosinophil infiltration and expression of genes related to immune therapy response. (C) Comparison of TIDE prediction scores between low-risk and 
high-risk groups; (D) Comparison of TIDE predicted immune therapy response group and non-response group ERS scores. *, P < 0.05; **, P < 0.01; and ***, P < 0.001. 
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To explore whether the ERS model can 
distinguish patients undergoing immunotherapy, we 
analyzed the relationship between eosinophil 
infiltration and the expression of some genes related 
to immune checkpoints. Consistent with the analysis 
of eosinophil infiltration scores, the expression of 
most immune checkpoint-related genes is generally 
higher in the high-risk group than in the low-risk 
group, such as CD276, CD80 and VTCN1 
(Supplementary Figure 5A). We further investigated 
whether ERS could serve as a predictive indicator for 
immunotherapy in HCC patients. A negative 
correlation between TIDE scores and risk scores was 
observed (Figures 6C, D). TIDE scores above 0 are 
often considered unfavorable for response to anti-PD1 
or anti-CTLA4 immunotherapy and patients in the 
high-risk group showed higher TIDE scores 
compared with those in the low-risk group [37]. 
Therefore, it is likely that patients with HCC in the 
low-ERS will respond to immunotherapy.  

The expression of eosinophil-associated genes 
is confirmed in HCC samples  

Eosinophil peroxidase (EPX) was used to 
evaluate the infiltration of eosinophils in HCC [38]. 
IHC results from samples of three stage II HCC 
patients revealed that eosinophils were primarily 
located within the HCC and the surrounding 
connective tissues (Figure 7A and Supplementary 
Figure 5B). Western blot analysis demonstrated that 
EPX expression was higher in HCC tissues compared 
to adjacent non-tumor tissues (Figure 7B). Analysis of 
the TCGA-LIHC data revealed that in high-risk HCC, 
RAMP3 expression was downregulated, while the 
expression of G6PD, PLOD2 and SSRP1 were 
upregulated (Figure 7C). To confirm these findings, 
immunohistochemistry showed that compared to 
adjacent non-tumor tissues, RAMP3 expression was 
downregulated, whereas the expression of other three 
genes expression were upregulated in HCC samples 
(Figures 7D, E). RT-qPCR results corroborated the 
findings in IHC analysis (Figure 7F). The differential 
expression of these four genes between HCC and 
adjacent normal tissues highlights their significance as 
prognostic markers for HCC. 

IL-33-driven eosinophil recruitment could 
inhibit intrahepatic tumor development 

Just as in human liver tumors, mouse liver also 
recruits a large number of eosinophils after the 
injection of Hepa1-6 cells, forming mouse orthotopic 
liver tumors (Figures 8A, B). Consistently, we found 
that IL-33 can drive eosinophil infiltration into the 
liver as reported [39]. We hypothesized that 
intentionally inducing eosinophil accumulation in 

tumors through rIL-33 might enhance the therapeutic 
benefits of autoimmunity in cancer. Flow cytometry 
analysis showed that rIL-33 led to an increase in 
eosinophils abundance of the liver (Figure 8C). And 
the number of intrahepatic tumor nodules in mice 
injected with rIL-33 was significantly reduced (Figure 
8D). Moreover, rIL-33-mediated eosinophils 
promoted the infiltration of CD8+ T cells, CD4+ T cells 
and macrophages into tumors (Figures 8E, F), 
accompanied by a significant increase in expression 
levels of effector factor IFN-γ. These results revealed 
that rIL-33 can participate in the recruitment of 
eosinophils in the liver and enhance the antitumor 
activity of certain immune cells, indicating the 
feasibility of using rIL-33-mediated eosinophil 
recruitment to treat HCC. 

