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Abstract 

Background: The preoperative identification of neoadjuvant chemotherapy (NAC) treatment 
responsiveness in breast cancer (BC) patients is advantageous for tailoring treatment regimens. There is 
a relative scarcity in the current research exploring NAC treatment responsive biomarkers using bulk 
sequencing data obtained from fine-needle aspiration (FNA). 
Materials and Methods: Limma was employed for the selection of differentially expressed genes. 
Additionally, WGCNA, machine learning, and Genetic Perturbation Similarity Analysis (GPSA) were 
utilized to identify key genes associated with NAC treatment response. ConsensusClusterPlus was 
employed for unsupervised clustering. Rt-qPCR and WB were conducted to assess gene expression and 
protein levels in clinical tissues and cell lines. The Seahorse XF96 Extracellular Flux Analyzer was utilized 
to evaluate Extracellular Acidification Rate (ECAR) and Oxygen Consumption Rate (OCR). The 
"pRRophetic" package was used for drug sensitivity prediction, while CB-Dock2 was applied for 
molecular docking and optimal pose presentation. Spatial transcriptomic analysis was based on the 
CROST database. 
Results: Eleven biomarkers were identified associated with NAC treatment response in BC patients, 
with FOXA1 identified as a pivotal hub gene among them. The expression levels of FOXA1 showed a 
significant positive correlation with genomic stability and a marked negative correlation with the 
homologous recombination deficiency (HRD) score. Downregulation of the FOXA1 gene resulted in 
reduced glycolysis in MCF-7 cells.Additionally, FOXA1 were found to serve as a biomarker for both NAC 
and PARP inhibitor treatment sensitivity in BC patients. Spatial transcriptomic analysis indicates 
significantly elevated infiltration of T follicular helper (T-FH) cells and mast cells surrounding tumors 
exhibiting high FOXA1 expression. 
Conclusion: In summary, our study involved the analysis of diverse sequencing datasets derived from 
various FNA samples to identify biomarkers sensitive to NAC, thereby offering novel insights into 
resources for future personalized clinical treatment strategies. 
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Introduction 
Among all women in the world, breast cancer 

(BC) has the highest incidence rate and the second 
highest case fatality rate; Therefore, it seriously 
damages the physical and mental health of women, 
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bringing a heavy social and family medical burden[1]. 
The management of BC encompasses a 
multidisciplinary approach, primarily consisting of 
surgical intervention, chemotherapy, radiotherapy, 
endocrine therapy, and targeted therapy. Among 
these, the most frequently performed surgical 
modality is the modified radical mastectomy for 
BC[2]. However, when the tumor is large or has 
extensive axillary lymph node metastasis, it is 
considered impossible to perform a one-stage surgical 
resection. Preoperative neoadjuvant chemotherapy 
(NAC) can reduce the size of the tumor and increase 
the possibility of radical surgery[3]. Due to the 
heterogeneity of tumors, some patients with BC have 
a high response to NAC, with significant tumor 
regression and a relatively lower risk of postoperative 
recurrence[4]. However, other patients who are not 
sensitive to NAC may face difficulties in undergoing 
radical surgery and a high risk of postoperative 
recurrence. Therefore, screening and identifying 
relevant biomarkers for NAC treatment 
responsiveness, and predicting the responsiveness of 
BC patients to NAC treatment through these 
biomarkers, have high clinical application value. 

Fine needle aspiration (FNA) biopsy is one of the 
most commonly used methods for evaluating the 
nature of nodules in the breast[5]. FNA technology is 
fast and simple, and has great speed advantages and 
cost-effectiveness in BC diagnosis[6]. FNA combined 
with high-throughput sequencing technology is a 
more convenient way for clinicians to assess tumor 
heterogeneity between different BCs before 
developing treatment plans for BC tumors, in order to 
develop personalized treatment plans. However, 
there are still few studies on using the BC gene 
expression profile obtained by this FNA to predict the 
response to NAC treatment. Therefore, further 
exploration and development of new molecular 
typing methods for BC tumors based on FNA to 
prospectively predict the response to NAC treatment 
are beneficial for the formulation of appropriate 
treatment plans. 

In summary, this study aims to extensively 
collect sequencing datasets of BC tumors obtained 
through FNA prior to the initiation of NAC treatment. 
The objective is to explore the heterogeneity between 
tumors of patients with responsive and 
non-responsive outcomes to NAC, and to develop 
novel molecular classification schemes to optimize the 
prediction of NAC treatment response. Furthermore, 
we delved deeper into the identification of key genes 
related to NAC treatment responsiveness and their 
potential biological functions, which was verified 
through experimental methods. The flowchart of this 
study is shown in Supplementary Fig. 1. 

Materials and Methods 
Acquisition of data 

Gene Expression Omnibus (GEO; 
http://www.ncbi.nlm.nih.gov/geo/) was used to 
obtain the gene expression profile and clinical 
information[7, 8]. For this study, the following 
inclusion and exclusion criteria were used to acquire 
appropriate datasets. (1) The sample size cannot be 
too small (n＞50). (2) Patients in datasets had received 
standardized NAC regimen prior to surgery. (3) The 
expression profile data was derived from specimens 
obtained through FNA before NAC. The study 
ultimately included five data sets, including 
GSE20194 (n=278), GSE20271 (n=178), GSE22093 
(n=103), GSE23988 (n=61) and GSE42822 (n=91). 
Supplementary Table 1 summarized the clinical 
information of patients in these datasets. The 
“InSilicoMerging” R package was used to merge the 
above datasets into “merge data”, using “COMBAT” 
for batch effect removing[9]. The principle of combat 
removing batch effects is mainly based on the 
adjustment of location and scale, L/S. This method is 
of great significance in improving data quality, 
enhancing data consistency, ensuring the accuracy 
and reliability of analysis results, improving research 
reproducibility, and promoting data integration[10, 
11]. 

Weighted Gene Co-Expression Network 
Analysis (WGCNA) 

After removing the top 50% genes with the 
smallest Median Absolute Deviation (MAD) and 
using the "goodSamplesGenes" algorithm to remove 
outliers, the remaining samples and genes were 
included in the WGCNA analysis[12]. We set the 
threshold as follows: minimum module size = 30; 
sensitivity = 3; module merging threshold = 0.25; 
β=7[13]. Finally, we used different colors of modules 
to represent different clusters of co-expressed genes, 
and the set of genes that were deemed unable to be 
assigned to any module was grouped into the “grey” 
module. Then, analysis was conducted on the 
correlation between module eigengenes and clinical 
traits, aiming to identify notable modules that 
exhibited a significant association with clinical 
characteristics. By setting the threshold to Module 
Membership (MM)>0.8 and Gene Significance 
(GS)>0.1, we obtained the hub genes in each 
co-expression module[8, 13-16]. 

