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Abstract 

Folate metabolism is a crucial biological process in cell proliferation and exhibits its pro-tumorigenic functions 
in multiple tumor types. However, its role in pulmonary neuroendocrine carcinomas remains uncertain. Folate 
metabolism related genes were obtained from previous studies, and the gene expression data and clinical data 
were collected from GEO database. The expression patterns of folate metabolism related genes were 
measured across normal and tumor tissues. We subsequently assessed their prognostic role using 
Kaplan-Meier and univariate Cox regression analysis. The core genes were isolated from 16 prognostic genes 
through four algorithms. Based on the expression of core genes, patients were divided into two clusters 
employing consensus clustering algorithm. Furthermore, we evaluated immune infltration level, biological 
mechanisms, and drug sensitivity. ALDH1L2 was finally identified through qRT-PCR and its pro-tumorigenic 
function was confirmed via in vitro experiments. The expression patterns of 26 folate metabolism related genes 
were evaluated between normal lung tissues and PNEC tumor tissues, and 20 of them exhibited differential 
expression. All of folate metabolism related genes were related to the prognosis of PNECS and 16 genes were 
identified as prognostic genes. Using SVM-RFE, RF, Xgboost and LASSO algorithm, three core genes were 
isolated from 16 prognostic genes. Based on the expression patterns of core genes, PNECs patients were 
divided into two clusters through consensus clustering algorithm. Cluster 1 was characterized by the worse 
survival, higher immune infiltration level, and sensitivity to chemotherapy. Compared with the HBEC cells, 
ALDH1L2 was notably overexpressed in NCI-H446 cells (SCLC cell line). ALDH1L2 knockdown significantly 
repressed the proliferation and migration capacity of tumor cells and increased the cell proportion in S phase. 
Our results indicated that folate metabolism gene signature is a reliable biomarker for PNECs. Classification 
based on this signature could be utilized to guide the treatment of PNECs patients and improve its prognosis. 

Keywords: Pulmonary neuroendocrine tumors, One carbon metabolism, immune microenvironment 

Introduction 
Pulmonary neuroendocrine carcinomas (PNECs) 

are a type of tumor derived from pulmonary 
endocrine cells, roughly accounting for 25% of all lung 
tumors[1]. PNECs comprise four heterogeneous 

neoplasms, including small cell lung cancer (SCLC), 
large cell neuroendocrine carcinoma (LCNEC), and 
two pulmonary carcinoids (PCs), antypical carcinoid 
(AC) as well as typical carcinoid (TC)[2]. Among these, 
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SCLC is the most deleterious subtype and is 
characterized by the worst survival, followed by 
LCNEC, AC, and TC[3]. While surgical resection 
serves as the primary treatment for early-stage 
PNECs, effective therapies for advanced tumors 
notably continue to be deficient[4, 5]. 

Folate metabolism, also referred to as one-carbon 
(1C) metabolism, plays a crucial role in cell 
proliferation[6]. Folate metabolism provides essential 
1C units to facilitate various biological processes, 
including biosynthesis of nucleotide, amino acid 
homeostasis, and epigenetic regulation[7, 8]. 
Disruptions in folate metabolism can cause several 
diseases, such as neural tube defects, anemia, and 
cancer. The abnormal expression of folate 
metabolism-related enzymes is closely related to the 
occurrence and development of various cancers and 
has a prognostic role[9-11]. The therapeutic benefits 
derived from using the folate antagonist aminopterin, 
which successfully impeded tumor cell proliferation 
in patients with acute lymphoblastic leukemia, 
ratified the significance of folate metabolism in cancer 
treatment[12]. Since then, several folate metabolism 
inhibitors that target folate metabolism were 
developed, such as 5-fluorouracil (5-FU), 
methotrexate and pemetrexed[8]. 5-FU is a inhibitor of 
thymidylate synthase (TYMS), a key enzyme in folate 
metabolism, and directly suppress the proliferation of 
tumor cells[13]. The anti-tumor role of methotrexate is 
exerted most potently by blocking dihydrofolate 
reductase (DHFR), while pemetrexed has a 
multi-targeting role, acting on three key folate 
metabolism enzymes: TYMS, DHFR, and glycinamide 
ribonucleotide formyltransferase (GART)[8, 14, 15]. In 
addition, previous studies has recognized that other 
folate metabolism enzymes could promote the 
occurrence and development of multiple tumor types. 
For instance, MTHFD2, which shows high expression 
within hepatocellular carcinoma and colorectal 
cancer, is associated with a shorter survival time[16, 17]. 
Likewise, the expression level of SHMT2 is elevated in 
colorectal and lung cancer tissues, and the 
overexpressed SHMT2 promote the tumor 
progression[18, 19].  