Discussion 
HCC is the third most leading cause of cancer 

death worldwide [40]. Currently, the use of systemic 
therapies, including tyrosine kinase inhibitors (TKIs), 
immune checkpoint inhibitors (ICIs) and monoclonal 
antibodies, has significantly improved overall 
survival and life quality for HCC patients [41]. 
However, monotherapy with ICI provided significant 
clinical benefit in only about 15-20% of HCC patients 
who received immune checkpoint therapy [42, 43]. 
The challenge we face is to identify appropriate 
biomarkers to recognize this subgroup. In melanoma, 
eosinophils are considered one of the most promising 
cellular biomarkers for post-ICI cancer treatment and 
may even be effector cells in the terminal stage, 
especially for anti-CTLA4 and anti-PD-1 antibodies 
[44, 45]. However, there are currently few studies on 
the relationship between eosinophil infiltration and 
prognosis of HCC. We performed ssGSEA analysis on 
HCC patients from the TCGA database to calculate 
the infiltration score of eosinophils in HCC, high 
eosinophil infiltration in HCC patients is associated 
with longer survival. Some studies in a variety of 
solid tumors suggest that group 2 Innate Lymphoid 
Cells (ILC2) in the TME can directly influence the 
proliferation of eosinophils by releasing type 2 
cytokines (IL-4, IL-13 and IL-5) and indirectly mediate 
the recruitment of eosinophils into the TME [46]. 
Here, we found that eosinophil infiltration may be 
beneficial for prolonging the survival of HCC patients 
These results suggest that eosinophils may play an 
important role in the development, progression and 
immunotherapy of HCC. 

Based on the eosinophil infiltration score 
grouping, we conducted WGCNA analysis on 
TCGA-LIHC data to explore the potential role of 
eosinophil-related genes in HCC patients. After a 
series of screening, we identified four 
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eosinophil-related genes (RAMP3, G6PD, SSRP1 and 
PLOD2). RAMP3 protein is known to transport the 
calcitonin receptor-like receptor (CRLR) to the cell 
membrane and help CRLR to act as a receptor for 
adrenomedullin (ADM), calcitonin gene-related 
peptides (CGRP) and amylin [47, 48]. RAMP3 
therefore serves as a crucial transducer for several 
autocrine signals triggered by these peptides. In liver 
cancer, increased expression of RAMP3 can mitigate 
the negative effects of TP53 mutations on patient 

survival [49]. In our study, high expression of RAMP3 
positively correlated with a good prognosis in HCC. 
Tumor cells have a high demand for NADPH, which 
is produced via the PPP pathway [50]. G6PD is 
considered the only enzyme that regulates the pentose 
phosphate pathway (PPP). Some studies suggest that 
targeting this requirement by inhibiting G6PD could 
be a therapeutic strategy for HCC [51]. Our analysis 
consistently indicated a positive correlation between 
G6PD and poor prognosis in liver cancer. 

 

 
Figure 7. Multi-level experimental validation of differential gene expression in adjacent and HCC tissues. (A) Representative images of IHC validation showing the 
expression of the eosinophil marker gene EPX in adjacent non-tumor tissues and HCC samples. Black arrows indicate positive cells (B) Western blot analysis of the expression 
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of EPX in adjacent and tumor tissues. (C) Differential expression of RAMP3, G6PD, SSRP1 and PLOD2 in adjacent and tumor tissues from the TCGA-LICN database. (D, E) 
Representative IHC images indicating the expression of RAMP3, G6PD, SSRP1 and PLOD2 in adjacent non-tumor tissues and tumor tissues. Scale bar represents 50 μm. (F) 
RT-qPCR showing the expression differences of RAMP3, G6PD, SSRP1 and PLOD2. *, P < 0.05; **, P < 0.01; and ***, P < 0.001. 

 
Figure 8. IL-33 drives recruitment of eosinophils and activates immune cells in HCC. (A) Male C57BL/6 mice were subjected to intrahepatic injection of Hepa1-6 
cells. Three days post-injection, the mice received intraperitoneal injections of IL-33 or PBS three times a week, with a dosage of 0.4 μg per mouse. After 17 days, the mouse livers 
were collected, the number of liver tumor nodules was counted, and the tissues were embedded (n=7). (B) Eosinophil infiltration in normal mouse liver and HCC tissues was 
detected via Western blot analysis. (C) Following intraperitoneal injection of rIL-33/PBS, eosinophil infiltration was analyzed using flow cytometry after non-parenchymal cells 
were extracted from mouse livers. (D) Representative images of mouse liver nodules following rIL-33/PBS treatment. (E) Representative images of immunofluorescence staining 
of CD8 (red) and F4/80 (green) on mouse liver sections. (F) Representative images of immunofluorescence staining of CD4 (green) and IFN-γ (red) on mouse liver sections. Scale 
bar represents 50 μm. *, P < 0.05; **, P < 0.01; and ***, P < 0.001. 