Differential analysis and Gene set enrichment 
analysis 

The gene differential analysis was performed 
using the “LIMMA” package, with a threshold set at 
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an absolute fold change greater than 1.5 and a False 
Discovery Rate (FDR) less than 0.05[17]. Gene 
enrichment analysis was completed through the 
Metascape database (https://metascape.org/gp/ 
index.html#/main/step1), which integrates all KEGG 
Pathways, GO Biological Processes, Reactome Gene 
Sets, Canonical Pathways, CORUM, and 
WikiPathways[18]. In addition, we leveraged the 
single-sample Gene Set Enrichment Analysis (ssGSEA) 
approach to derive enrichment scores for specific 
pathways across different samples, thereby 
evaluating the activation status of these pathways[19]. 

Unsupervised consensus clustering 
The process of cluster analysis was executed 

utilizing the ConsensusClusterPlus package, employ-
ing an agglomerative pam clustering methodology 
with 1-Pearson correlation distances[20]. 
Additionally, the analysis involved resampling 80% of 
the samples and iterating this procedure 10 times. The 
identification of the optimal cluster count was 
achieved by evaluating the empirical cumulative 
distribution function plot. 

Genetic Perturbation Similarity Analysis 
(GPSA) 

The GPSA database (https://www.gpsadb 
.com/) has curated 3048 gene perturbation RNA-seq 
datasets and performed differential analysis on each 
of them, resulting in 6096 gene sets that correspond to 
specific gene perturbations such as gene 
knockouts[21]. The gene perturbation RNA-seq 
datasets in the GPSA database primarily originate 
from cell lines. These gene sets provide insights into 
the transcriptional changes that occur when specific 
genes are perturbed, enabling researchers to gain a 
deeper understanding of the functional roles and 
interactions of genes within biological systems. When 
the pattern of differentially expressed genes obtained 
through differential analysis based on a certain 
phenotype grouping is similar to that of 
corresponding gene sets derived from gene 
perturbations, it suggests a close association between 
that phenotype and the gene perturbations that led to 
the generation of those gene sets. This indicates that 
the phenotype may be influenced or mediated by the 
functional changes caused by the perturbations of the 
specific genes within those gene sets. 

Machine learning 
There are three machine learning methods 

included in this study, including Support Vector 
Machine (SVM), Least Absolute Shrinkage and 
Selection Operator (LASSO), and XGboost[22-24]. 
SVM is implemented using the "e1071" R package, 
and all parameters of SVM are set to default 

values[25]. The “glmnet” package was utilized to 
conduct Lasso modeling, incorporating a 10-fold 
cross-validation approach[26]. The Lasso parameter 
Alpha was set to 0.1[27]. We utilize the R package 
“xgboost” for training XGBoost models as well as for 
estimating SHapley Additive exPlanations (SHAP) 
values, where SHAP values exceeding 30 are 
considered as indicating key genes[28]. All other 
settings in the XGBoost analysis are set to their default 
values. 

Pan-cancer analysis 
The expression data for Pan-Cancer, as well as 

the comprehensive TCGA PanCancer Atlas dataset, 
were sourced from UCSC Xena (accessible at 
http://xena.ucsc.edu/). To illustrate the gene 
expression levels, box plots were employed. 
Furthermore, the normalized gene expression values, 
measured in transcripts per million (TPM), are 
presented in log2(TPM + 1) format for each individual 
gene. 

Reverse Transcription-Quantitative PCR 
(RTqPCR) and Immunohistochemistry (IHC) 

RNA extraction was performed utilizing TRIzol 
reagent sourced from Ambion, USA. Subsequently, 
the conversion of mRNA to cDNA was achieved 
through the application of PrimeScriptTM RT Master 
Mix from Takara, Japan. Quantification of gene 
transcripts was conducted via the RT-qPCR assay, 
employing ChamQ SYBR qPCR Master Mix provided 
by Vazyme, China. Evaluation of relative gene 
expression levels was conducted using the 2-ΔΔCT 
method, with GAPDH serving as the internal 
reference gene. For the measurement of FOXA1 and 
GAPDH expression levels, specific primer sequences 
were utilized: FOXA1's forward primer was 
5′-GGAGGAGCGGATTCAGGAGGAG-3′ and its 
reverse primer was 5′-AGCAGATGATGTTGG 
CGGTAATGG-3′; GAPDH's forward primer was 
5′-GGAGCGAGATCCCTCCAAAAT-3′ and its 
reverse primer was 5′-GGCTGTTGTCATAC 
TTCTCATGG-3′. To ensure accuracy, the experiment 
was replicated thrice and the average values were 
calculated. The RT-qPCR method was utilized to 
determine gene expression levels. 

The study involved samples obtained from eight 
BC patients admitted to The Third Affiliated Hospital 
of Anhui Medical University. These samples were 
subjected to RT-qPCR analysis. Prior to inclusion in 
the study, all patients provided informed consent. 

For IHC analysis, data was retrieved from the 
HPA database and The Third Affiliated Hospital of 
Anhui Medical University. The Average Optical 
Density (AOD) was adopted as the scoring method 
for statistical analysis. Professional pathologists 
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utilized the ImageJ software to measure the AOD, 
with a minimum of three measurements per sample 
taken to determine the mean AOD values. 

Western blotting analysis 
Following the digestion process utilizing RIPA, 

the total protein contents of both MCF-7 cells were 
successfully extracted. To quantify the cellular protein 
levels, we employed a BCA kit from Beyotime 
(P0011). For protein separation, a 10% SDS-PAGE gel 
was utilized, with each lane loaded with 50 grams of 
protein. The isolated proteins were then transferred 
onto polyvinylidene difluoride (PVDF) membranes, 
which were further blocked with 5% milk to minimize 
non-specific binding. For primary antibody detection, 
we selected rabbit-derived anti-FOXA1 (Abcam, cat. 
no. ab170933, dilution 1:1,000), anti-GLUT1 (Abcam, 
cat. no. ab115730, dilution 1:100,000), anti-HK2 
(Abcam, cat. no. ab209847, dilution 1:1,000), 
anti-LDHA (Abcam, cat. no. ab52488, dilution 
1:3,000), anti-GAPDH (Abcam, cat. no. ab8245, 
dilution 1:3,000) and anti-β-Actin (Abcam, cat. no. 
ab8227, dilution 1:1,000). Subsequently, following 
thorough washing with TBS-T buffer, the membranes 
underwent a 1-hour incubation period at 4°C with 
secondary antibodies conjugated to horseradish 
peroxidase (HRP), sourced from Abcam (cat. no. 
ab6721, dilution 1:2,000). In order to achieve color 
development, we employed the enhanced 
chemiluminescence (ECL) chemical hypersensitivity 
chromogenic reagent kit. Finally, the intensity of the 
proteins was precisely measured using ImageJ 
software. 