Apart from malignant cells, folate metabolism 
also play a pivotal role in the development and 
differentiation of immune cells, which involves the 
activation of T cells and macrophages[20, 21]. In recent 
years, it has been established that the tumor immune 
microenvironment (TIME), significantly impacts 
tumor development, prognosis, and treatment[22]. T 
cells and macrophages constitute vital components of 
TIME. They are not only intricately linked to the 
proliferation, differentiation, and demise of tumor 
cells, but also play a significant role in tumor 

chemotherapy, radiotherapy, and 
immunotherapy[23-26]. Moreover, the safety and 
effectiveness of combined immunotherapy and 
chemotherapy in small cell lung cancer (SCLC) were 
validated in a clinical trial, showing an extended 
median overall survival (OS)[27]. Nevertheless, the 
standard therapy for large cell neuroendocrine 
carcinoma (LCNEC) and pulmonary carcinoids 
remains inadequate, while the effectiveness of 
immunotherapy and chemotherapy remains 
uncertain. 

In our current study, we utilize transcriptome 
and single-cell RNA-sequencing (scRNA-seq) data to 
investigate the role and underlying mechanism of 
folate metabolism in PNECs (Figure 1A). First, we 
evaluated the expression levels of crucial enzymes in 
folate metabolism using transcriptome and 
scRNA-seq data. Second, we assessed the association 
of these key enzymes with the prognosis of LCNECs. 
Third, we utilized four machine-learning algorithms 
to select the core genes, from which we constructed a 
gene signature. Subsequently, we evaluated the 
immune cell infiltration level, drug sensitivity, and 
biological mechanism across two sub-types. Finally, 
we found that ALDH1L2 is highly expressed in SCLC 
cell lines and promoted its malignant phenotype.  

Materials and methods 
Data collection and processing 

Only one transcriptome dataset (GSE30219) and 
two scRNA-seq datasets (GSE216182, GSE196303) of 
PNEC were download from GEO database 
(https://www.ncbi.nlm.nih.gov/geo/). Patients with 
pathological types of small cell lung cancer, lung large 
cell neuroendocrine carcinoma, and lung carcinoid 
were selected from GSE30219 for subsequent research. 
The bulk RNA-seq data was normalized through 
“limma” package and 115 samples was finally 
collected according to clinical information, including 
normal tissue (n = 14), SCLC (n = 21), LCNECs (n = 
56), and PCs (n = 24). The scRNA-seq datas were 
converted to three seurat objects by utilizing “Seurat” 
package, including normal lung tissue (n = 10), SCLC 
(n = 16), PCs (n = 3). Firstly, cells were excluded with 
different threshold values described in below: (1) gene 
expression exceeding 4000 or below 200; (2) 
percentage of mitochondrial gene expression 
exceeding 20%, 30%, and 50% for normal lung tissue, 
SCLC, and PCs, respectively. Subsequently, all 
samples were merged using “Seurat” package, and 
the batch effect was removed by “harmony” package. 
Thirdly, top 5000 variable genes were identified for 
data normalization using the FindVariableFeatures 
function in the Seurat package. All genes were 
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included to scale the expression data, and then 
principal component analysis (PCA) was performed 
based on top 5000 variable genes. Next, uniform 
manifold approximation and projection (UMAP) 
algorithms were employed for dimensionality 

reduction and visualization. Finally, major cell types 
were identified according to the expression of specific 
markers. The folate metabolism related genes were 
similarly determined in our previous study[28]. 