 
Structure-Specific Recognition Protein 1 (SSRP1) 

is a subunit of the Facilitates Chromatin Transcription 
(FACT) complex, a histone chaperone that plays a key 
role in DNA replication, repair and transcription [52–
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55]. SSRP1 is reported to be upregulated in many 
tumors and is associated with a poorer prognosis [56]. 
Consistently, elevated expression of SSRP1 correlated 
with poor prognosis in HCC. Lysyl hydroxylase 2 
(LH2), encoded by the PLOD2 gene, is a key enzyme 
that mediates collagen cross-linking [57]. Some 
studies suggest that LH2 may promote tumor 
invasion and metastasis [58, 59]. And PLOD2 is highly 
expressed in tumor tissues compared to normal 
tissues, including liver cancer [60]. In accordance with 
these, patients with high PLOD2 expression have 
significantly shorter overall survival. However, the 
molecular mechanisms underlying the relationship 
between gene expression and eosinophil infiltration 
were not elucidated in this study, which will be 
investigated in the next research. 

A prognostic risk model for HCC was 
constructed using four genes associated with 
eosinophil infiltration. Multivariate Cox regression 
analysis of ERS and clinicopathological features 
showed that ERS and cancer stage are independent 
prognostic factors for HCC. The ERS model was 
validated using ROC and calibration curves with GEO 
data. Compared to similar studies, our risk model 
achieved a one-year AUC of 0.819, surpassing the 
macrophage-based models (one-year AUC: 0.706) 
[61], the neutrophil-based models (one-year AUC: 
0.769) [62], and the hypoxia-based models (one-year 
AUC: 0.73) [63]. This indicates that eosinophil 
infiltration impacts the progression of HCC, and also 
demonstrates the high efficacy of our prognostic 
model, which will be validated in real cohorts. 

Research has shown that eosinophil depletion 
markedly reduces the anti-melanoma effects 
mediated by IL-33, along with the recruitment and 
activation levels of CD8+ T cells and NK cells [64], 
which suggests that eosinophils can enhance T cell 
activity, thereby indirectly inhibiting the growth of 
primary tumors. In our study, the TCGA-LIHC data 
analysis showed a strong correlation between 
eosinophil scores and the scores of other immune 
tissues. Eosinophil infiltration scores revealed 
significant associations with the expression of 
immunotherapy response-related genes. The 
eosinophil infiltration-based risk score model can 
distinguish patients who respond to anti-PD1 and 
anti-CTLA4 immunotherapy from those who do not. 
And the co-operation between eosinophils and T cells 
enhances the response to ICI therapy [65]. The In vivo 
mouse experiments demonstrated that IL-33 could 
induce the recruitment of eosinophils, CD4+ T cells, 
CD8+ T cells, and macrophages to HCC, significantly 
reducing the number of tumor nodules. In addition, 
eosinophils may inhibit liver tumor metastasis by 
enhancing the activity of NK cells [66]. In conclusion, 

eosinophil infiltration in HCC is beneficial for patients 
receiving immunotherapy. 

In summary, we have established and validated 
a risk score model based on the eosinophil model to 
predict the overall survival of HCC patients and 
differentiate sensitivity to immunotherapy between 
high/low risk groups. Treatment with IL-33 to 
promote the recruitment of eosinophils can effectively 
inhibit the progression of liver cancer in mice. Our 
findings could contribute to a deeper understanding 
of eosinophil infiltration in HCC and provide a new 
risk score model for precision medicine to make 
treatment decisions at different tumor stages of HCC.  
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