Cell culture 
We procured the human BC cell line MCF-7 from 

the American Type Culture Collection (ATCC). These 
cells were cultured in Dulbecco's Modified Eagle's 
Medium (DMEM; Gibco, Massachusetts, USA; catalog 
number: 31966047) at 37 °C and 5% CO₂, 
supplemented with 10% fetal bovine serum (FBS; 
Gibco, Massachusetts, USA; catalog number: 
10500064) and 1% penicillin-streptomycin (Gibco, 
Massachusetts, USA; catalog number: 15070063). To 
ensure cellular stability, all experiments were 
conducted using cells that had undergone fewer than 
25 passages. FOXA1 expression in MCF-7 cells was 
knocked down through transfection with 
FOXA1-specific small interfering RNA (siFOXA1; 
GenePharma, Shanghai, China), facilitated by 
Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA), 
and executed in accordance with the manufacturer's 
prescribed protocol. The siRNA sequences were 
precisely designed as: 5′-GGACUUCAAGGCAUAC 
GAATT′ (sense) and 5′-UUCGUAUGCCUUGAAGU 

CCAG-3′ (antisense). Non-targeting siRNA (siNC) 
served as the control in this experimental setup. 

Assessment of cellular metabolic activity 
To evaluate Extracellular Acidification Rate 

(ECAR) and Oxygen Consumption Rate (OCR), 
Seahorse XF96 Extracellular Flux Analyzer was 
implemented, referencing a prior study[29, 30]. In 
summary, 4 × 10^4 cells were plated ontoXF96 cell 
culture microplates. The Seahorse buffer was 
composed of DMEM, phenol red, 25 mM glucose, 2 
mM sodium pyruvate, and 2 mM glutamine. For 
ECAR assessment, 10 mM glucose, 1 μM oligomycin, 
and 100 mM 2-deoxy-glucose (2-DG) were 
sequentially injected to quantify ECAR values[31]. 
Subsequently, after baseline respiration monitoring, 1 
μM oligomycin, 1 μM FCCP (Carbonyl 
cyanide-4-(trifluoromethoxy) phenylhydrazone), and 
1 μM rotenone were automatically added to the XF96 
cell culture microplates for OCR measurement[32] . 

Predicting drug sensitivity and molecular 
docking 

To determine the half maximal inhibitory 
concentration (IC50), a regression analysis was 
conducted using the pRRophetic package in the R 
programming environment. The "pRRophetic" 
package, which we utilized for our analysis, was 
developed based on the Genomics of Drug Sensitivity 
in Cancer (GDSC) database[33]. Our primary focus 
was on predicting the IC50 values for PARP 
inhibitors, specifically Rucaparib (AG-014699), 
Veliparib (ABT-888), and Olaparib (AZD2281). 
Molecular docking was performed using the 
CB-Dock2 online tool (https://cadd.labshare.cn/ 
cb-dock2), which is a molecular docking program 
based on AutoDock Vina[34]. All parameters were set 
to their default values. The molecular structures of the 
drugs were obtained from the PubChem database 
(https://pubchem.ncbi.nlm.nih.gov/), while the 
protein structure of FOXA1 was sourced from the 
RCSB Protein Data Bank (https://www.rcsb.org/)[35, 
36]. 

Statistical analyses 
R software, version 4.0.4, was employed for the 

execution of all statistical procedures. To compare 
continuous variables, the Wilcoxon/Kruskal-Wallis 
Test was adopted[37]. For evaluating differences in 
proportions, the Chi-Square test was utilized. 
Statistical significance was defined by a p-value below 
0.05. Furthermore, a receiver operating characteristic 
(ROC) curve was plotted to evaluate the predictive 
efficacy of the prognostic prediction model. For 
correlation analysis, the Spearman correlation method 
was implemented. 
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Figure 1: Merging datasets and removing batch effect. UMAP diagram before (A) and after (B) batch effect removal. The density plot before (C) and after (D) batch effect 
removal. 

 

Results 
Identification of key modules and biomarkers 
of NAC for BC through WGCNA method 

Before batch effect removal, UMAP plot shows 
distinct clustering for each dataset (Fig. 1A), 
indicating batch effects. Post-removal, samples from 
various datasets cluster interchangeably (Fig. 1B), 
suggesting effective elimination. Density plot reveals 
significant differences in sample distribution before 
removal (Fig. 1C), suggesting batch effects. 
Post-removal, distributions converge with similar 
means and variances (Fig. 1D). The above results 
suggested that we successfully removed batch effects 
when merging GSE20194, GSE20271, GSE22093, 
GSE23988, and GSE42822. 

After excluding outlier samples and genes, we 
constructed a scale-free co-expression network with a 
β value set to 7 (Fig. 2A-2C). A total of 14 
co-expression gene modules were identified, and the 
genes within each module are compiled in 
Supplementary Table 2 (Fig. 2D). The black module 
showed the most significant positive correlation with 
pCR after NAC treatment in BC patients (R=0.28, 
p<0.001), while the brown module exhibited the most 
significant negative correlation (R=-0.29, p<0.001). 
Consequently, the genes within these two modules 
were identified as "NAC-WGCNA-related genes" and 
were included in the subsequent analysis. The black 
module contains a total of 153 genes, while the brown 

module comprises 324 genes (Fig. 2E). Upon 
correlating the modules with clinical characteristics, 
the MM and GS values for the black and brown 
modules were determined (Fig. 2F&2G). Utilizing the 
threshold values of |MM| greater than 0.8 and |GS| 
greater than 0.1 as standards for filtering core genes 
(NAC-WGCNA-Hub genes), a total of 14 hub genes 
were identified within the black module, while 10 hub 
genes were selected from the brown module 
(Supplementary Table 3). 

Pathway enrichment analysis was performed on 
the genes from the black module and the brown 
module. The genes in the black module were 
primarily enriched in pathways related to the cell 
cycle, such as the mitotic cell cycle, DNA metabolic 
process, DNA replication, and positive regulation of 
the cell cycle process (Fig. 3A). Conversely, the genes 
in the brown module were primarily enriched in cell 
metabolism-related pathways, including metabolism 
of lipids, small molecule biosynthetic process, 
regulation of kinase activity, organic acid catabolic 
process, and organic hydroxy compound metabolic 
process (Fig. 3B). 