 

 
Figure 1. Program flowchart and expression patterns of folate metabolism related genes. A Program flowchart for this study. B The heatmap shows the expression patterns of 
26 folate metabolism related genes. C The box plot shows the expression patterns of 26 folate metabolism related genes. D The clusters, cell types, and sample type annotation 
of 244,076 cells using UMAP plots. E Dot plots of folate metabolism related genes across cell types. F Dot plots of folate metabolism related genes in epithelial cells across sample 
types. *P<0.05, **P<0.01, ***P<0.001. 
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Prognostic analysis and molecular 
classification  

The prognostic value of 26 folate metabolism 
related genes was assessed through Kaplan-Meier 
analysis based on the optimal cutoff point, and two R 
packages (“survival” and “survminer”) were utilized 
in this algorithm. In addition, univariate Cox 
proportional hazard regression analysis was also 
employed to evaluate the prognostic value of them. 
Genes with p < 0.05 in the Kaplan-Meier analysis and 
univariate Cox proportional hazard regression 
analysis were considered prognosis-related genes. 
Four machine learning algorithms were used to 
identified the core genes from prognosis-related 
genes, including support vector machine recursive 
feature election (SVM-RFE), random forest (RF), 
Extreme Gradient Boosting (Xgboost), and Least 
absolute shrinkage and selection operator (LASSO). 
The results of each four machine learning methods 
were intersected and the core gene set was generated 
(ALDH1L2, MTHFD2, SHMT2). The consensus 
clustering algorithm was utilized to identify the 
sub-types in PNECs samples based on the expression 
of core genes and the R package “ConsensusCluster” 
was employed to support this process. The 
parameters of consensus clustering were set up as 
described below: the number of repetitions = 1,000 
bootstraps; resample rate = 0.8. The 101 PNECs 
samples were finally gathered into two sub-types, 
cluster 1 (n = 78) and cluster 2 (n = 23). 

Identifcation of DEGs and WGCNA 
To identify the diferentially expressed genes 

(DEGs) between two clusters, the R package “limma” 
was applied to calculate the differential expression of 
genes. |Log(2) fold change|>0.5 and adjusted p<0.05 
were set as the criteria for DEGs (n = 6332). According 
to the DEGs expression profile, a weighted gene 
co-expression network analysis (WGCNA) was 
constructed by utilizing the R package "WGCNA". 
The soft threshold was set to 5 and the weighted 
adjacency matrix was transformed into a topological 
overlap matrix (TOM) to calculated the network 
connectivity. Next, the hierarchical clustering 
algorithm was employed to build the cluster tree 
structure of the TOM matrix. Both of different 
branches of the cluster tree and different colors 
represent the different gene modules. All the DEGs 
were finally gathered into multiple modules, and the 
association between the gene modules and phenotype 
was assessed. 

GO, KEGG, and GSEA analyses 
For further exploring the underlying biological 

mechanisms between two clusters, three gene 

enrichment algorithms were performed to analyze the 
genes from two modules. R “clusterProfler” and 
“org.Hs.eg.db” were employed in the process of Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analyses. In addition, gene set 
enrichment analyses (GSEA) were also conducted 
based on the Hallmark gene set 
“c5.all.v7.0.entrez.gmt” of MSigDB by using the same 
R package. 

Analysis of tumor immune microenvironment  
We firstly evaluated the infiltration level of 

immune cells through four methods, and then the 
expression level of 50 immune check points were 
calculated. CIBERSORT (http://cibersort.stanford 
.edu/) was utilized to calculated the abundances of 22 
immune cell types, and the infiltration level of 64 
immune and stromal cell types was obtained from 
xCell, a webtool (http://xcell.ucsf.edu/) which 
provides cell type enrichment analysis service. A 
single-sample gene set enrichment analysis (ssGSEA) 
provided the score of 28 immune cell types, and the 
MCP-counter algorithm was also employed to the 
abundances of 10 immune cell types. R packages 
“GSVA” and “IOBR” were utilized for the two 
algorithms respectively. Next, we assessed the 
expression level of 25 HLA family members, and 
estimated the immune score through a R package 
“estimate”.  