Identification of DEGs between BC patients 
with different treatment response of NAC 

Through LIMMA, we identified DEGs between 
BC patients who achieved pCR and RD after NAC 
treatment (NAC-DEGs), and found that a total of 69 
genes were down-regulated in the pCR group and 52 
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genes were up-regulated in the pCR group (Fig. 4A). 
The top 20 genes that were up-regulated and 
down-regulated are displayed in the heatmap (Fig. 
4B). KEGG enrichment analysis revealed that NAC- 
DEGs were primarily enriched in Cytokine-cytokine 
receptor interaction, Complement and coagulation 
cascades, and Viral protein interaction with cytokine 
and cytokine receptor (Fig. 4C). GO enrichment 
analysis revealed that NAC-DEGs were primarily 
enriched in cell surface, side of membrane, cell 
population proliferation, regulation of cell death, and 
signaling receptor binding (Fig. 4D-4F). 

Single Nucleotide Variation (SNV) and Copy 
Number Variation (CNV) landscape of key 
genes related to NAC treatment response 

Using the venny2.1.0 tool (https://bioinfogp 
.cnb.csic.es/tools/venny/index.html), we intersected 
NAC-DEGs and NAC-DEGs, and found a total of 11 
intersecting genes (NAC-pCR related genes; Fig. 5A). 
Four of the 11 genes (CDC20, CEP55, FOXM1 and 
MELK) had lower expression levels in BC patients 
with pCR, while the remaining genes were 
up-regulated in BC patients with pCR (Fig. 5B). In 
addition, all genes showed significantly up-regulated 
expression levels in BC tumor tissues (Fig. 5C). We 
further explored the SNV and CNV landscape of these 
11 genes in the TCGA-BRCA dataset. The 
chromosomal locations of all genes are displayed in 
Figure 5D. In BC tumors, more than 10% of samples 

have CNV gain for GATA3 and FOXA1, while the 
highest proportion of CNV loss for MLPH is about 8% 
in BC tumor samples (Fig. 5E). Among the 991 BC 
tumor samples, GATA3 had the highest frequency of 
somatic SNVs, accounting for 13%; followed by 
FOXA1, accounting for 3%; AGR2, CA12, CEP55, 
CDC20, TBC1D9, and MELK had very few somatic 
SNVs (Fig. 5F). We further explored the impact of 
SNV and CNV on the expression level of FOXA1 
gene, and found that the expression level of FOXA1 
gene was significantly up-regulated after SNV 
mutation, while the expression level of FOXA1 gene 
was significantly down-regulated after CNV deletion 
(Fig. 5G). 

Construction of a new molecular typing 
scheme to predict the response of BC patients 
to NAC treatment 

We used the above 11 NAC-pCR related genes 
for unsupervised clustering to construct a new 
molecular typing scheme that can predict the 
therapeutic response of BC patients to NAC based on 
the expression profiles of samples obtained from 
FNA. According to the area under the CDF curve and 
the intra-group consistency evaluation, the optimal 
number of clusters in the merge data is K=2 (Fig. 
6A-6C). Therefore, all the samples obtained through 
FNA were classified into two clusters. CDC20, CEP55, 
FOXM1, and MELK are highly expressed in cluster 2 
(C2), while the remaining genes are highly expressed 

 

 
Figure 2: The results of WGCNA. (A) Clustering samples for merge data. (B) Cluster dendrogram indicating co-expressed gene modules. (C) Identification of soft threshold 
9for WGCNA. (D) WGCNA and module-trait correlation analysis. (E) The number of genes in each gene module. Scatter plot of correlation between GS and MM for black 
module (F) and brown module (G).  
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in cluster 1 (C1) (Fig. 6D). Not only are the samples in 
the merge data well divided into two clusters, but the 
respective independent datasets GSE20194, GSE20271, 
GSE22093, GSE23988, and GSE42822 can also be well 
divided into two clusters using this molecular typing 
scheme (Fig. 6E). This molecular typing scheme has a 
good predictive ability for the response of BC patients 
to NAC. Patients classified into cluster 2 
predominantly constitute the majority of patients who 
achieve pCR, and this phenomenon is not only 
observed in the merge data but also consistent across 
the independent datasets (Fig. 6F-6G). 

Moreover, the landscape of NAC-pCR related 

genes obtained through FNA can also effectively 
diagnose BC tumors. Through three dimensionality 
reduction methods (PCA, UMAP, tSNE) using 11 
NAC-pCR related genes, tumor samples and normal 
samples can be effectively separated. Through three 
dimensionality reduction methods (PCA, UMAP, 
tSNE) using 11 NAC-pCR related genes, tumor 
samples and normal samples can be effectively 
separated (Supplementary Fig. 2A). Furthermore, 
individual NAC-pCR related genes also demonstrate 
diagnostic efficacy for BC tumors, particularly 
CDC20, CEP55, FOXM1, and MELK, with AUC values 
exceeding 0.9 (Supplementary Fig. 2B). 

 
 

 
Figure 3: Enrichment analysis results of genes in the black module (A) and brown module (B). 
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Figure 4: Differential analysis results between pCR and RD patients. (A) Volcano plot showing DEGs. (B) Heatmap showing the top 20 upregulated and downregulated genes 
in pCR patients. (C) KEGG enrichment analysis of DEGs. GO enrichment analysis for DEGs, including CC (D), BP (E), and MF (F). 
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Figure 5: Identification of NAC-pCR related genes. (A) The Venn diagram showing the intersection genes of the Hub genes in the black and brown modules in WGCNA, and 
the DEGs obtained from limma. (B) The expression level differences of NAC-pCR related genes between pCR and RD patients. (C) The expression levels of NAC-pCR related 
genes in BC tumor and normal breast tissue samples. (D) The chromosomal location of NAC-pCR related genes. (E) Gain and loss frequencies of CNVs of NAC-pCR related 
genes in TCGA-BRCA’s BC patients. (F) Waterfall plots of mutant NAC-pCR related genes. Transcriptomic expression levels of FOXA1 with different SNV (G) and CNV 
statuses (H). 