Drug sensitivity analysis 
The expression data of 805 cell lines and IC50 

data of 198 drugs were downloaded from The 
Genomics of Drug Sensitivity in Cancer (GDSC) 
database (https://www.cancerrxgene.org/), and the 
information of 829 cell lines and 545 drugs was 
obtained from The Cancer Therapeutics Response 
Portal (https://portals.broadinstitute.org/). We 
utilized the R package “oncoPredict” to predict the 
drug sensitivity of each LNECs sample. Then, we 
compared the differences between two sub-types 
through the R package “limma”, and the drugs with 
the p<0.05 were selected.  

Cell culture and transfection 
Small cell lung cancer cells (H446, H526, H69), 

pulmonary carcinoid cells(H720, H727), and normal 
ovary cells (HBEC) were obtained from the American 
Type Culture Collection (ATCC, Manassas, VA, USA). 
These cells were cultured in RPMI 1640 medium 
(Gbico, Thermo Fisher Scientific) with 10% fetal 
bovine serum (FBS) (Nemzerum, New Zealand), 100 
IU/mL penicillin, and 10 µg/mL streptomycin 
(Gbico, Thermo Fisher Scientific). All cells were 
cultured at 37°C with 5% CO2. The small interfering 
RNA (siRNA) was employed to knock down the gene 
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expression and the ALDH1L2 siRNA was obtained 
from Shanghai IBSBIO (IBSBIO, Shanghai, China). 
The specifc sequence was in below: siALDH1L2: 
5’-GAGAUCAUGUGAUGUUGAACC-3’. The 
siALDH1L2 was transfected into the NCI-H446 cell 
line with Lipofectamine™ 2000 (Invitrogen) according 
to the manufacturer’s protocol. 

Quantitative real time-PCR (qRT-PCR)  
After 48h-72h from cell transfection, total RNA 

of SCLC and PCs cell lines were extracted with Trizol 
reagent (Termo Fisher, 16096020, USA). 
PrimeScriptTM RT Master Mix (Takara) was utilized 
to reversely transcribe the extracted RNA. The 
qRT-PCR process was performed with AceQ qPCR 
SYBR Green Master Mix (Vazyme, Nanjing, China). 
The Ct values were then obtained, and the relative 
mRNA expression of target genes was calculated 
employing the 2-∆∆Ct method. Primer sequences are 
listed in below: 

ALDH1L2 forward primer: 5′-GCTGAAGTTGG 
CACTAATTGGC′, reverse primer: 5′-TGAACACCCC 
TACTACTCGGT′. 

MTHFD2 forward primer: 5′-GATCCTGGTTG 
GCGAGAATCC-3′, reverse primer: 5′-TCTGGAAG 
AGGCAACTGAACA-3′. 

SHMT2 forward primer: 5′-CCCTTCTGC 
AACCTCACGAC-3′, reverse primer: 5′-TGAGCTTA 
TAGGGCATAGACTCG-3′. 

Proliferation analysis 
For the Cell Counting Kit-8 (CCK-8) assay, after 

48h-72h transfection, cells were seeded into 96-well 
plates with a density of 3000 cells/well and 
maintained for 24, 48, 72, and 96 hours at 37 °C with 
5% CO2. Then, 20 μl CCK-8 (K1018-5ml, APExBIO, 
Shanghai, China) was added to each well for 4 hours 
at 37 °C with 5% CO2. The absorbance value was then 
measured at 450 nm every 24 h, and the experiment 
lasted for 96 h. Each sample was performed in 
triplicate. 

Ethynyl2’-deoxyuridine (EdU) assay was also 
performed to assess the proliferation ability. After 
48h-72h transfection, cells were seeded into 96-well 
plates and maintained at 37 °C with 5% CO2. 10 μM 
EdU (Beyotime, BeyoClick™EDU-555, China) was 
added into per well for 2 h, and then the Apollo and 
Hoechst solutions were used to fix and stain the cells.  

Cell cycle analysis 
For cell cycle assays, after 48h-72h transfection, 

treated cells are collected, rinsed twice with cold PBS, 
and then fixed in 70-90% ethanol overnight at 4 
degrees Celsius. After fixation, the cells were washed 
with PBS, followed by resuspension with 500 μL of 
propidium iodide (PI) solution (BD, Biosciences, USA) 

and incubated for 30 min away from light. Finally, the 
cell cycle was measured by flow cytometry.  

Transwell migration and invasion assay 
After 48-72 hours, transfected cells were 

resuspended in serum-free medium for preparing cell 
suspension. 24-well Transwell chambers (BD 
Biosciences, San Diego, CA, USA) were pre-treated 
with or without Matrigel (Corning, NY, USA). 5×104 
cells resuspended with 400 ml of serum-free medium 
were added to the upper chamber, and after that 500 
µl of medium containing 10% fetal bovine serum was 
added to the lower chamber. Matrigel is added to the 
upper chamber for invasion experiments, but not for 
migration experiments. After 48h/24h of incubation, 
the invaded /migrated cells were fixed with 4% 
paraformaldehyde, stained with 1% crystal violet, and 
photographed under a microscope. 

Statistical analysis 
Statistical tests were performed using R software 

(version 4.2.2), SPSS 22.0 (IBM, NY, United States), 
and GraphPad Prism 9.0. For quantitative data, 
Student’s t-test or Wilcoxon rank-sum test were 
utilized to compare the differences between two 
groups. Categorical variables were analyzed using 
two-sided Fisher’s exact tests. All statistical tests were 
bilateral, and P <0.05 was considered statistically 
significant. 

Results 
Expression of folate metabolism related genes 
in PNECs 

This study examined the expression patterns of 
26 genes related to folate metabolism in PNECs tumor 
tissues and normal lung tissues, utilizing bulk 
RNA-seq data. Out of the 26 genes, differential 
expression was observed in 20 genes when comparing 
tumor to normal tissues (Figure 1B and 1C). More 
specifically, PHGDH, PSAT1, FTCD, SHMT2, 
MTHFD2L, MTHFD2, MTHFD1L, MTHFD1, GCAT, 
SARDH, BHMT, CHDH, TYMS, GART, ATIC, 
ALDH1L2, DHFR, and MTFMT showed elevated 
expression in tumor tissues. Conversely, MTR and 
GNMT were found to be expressed at significantly 
lower levels in tumors. To gain a more in-depth 
understanding of these expression patterns at a 
cellular level, we analyzed scRNA-seq data sourced 
from PNECs, selecting 244,076 cells derived from 29 
samples. These cells consequently underwent 
classification into 25 distinct clusters, which 
corresponded to 9 major cell types, including 
epithelial cells, CD8 T cells, macrophages, and 
endothelial cells (Figure 1D). The epithelial cells of 
SCLC were biologically differentiated from epithelial 
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cells found in PCs and normal lung tissue (Figure 1D). 
Subsequently, the expression pattern of the folate 
metabolism associated genes was examined, revealing 
elevated expression mainly in epithelial cells, as 
opposed to immune or stromal cells (Figure 1E). The 
expression pattern of folate metabolism related genes 
in PCs epithelial cells significantly diverged from that 
in SCLC, but more resembled the normal lung tissue 
(Figure 1F). 

Prognostic value of folate metabolism related 
genes in PNECs 

To assess the correlation between folate 
metabolism related genes and PNECs prognosis, both 
Kaplan-Meier analysis (based on optimal cutoff) and 
univariate Cox regression analysis were utilized. The 
Kaplan-Meier analysis demonstrated an association 
between all examined folate metabolism related genes 
and the overall survival (OS) of PNECs. More 
specifically, 15 of these genes were associated with a 
shorter OS, whilst 11 were correlated with positive 
outcomes (Figure 2A and 2B). The findings of the 
univariate Cox regression analysis further substanti-
ated this result, with nine genes being excluded in this 
process (Figure 2C). Correspondingly, the 26 genes 
related to folate metabolism were also correlated with 
progression-free survival (PFS). Amongst these, 14 
were identified as potential risk factors for PFS, with 
12 acting as protective factors (Figure 3A and 3B). The 
Cox regression analysis proposed that 16 genes could 
significantly influence the PFS of PNECs (Figure 3C). 
Interestingly, contradictory prognostic values were 
observed for three genes, MTHFD2L, BHMT, and 
SARDH, between OS and PFS. 