 

Differences in pathways between BCs with 
different therapeutic responses to NAC 

We used the ssGAEA algorithm to evaluate the 
enrichment of 22 tumor-related pathways in different 
groups of BC patients, and the key genes included in 
each pathway were summarized in Supplementary 
Table 4. Significant upregulation was observed in the 
cell DNA damage repair and cell cycle-related 
pathways in BC patients who achieved pCR. 
Additionally, immune-related antigen presentation 
and processing, as well as CD8+ T cell 
function-related pathways, also exhibited significant 
upregulation (Supplementary Fig. 3A). The extensive 
differences in pathway enrichment between cluster 
C1 and cluster C2, which were classified using the our 
molecular typing scheme, suggest that this molecular 
typing approach effectively distinguishes BC tumors 
with different heterogeneities (Supplementary Fig. 
3B). It is noteworthy that the four genes (CDC20, 
CEP55, FOXM1 and MELK) that were up-regulated in 
BC patients who achieved pCR showed a significant 
positive correlation with pathways related to DNA 
damage repair and cell cycle (Supplementary Fig. 3C). 
This is indeed consistent with the fact that some drugs 
in the NAC regimen target DNA replication during 
the cell cycle. 

Machine learning and GPSA analysis identify 
FOXA1 as a key gene for NAC treatment 
response 

We further used three machine learning 
methods, namely SVM (Supplementary Fig. 4A), 
XGBoost (Supplementary Fig. 4B), and Lasso 
(Supplementary Fig. 4C), as well as the GPSA 
algorithm to screen key genes among the 11 
NAC-pCR related genes. The GPSA algorithm 
identified a total of 275 gene perturbations related to 
achieving pCR with NAC treatment (Supplementary 
Table 5). By integrating machine learning methods 
and GPSA, FOXA1 was identified as a key gene 
associated with pCR (Fig. 7A). In the D21558 dataset 
in GPSA (Supplementary Table 5), the gene 
expression pattern that was up-regulated after 
knockdown of FOXA1 was inversely correlated with 
BC patients who achieved pCR; the gene expression 
pattern that was down-regulated after knockdown of 
FOXA1 was positively correlated with BC patients 
who achieved pCR (Supplementary Fig. 4D,4E). 
Moreover, after knocking down FOXA1, the variation 
of Hallmarks pathway in cells and the variation of 
Hallmarks pathway in BC patient samples that 
reached pCR showed a strong significant negative 
correlation R = -0.971, p < 0.001 (Supplementary Fig. 
4F). 
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Figure 6: Identification of a new molecular classification scheme. (A) Variation of area under the CDF curve. (B) CDF curves when k=2–10. (C) A visualization of 
cluster-consensus trends, depicting the average pairwise consensus score for each subtype across varying k-values. (D) Heatmap of expression levels of NAC-pCR related genes 
among different clusters. (E) Heatmap of unsupervised consensus clustering. In the merged data (F) and individual datasets (G), the proportion of patients in different clusters 
among RD and pCR BC patients. 
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Besides FOXA1, other genes also identified by 
GPSA as having undergone gene perturbation, such 
as gene knockouts, exhibit gene expression patterns 
similar to or opposite to those of BCs that have 
reached pCR. We showed the top 20 genes with the 
highest GPSI scores and the changes in the 
enrichment of 50 Hallmarks pathways after 
perturbation of these genes (Supplementary Fig. 
5A,5B). GPSI is a measure of the variation in gene 
expression landscape and the similarity of inputted 
preset differential genes and rank ordering before and 
after gene perturbation. A higher GPSI score indicates 
a greater correlation. The percentage of times each 
hallmark gene set was enriched was exhibited in 
Supplementary Fig. 5C. 

The potential biological function of FOXA1 in 
BC tumors 

In the GEPIA database, FOXA1 is significantly 
overexpressed in BC tumor tissues, and the FOXA1 
protein level in BC tumor sample tissues in the HPA 
database is also significantly higher than that in 
normal tissues (Supplementary Fig. 6A,6B). FOXA1 is 
located in the cytoplasm of many tumor cell lines, not 
only in the breast cancer cell line MCF-7 
(Supplementary Fig. 6C). In addition, we used the 
breast cancer spatial transcriptome data project 
number: VISDS000554 in the CROST database 
(https://ngdc.cncb.ac.cn/crost/home) to explore the 
expression pattern of FOXA1 (Supplementary Fig. 6D). 
FOXA1 is mainly highly expressed in tumor sites; 
compared to other immune cells, T follicular helper 
T-FH cells and Mast Cells have significantly higher 
levels of infiltration around tumors with high FOXA1 
expression. This suggests that the expression of 
FOXA1 may have a potential impact on the pattern of 
immune cells infiltrating within tumors. 

In order to further identify the potential 
biological function of FOXA1 in breast cancer, we 
conducted GSEA analysis of KEGG pathway based on 
FOXA1 expression in merge data, and found 19 
pathways with significant changes (Supplementary 
Table 6). Exploring the changes in pathway 
enrichment after knockdown of FOXA1 gene using 
the GPSA tool, a total of 44 KEGG pathways were 
enriched (Supplementary Table 7). Overall, three 
pathways, including OXIDATIVE 
PHOSPHORYLATION, AUTOIMMUNE THYROID 
DISEASE and PEROXISOME, showed significant 
differences in enrichment in both GSEA analysis 
using FOXA1 gene expression levels and FOXA1 gene 
knockdown (Fig. 7B). PEROXISOME pathway was 
significantly enriched in BC samples with high 
FOXA1 expression, while OXIDATIVE 
PHOSPHORYLATION and AUTOIMMUNE 

THYROID DISEASE pathways were significantly 
enriched in BC samples with low FOXA1 expression 
(Fig. 7C). Consistently, the OXIDATIVE 
PHOSPHORYLATION and AUTOIMMUNE 
THYROID DISEASE pathways were significantly 
upregulated after knockdown of FOXA1 in cells, 
while the PEROXISOME pathway was significantly 
downregulated after knockdown of FOXA1 in cells 
(Fig. 7D-7F). In addition, the pan-cancer analysis 
suggests that the activation of these three pathways is 
also significantly correlated with FOXA1 in other 
cancer types. In the TCGA database, the 
PEROXISOME pathway was also significantly 
enriched in BC samples with high FOXA1 expression, 
while the OXIDATIVE PHOSPHORYLATION and 
AUTOIMMUNE THYROID DISEASE pathways were 
also significantly enriched in BC samples with low 
FOXA1 expression; this is consistent with our results 
obtained from the merge data. Previous literature 
suggests that the reduction of oxidative 
phosphorylation is closely related to the peroxisome 
and glycolysis in tumor cells[38-40]. Therefore, we 
further explored the correlation between FOXA1 gene 
expression and the activation of glycolysis pathway 
(Fig. 8A). Based on the median value, the BC patients 
in the merge data were divided into the FOXA1 high 
group and the FOXA1 low group. The FOXA1 high 
group had a higher degree of activation of the 
glycolysis pathway. Furthermore, FOXA1 was 
significantly positively correlated with the key genes 
ALDOA and HK1 of glycolysis, and was significantly 
negatively correlated with ENO1 (Fig. 8B-8E). 

FOXA1 affects the homologous 
recombination repair (HRR) status of BC 
tumor 

The relationship between tumor homologous 
recombination deficiency (HRD) and chemotherapy 
efficacy has been widely investigated. Therefore, we 
further explored the relationship between FOXA1 and 
HRD in BC tumors. In recent times, a novel biomarker, 
the HRD score, has been introduced, grounded on 
distinctive genomic scar signatures to detect 
Homologous Recombination Deficiency (HRD), 
independent of its etiological or mechanistic origins. 
The HRD score represents an unweighted summation 
of three pivotal metrics: Loss of Heterozygosity 
(LOH), Large-Scale State Transitions (LST), and 
Telomeric Allelic Imbalances (TAI), mathematically 
expressed as HRD = LOH + LST + TAI. This approach 
offers a comprehensive assessment of HRD status. We 
obtained the HRD scores of all samples in 
TCGA-BRCA from previous literature 
(Supplementary Table 8)[41]. The higher the score, the 
more severe the defect in the HRR pathway. 
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Regardless of whether it pertains to HRD, TAI, LST, 
or LOH scores, a significant reduction is observed in 
BC samples that exhibit high expression of FOXA1. 
Furthermore, there exists a noteworthy negative 
correlation between these scores and the level of 
FOXA1 gene expression (Fig. 9A-9C). According to 
previous literature, BC patients with HRD scores 

greater than 42 are defined as HRD-positive, and the 
proportion of HRD-positive patients in BC patients 
with low expression of FOXA1 is significantly 
reduced (Fig. 9D). In summary, FOXA1 can protect 
the function of the HRR pathway and reduce genomic 
instability in BC patients. 

 

 
Figure 7: Identification of key genes associated with pCR of NAC. (A) Intersection genes obtained by three machine learning methods and GPSA analysis. (B) Venn diagram of 
the intersection between significantly altered KEGG pathways after FOXA1 knockdown and KEGG pathways significantly associated with FOXA1 expression levels as indicated 
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by GSEA. (C) GSEA analysis results of three intersecting KEGG pathways with changes in FOXA1 expression. (D) The OXIDATIVE PHOSPHORYLATION pathway is 
significantly upregulated in the FOXA1 knockdown group (left). Pan-cancer analysis of the correlation between the OXIDATIVE PHOSPHORYLATION pathway and FOXA1 
expression levels (middle). In TCGA-BRCA, the OXIDATIVE PHOSPHORYLATION pathway and FOXA1 expression levels show a significant negative correlation (right). (E) 
The AUTOIMMUNE THYROID DISEASE pathway is significantly upregulated in the FOXA1 knockdown group (left). Pan-cancer analysis of the correlation between the 
AUTOIMMUNE THYROID DISEASE pathway and FOXA1 expression levels (middle). In TCGA-BRCA, the AUTOIMMUNE THYROID DISEASE pathway and FOXA1 
expression levels show a significant negative correlation (right). F) The PEROXISOME pathway is significantly downregulated in the FOXA1 knockdown group (left). Pan-cancer 
analysis of the correlation between the PEROXISOME pathway and FOXA1 expression levels (middle). In TCGA-BRCA, the PEROXISOME pathway and FOXA1 expression 
levels show a significant positive correlation (right). 

 
Figure 8: The relationship between FOXA1 and glycolysis. (A) The enrichment level of the glycolysis pathway between the high FOXA1 group and the low FOXA1 group. (B) 
The correlation between the expression levels of key genes in the glycolysis pathway and FOXA1. FOXA1 is significantly positively correlated with ALDOA (C), negatively 
correlated with ENO1 (D), and positively correlated with HK1 (E). 
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Pan-cancer analysis of FOXA1 
FOXA1 exhibits differential expression in 

numerous tumor samples, with up-regulated 
expression levels in tumor tissues of CEST, LUAD, 
BRCA, STAD, PRAD, and PAAD, and 
down-regulated expression levels in tumor tissues of 
COAD, KIRP, HNSC, and KICH (Supplementary Fig. 
7A). In renal tumors, such as KIRP and KIRC, FOXA1 
expression levels increase with increasing T stage 
(Supplementary Fig. 7B). Compared to KIPAN 
tumors in stage M0, KIPAN tumors in stage M1 have 
significantly higher expression of FOXA1; while in 
colorectal cancer, COAD and COADREAD, the 
expression level of FOXA1 in tumors in stage M1 is 
significantly down-regulated (Supplementary Fig. 7C). 
In BRCA tumors, the level of FOXA1 is lower in stage 
N0; whereas in KIRP tumors, the expression level of 
FOXA1 is significantly upregulated in a sequential 
manner from stage N0 to N1 to N2 (Supplementary 
Fig. 7D). It is worth mentioning that in renal tumors, 
including KIRP, KKIPAN, and KICH, the expression 
level of FOXA1 in advanced tumor stages III and IV is 
significantly higher than that in early tumor stages I 
and II (Supplementary Fig. 7E). 

The experimental validation of the association 
between FOXA1 and the genomic instability 
and glycolysis in BC 

In BC, the gene expression levels and protein 
expression levels of FOXA1 were significantly higher 
compared to those in adjacent normal breast tissues 
and benign breast tumors (Fig. 10A-10B). IHC 
analysis reveals that the number of FOXA1-positive 
cells in BC is substantially higher than that in adjacent 
normal tissues (Fig. 10C). Our findings above 
indicated a significant negative correlation between 
FOXA1 and HRD characteristics in BC, wherein HRD 
represents a crucial form of genomic instability. In the 
TCGA-BRCA cohort, the majority of the top ten genes 
with the highest mutation rates were significantly 
more mutated in patients with low FOXA1 expression 
(Supplementary Fig. 8A). Additionally, four tumor 
gene mutation-related indicators, including APOBEC 
Enrichment score, MATH score, TCW score, and TMB 
score, were all significantly higher in patients with 
low FOXA1 expression (Supplementary Fig. 8B). This 
suggested that patients with low FOXA1 expression 
bear a higher frequency of gene mutations. 