Identification of core genes and molecular 
classification  

In pursuit of identifying core genes of folate 
metabolism in PNECs, four distinct algorithms were 
used to evaluate the importance of 16 
prognosis-related genes. According to the SVM-RFE, 
RF, and LASSO results, 14, 6, and 7 genes respectively 
were selected by these methods (Figure 4A, 4B and 
4C). Additionally, the top ten genes derived from the 
Xgboost algorithm were also included for further 
consideration (Figure 4D). Subsequently, by 
integrating the genes singled out by each method, 
three core genes were identified: MTHFD2, SHMT2, 
and ALDH1L2 (Figure 4E). The expression patterns of 
these core genes in scRNA-seq data were explored 
(Supplement Figure 1A). Based on the expression 
patterns of these core genes, a consensus clustering 
algorithm was employed to construct a molecular 
classification of PNECs, subdividing all PNECs 
patients into two distinct sub-types, designated 

cluster 1 and cluster 2 (Figure 4F). It was observed 
that patients within cluster 1 exhibited considerably 
longer overall survival (OS) and progression-free 
survival (PFS) than those within cluster 2 (Figure 4G). 
The expression patterns of folate metabolism were 
different across two clusters (Supplement Figure 1B). 
The clinical features of the two clusters are presented 
in the subsequent table. Notably, cluster 1 was 
characterized by a higher proportion of male patients, 
an advanced T stage, and a larger number of SCLC 
and LCNEC samples (Table 1). 

 

Table 1. Clinicopathological Characteristics of PNECs. 

 Cluster 1 (n = 78) Cluster 2 (n = 23) P 
Gender   0.001 
 Male 71(91.0) 13(56.5)  
 Female 7(9.0) 10(43.5)  
T stage   0.001 
 T1 14(17.9) 13(56.5)  
 T2 30(38.5) 9(39.1)  
 T3 15(19.2) 0(0)  
 T4 13(17.7) 1(4.3)  
 TX 6(7.7) 0(0)  
Lymph nodes   0.852 
 N0 36(46.2) 9(39.1)  
 N1 14(17.9) 5(21.7)  
 N2 18(23.1) 7(30.4)  
 N3 8(10.3) 2(8.7)  
 NX 2(2.6) 0(0)  
Metastasis   0.529 
 M0 69(88.5) 22(95.7)  
 M1 6(7.7) 1(4.3)  
 MX 3(3.8) 0(0)  
Type    
 PC 2(2.6) 22(95.7) <0.001 
 LCNEC 55(70.5) 1(4.3)  
 SCLC 21(26.9) 0(0)  

 

Immune infiltration features of LNECs 
sub-types  

We sought to dissect the discrepancy in immune 
infiltration between the two clusters by calculating the 
abundance of infiltrating immune cells and molecules. 
In order to evaluate the abundance of these immune 
cells, we utilized four algorithms, specifically, Xcell, 
ssGSEA, CIBERSORT, and MCP-counter. Our 
findings, drawn from Xcell, indicated an enhanced 
infiltration level of various dendritic cell types in 
cluster 1 (Figure 5A). In the tumor immune 
microenvironment of patients within cluster 1, there 
were also increased infiltrating levels of B cells, 
fibroblasts, M1 macrophages, and Th2 cells. The 
ssGSEA algorithm pointed towards a higher 
abundance of B cells, T cells, and dendritic cells 
(Figure 5A). The enrichment of B cells, T cells, and 
macrophages was corroborated by the outputs of both 
CIBERSORT and MCP-counter methods (Figure 5B 
and 5C). Strikingly, a difference was observed in the 
expression levels of immune checkpoints between the 
two subgroups.  



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

6262 

 

 
Figure 2. Prognostic analysis in OS of folate metabolism related genes. A Kaplan-Meier curves show 15 genes are associated with a shorter OS. B Kaplan-Meier curves show 11 
genes are related to a longer OS. C Univariate Cox regression analysis revealed 16 genes were associated with OS. 
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Figure 3. Prognostic analysis in PFS of folate metabolism related genes. A PFS Kaplan-Meier curves of 15 shorter OS related genes. B PFS Kaplan-Meier curves of 11 longer OS 
related genes. C Univariate Cox regression analysis revealed 16 genes were associated with PFS. 

 
The expression level of ten immune suppressive 

checkpoints was also higher in cluster1 compared 
with cluster 2, including CD276, LAG3, IL10, PDCD1, 
CTLA4, CD274, and TIGIT (Figure 5D). Similarly, out 

of 36 active immune checkpoints, most of them highly 
expressed in cluster 1 such as CCL5, CD80, CD40, 
CXCL10, and GZMA (Figure 5E). Extensively 
exploring the expression patterns of the class I human 
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leukocyte antigen (HLA) family members showed 
that the expression of 12 HLA family members was 
significantly upregulated in cluster 1 (Figure 5F). 
Moreover, we unraveled features of the immune 
microenvironment by calculating the ESTIMATE 
score and the immune score of each PNECs sample. 
Our analysis showed that the stromal score, immune 
score, and ESTIMATE score were significantly 
elevated in cluster 1, whereas the tumor purity was 
markedly decreased in cluster 1 (Figure 5G). 

Functional enrichment analysis of the DEGs in 
LNECs sub-types 

Initially, we analyzed the differentially 
expressed genes across the two clusters, yielding 6332 
genes for subsequent examination (|logFC|>0.5 & 

p<0.05) (Figure 6A). We then employed WGCNA to 
build a gene co-expression network utilizing the 
DEGs (β = 5) (Figure 6B). Afterwards, a gene 
hierarchical clustering tree was derived through the 
dynamic hybrid cutting method, concurrently 
obtaining a sample hierarchical clustering tree with 
no pronounced outliers (Figure 6C and 6D). Upon 
completion, we discovered six gene modules, 
pinpointing the blue (Cor = 0.46, p = 2.8e-81) and 
turquoise (Cor = 0.50, p = 3.8e-164) modules as 
potential hub modules (Figure 6E and 6F). The 
upregulated genes identified within these two 
modules were selected for Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analyses (Figure 6G and 6H). These genes were found 
enriched in multiple pathways pertinent to the cell 

 

 
Figure 4. Identifcation of core genes and construction of molecular classification. A Prognostic genes were screened based on the SVM-RFE algorithm. B Prognostic genes were 
filtered by XGBoost algorithm. C Selection of prognostic genes using LASSO algorithm. D Screening of prognostic genes through RF algorithm. E Venn plot for the core genes 
isolated by SVM-RFE, and XGBoost algorithms, LASSO regression and RF. F Consensus matrix plots for k=2. G The Kaplan-Meier curves of OS and PFS across the two clusters. 
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cycle through both methods, including DNA 
replication, nuclear division, cell cycle, and p53 
signaling pathway. Additionally, we implemented 
GSEA to perform an enrichment analysis, grounded 

on all genes found within the blue and turquoise 
modules, revealing an enrichment of cell cycle-related 
pathways such as cell cycle checkpoint, cell cycle 
process, and mitotic cell cycle (Figure 6I). 

 

 
Figure 5. Comparison of immune microenvironments between two clusters. A Estimation of 64 and 28 immune cell infiltration using the xCell and ssGSEA method respectively. 
B Abundance of 22 immune cell types between the two clusters through CIBERSORT analysis. C Measurement of the abundance of immune cells using the MCP-counter 
algorithm. D Expression patterns of immune suppressive checkpoints across two clusters. E Expression patterns of immune active checkpoints across two clusters. F Expression 
profile of HLA family members across two clusters. G StromalScore, immune score, ESTIMATE score, and tumor purity between two clusters. *P<0.05, **P<0.01, ***P<0.001. 
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Figure 6. Differential gene analysis, WGCNA, and enrichment analysis of two clusters. A Volcano plot of 6332 DEGs in two clusters. B The scale-free fit index and the average 
connectivity of soft threshold power. C Hierarchical clustering gene tree based on weighted correlation coefficients. D Sample hierarchical clustering tree and clinical features. 
E Scatter plots of the blue and turquoise module. F GO analysis was performed using upregulated genes in blue and turquoise module. G KEGG analysis was performed using 
upregulated genes in blue and turquoise module. H GSEA analysis based on the genes in blue and turquoise module. 