Utilizing the HPA database, we conducted a 
comprehensive search for BC patients with both 
FOXA1 and UBQLNA (a key marker of genomic 
instability, with increasing expression levels 
correlating with higher degrees of genomic 
instability) immunohistochemical data. Our analysis 

revealed a decrease in UBQLNA expression with 
increasing levels of FOXA1 protein expression, 
demonstrating a significant negative correlation 
between the AOD values of FOXA1 and UBQLNA 
(Fig. 10D). To further validate our findings, we 
employed immunofluorescence to investigate the 
correlation between FOXA1 and γ H2AX, a 
phosphorylated protein whose robust positivity 
indicates a higher level of genomic instability. High 
levels of γH2AX were observed in BC cells with 
weak or negative FOXA1 expression, whereas a 
significant reduction in γH2AX levels was noted in 
BC cells exhibiting strong FOXA1 positivity (Fig. 10E). 
ECAR and OCR are indicators of glycolysis, reflecting 
the metabolic status of glycolysis. The Seahorse XF 
extracellular flux analyzer revealed that the 
downregulation of FOXA1 in BC cells decreased the 
level of ECAR while increasing the level of OCR 
(Supplementary Fig. 9A-9B). Furthermore, WB 
analysis revealed that the expression levels of 
glycolysis-related molecular markers were decreased 
following the knockdown of FOXA1 (Supplementary 
Fig. 9C). Therefore, FOXA1 enhances the potential of 
BC cells to undergo glycolysis.  

Predictive Potential of FOXA1 for Sensitivity 
to PARP Inhibitors 

The pRRophetic algorithm suggested that BC 
patients with low FOXA1 expression are more 
sensitive to PARP inhibitors, both in the merge data 
and the TCGA-BRCA cohort (Fig. 11A). Molecular 
docking suggested that PARP inhibitors and FOXA1 
protein have a good interaction; the best docking 
scores of Rucaparib, Veliparib, and Olaparib with 
FOXA1 were -7.9, -7.4, and -5.1, respectively (Fig. 
11B). 

Discussion 
The response of advanced-stage BC patients to 

NAC is vital for predicting tumor recurrence and 
prognosis[42, 43]. Exploring new gene biomarkers 
and their biological mechanisms to predict NAC 
response holds significant clinical importance. 
However, previous studies primarily examined 
post-surgical tumor samples, with limited research 
analyzing pre-chemotherapy samples obtained 
through FNA. Our study integrated five 
high-throughput sequencing data obtained through 
FNA and identified 11 genes as biomarkers for 
predicting NAC response through FNA. We also 
validated FOXA1 as a key gene regulating BC 
glycolysis and genomic instability, affecting NAC 
response.  
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Figure 9: The relationship between FOXA1 and HRD. (A) The TAI, LST, LOH, and HRD scores between the high FOXA1 group and the low FOXA1 group. FOXA1 is 
significantly negatively correlated with TAI, LST, LOH (B), and HRD (C) scores. (D) The proportion of HRD-positive and HRD-negative breast cancer patients between the high 
FOXA1 group and the low FOXA1 group. 
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Figure 10: FOXA1 and Its Association with Genomic Instability. RT-qPCR (A) and WB (B) showing the mRNA and protein expression levels of FOXA1 in BC tumors, adjacent 
normal breast tissues, and benign breast tumors, respectively. (C) IHC analysis revealing the differences in the number of FOXA1-positive cells between BC and adjacent normal 
breast tissues. (D) Correlation between FOXA1 and UBQLN4 protein expression levels in the same patient in the HPA database. (E) Immunofluorescence showing the 
correlation between the expression levels of FOXA1 and γH2AX proteins. 
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Figure 11: Drug Sensitivity Prediction and Molecular Docking. Prediction of PARP Inhibitor IC50 in High and Low FOXA1 Expression Groups in merge data (A) and 
TCGA-BRCA Using the pRRophetic Algorithm. (B) Docking of PARP Inhibitors with FOXA1 using CB-Dock2 and displaying the Top Five Docking Scores and the Conformation 
of the Highest Scoring Docking Pose. 

 
Sequencing data from large surgical specimens is 

typically more stable and reliable. However, for 
high-throughput sequencing data from FNA samples, 
special attention may be needed during data analysis 
to ensure the reliability of the results, due to potential 
noise and bias in the data. Additionally, the limited 
DNA or RNA quantity in FNA samples may impose 
restrictions on sequencing depth, potentially affecting 
the detection of certain low-frequency variations. 
Hence, biomarkers derived from sequencing data of 
large surgical samples in previous studies have 
limitations when applied to FNA samples. However, 
FNA is one of the simplest techniques for obtaining 
BC tissue samples before chemotherapy. Therefore, it 
is necessary and beneficial to develop new 
treatment-sensitive biomarkers using FNA data, 
which can contribute to the development of 
personalized treatment plans for patients. 

Through various bioinformatics techniques, we 
identified FOXA1 as a biomarker for NAC sensitivity 
in BC patients using FNA samples. FOXA1, also 
known as HNF3A or hepatocyte nuclear factor 
3-alpha, is a crucial transcription factor located on the 
human 14q21.1 chromosome[44, 45]. It is a member of 
the FOX family and plays a significant role in gene 
transcription regulation. FOXA1 has the ability to 
directly bind to chromatin, opening up tightly packed 
chromatin structures. This assists in the binding of 
other transcription factors such as the estrogen 
receptor (ER) and the androgen receptor (AR), and is 
essential in gene transcription regulation[46, 47]. Our 

study revealed that knocking down FOXA1 reduces 
the glycolysis level in breast cancer. Yanfei Zhang's 
research has demonstrated that the targeted 
knockdown of TEX19 results in a substantial 
reduction in the levels of pyruvate, lactate, citrate, and 
malate, indicating its pivotal role in regulating 
metabolic processes[48]. Furthermore, the 
upregulation of TEX19 was found to potentiate 
glycolysis in lung adenocarcinoma, emphasizing its 
pro-metabolic function in this context. To elucidate 
the underlying mechanisms, luciferase reporter assays 
and chromatin immunoprecipitation (ChIP) 
experiments were performed, revealing a direct 
interaction between FOXA1 and TEX19. This finding 
suggests that FOXA1 may facilitate glycolysis by 
enhancing the expression of TEX19, thereby 
providing novel insights into the complex regulatory 
network governing cancer metabolism. Furthermore, 
Jiangtao Pu et al. found that FOXA1 can mediate 
immune escape in lung adenocarcinoma by 
upregulating UBE2T, which in turn promotes 
glycolysis[49]. However, the interactions between 
FOXA1 and glycolysis mentioned above have been 
confirmed in lung adenocarcinoma. Our study is the 
first to discover that FOXA1 promotes the metabolic 
reprogramming of glycolysis in BC cells. 
Furthermore, a limitation of our study stems from the 
incomplete collection of patient clinical staging and 
ER/PR status across most of the cohorts included. 
Consequently, we were unable to conduct stratified 
analyses based on these critical clinical parameters, 
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which could have provided deeper insights into the 
study findings. 

Moreover, our study is the first to explore and 
validate that the loss of FOXA1 increases genomic 
instability in BC. Previous studies have indicated a 
high expression of FOXA1 in various tumor tissues 
and its pivotal role in biological processes such as the 
cell cycle, epithelial differentiation, and metabolism, 
suggesting its potential association with genomic 
instability in cancer cells[50-54]. UBQLN4 serves as a 
proteasomal shuttle factor involved in various 
biological processes, including DNA damage repair 
and maintenance of genomic stability[55-58]. 
Specifically, UBQLN4 is phosphorylated by ATM and 
interacts with ubiquitylated MRE11, thereby 
mediating early homologous recombination repair 
(HRR)[55]. Increased levels of UBQLN4 in tumor cells 
correlate with heightened genomic instability. Upon 
stimulation by various physicochemical factors, 
cellular DNA double-strand breaks prompt 
phosphorylation modifications at serine 139 on H2AX 
mediated by kinases such as ATM and ATR, forming 
phosphorylated H2AX, namely γH2AX[59-61]. γ
H2AX plays a crucial role in DNA damage repair[62]. 
Hence, the significant inverse correlation between 
FOXA1 and UBQLN4 with γH2AX suggests the 
potential involvement of FOXA1 in maintaining 
genomic stability in BC. A cohort study involving 28 
cancer patients has revealed that individuals with 
reduced expression of Smad4 exhibit a higher overall 
chemotherapy response[63]. Given Smad4's role as a 
key gene in upregulating DNA repair and modulating 
genomic stability, it is plausible that the heightened 
responsiveness to NAC observed in patients with low 
FOXA1 expression may also be mediated by genomic 
instability, despite the need for further experimental 
validation.  

Addtionally, our findings suggested that FOXA1 
is advantageous for HRR and reduces the incidence of 
HRD in BC. HRD diminishes the cellular capacity for 
DNA repair, compelling tumor cells to rely on 
alternative repair mechanisms such as error-prone 
recombination and non-homologous end joining. The 
aberrant activities of these cellular repair pathways 
render tumor cells more susceptible to damage by 
specific chemotherapeutic agents, thereby 
augmenting the therapeutic efficacy of 
chemotherapy[64-66]. This could partially explain 
why BC patients with low FOXA1 expression have a 
higher response to NAC and a higher proportion of 
pCR patients. PARP inhibitors are a class of 
pharmaceuticals that can impact the self-replication of 
cancer cells[1, 67-69]. They achieve this by inhibiting 
the DNA damage repair of tumor cells and promoting 

the apoptosis of tumor cells, thereby enhancing the 
efficacy of radiotherapy, alkylating agents, and 
platinum-based chemotherapy. In the event of HRD, 
the use of PARP inhibitors to suppress PARP function 
can induce tumor cell death through a synthetic 
lethality effect[70, 71]. Assessing the HRD level of 
cancer patients is more precise in identifying the 
population that would benefit from PARP inhibitors 
than merely testing for the BRCA gene. However, 
HRD testing is complex and costly. Our study 
suggested that FOXA1 may serve as a novel 
biomarker for HRD, warranting further exploration 
for its potential in predicting breast cancer HRD in 
future clinical applications. This, in turn, could 
facilitate HRD detection in clinical settings and reduce 
treatment costs. Furthermore, FOXA1 can not only 
serves as a predictive marker for HRD, but also 
harbors the potential to predict sensitivity to PARP 
inhibitors treatment. Certainly, another limitation of 
our study lies in the lack of further experimental 
investigation into whether FOXA1's predictive 
capability for PARP inhibitor responsiveness is 
mediated by its correlation with HRD status, which is 
an established biomarker for predicting the response 
to PARP inhibitors. Consequently, our understanding 
remains incomplete in elucidating the underlying 
mechanisms linking FOXA1, HRD status, and PARP 
inhibitor sensitivity. A randomized controlled study 
has revealed that incorporating veliparib and 
carboplatin alongside paclitaxel, followed by 
doxorubicin and cyclophosphamide, enhanced the 
rate of pCR among patients with triple-negative 
BC[72]. Consequently, the inclusion of PARP 
inhibitors could be contemplated as a potential 
component of NAC for BC patients. Therefore, 
FOXA1, a biomarker with the potential to 
simultaneously screen for sensitivity to NAC and 
PARP inhibitors in breast cancer patients, holds 
significant clinical translational promise for future 
clinical application, facilitating the development of 
personalized treatment regimens. There are several 
PARP inhibitors at this stage, such as olaparib, 
niraparib, pamidronate, fluzopamide, lucapari, 
veliparib, and talazoparib. However, only data for 
Rucaparib (AG-014699), Veliparib (ABT-888), and 
Olaparib (AZD2281) are included in the GDSC 
database, so we cannot calculate the IC50 for other 
PARP inhibitors.  

While this study encompassed comprehensive 
analyses across multiple databases and research 
methodologies, it nonetheless presents certain 
limitations. Primarily, this study is based on public 
cohorts and did not conduct prospective randomized 
controlled trials to validate the predictive value of 
FOXA1 for NAC treatment sensitivity. Additionally, 
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while we identified and validated the relationship 
between FOXA1 and breast cancer genomic stability 
and HRD, we did not delve into the underlying 
mechanisms and associated pathways. Hence, it is 
imperative for future research to further investigate 
the specific mechanisms through which FOXA1 
influences the sensitivity to NAC and PARP inhibitor 
treatment. Such exploration can significantly 
contribute to an enhanced understanding of 
chemoresistance mechanisms in BC and the 
development of more personalized treatment 
regimens. 

Conclusion 
In summary, we conducted an analysis of 

multiple sequencing datasets obtained from various 
FNA samples using bioinformatics techniques such as 
WGCNA, machine learning, and GPSA. Then, we 
identified 11 biomarkers associated with NAC 
treatment response in BC patients. Furthermore, we 
discovered that FOXA1 influenced genomic stability, 
HRD, and glycolysis in BC tumors. Additionally, 
FOXA1 were found to serve as a biomarker for NAC 
and PARP inhibitor treatment sensitivity in BC 
patients, offering new insights and resources for the 
development of personalized clinical treatment 
strategies in the future. 
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