 

Drug sensitivity analysis in LNECs sub-types 
Given the pivotal role that chemotherapy plays 

in the treatment of LNECs, we utilized the R package 
“oncoPredict” to forecast clinical responses of each 

sample to chemotherapy. We drew expression data of 
cell lines and IC50 data for drugs from GDSC and 
CTRP databases. By employing the “oncoPredict” 
algorithm, we generated a drug sensitivity score per 
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sample based on the acquired data from GDSC and 
CTRP. Subsequently, the differential drug sensitivity 
score between the two clusters was analyzed by 
“limma” algorithm, with a p<0.05 set as the threshold 
for determining effective drugs (Figure 7A). Relative 
to cluster 2, our results indicated that cluster 1 
showcased sensitivity to 155 drugs and resistance to 
13 drugs, as per the GDSC database (Figure 7B). The 
CTRP database suggested that 369 drugs were 
presumably more effective on cluster 1, while 89 
drugs showed heightened sensitivity specifically to 
cluster 2 (Figure 7C). Given the significance of 
platinum in chemotherapy for tumor treatment, we 
scrutinized clinical responses of each sample to 
platinum-based chemotherapy. We chose three 
platinum-based drugs from GDSC database and our 
results divulged that patients in cluster 1 presented 
sensitivity to both Cisplatin_1005 and 
Oxaliplatin_1089 (Figure 7D). Out of the ten 
platinum-based chemotherapy strategies offered by 
the CTRP database, cluster 1 patients showed 
sensitivity towards oxaliplatin while they displayed 
resistance to platin treatment (Figure 7E). Noteworthy 
is that despite the apparent inefficacy of carboplatin 
or the combination of carboplatin and 
BRD_A02303741 on cluster 1 patients, other 
carboplatin-based chemotherapy strategies exhibited 
promising responses (Figure 7E). 

ALDH1L2 knockdown represses the malignant 
behavior of PNECs in vitro 

We began our investigation by measuring the 
relative expression level of the three core genes in vitro 
using qRT-PCR. Compared with the HBEC cell line, 
ALDH1L2 was notably overexpressed in NCI-H446 
cells (SCLC cell line) but exhibited a lower expression 
level in NCI-H720 and NCI-H727 cells (two PCs cell 
lines) (Figure 8A). In contrast, MTHFD2 and SHMT2 
displayed diminished expression levels in both SCLC 
and PCs cell lines (Supplement Figure 2). 
Noteworthily, MTHFD2 and SHMT2 generally had 
higher expression levels in SCLC cell lines as opposed 
to PCs cell lines (Supplement Figure 2). Consequently, 
we investigated the biological function of ALDH1L2 
in the NCI-H446 cell line, employing siRNA to 
suppress the expression of ALDH1L2 in NCI-H446 
cells (Figure 8B). Our results demonstrated 
ALDH1L2’s role in PNECs proliferation, revealing 
that the suppression of ALDH1L2 could significantly 
inhibit the ability of the cell to proliferate (Figure 8C). 
It was also found that diminishing ALDH1L2 
expression significantly hindered the level of DNA 
replication in vitro (Figure 8D). We examined the 
impact of ALDH1L2 deficiency on migration and 
invasion in vitro. Then, we examined the impact of 

ALDH1L2 deficiency on migration and invasion in 
vitro. The results indicated a significant impairment in 
both migration and invasion abilities following the 
inhibition of ALDH1L2 (Figure 8E). Further, an 
analysis of the cell cycle highlighted that, in 
comparison to the control group, ALDH1L2 
knockdown notably increased the proportion of cells 
in the S phase (Figure 8F). 

Discussion 
Folate metabolism is one of the most crucial part 

of the metabolic alterations in tumor cells, often 
resulting in the poor prognosis of multiple malignant 
tumors[8, 19, 29, 30]. Previous studies have confirmed the 
pivotal role of targeting folate metabolism in cancer 
treatment[31-34]. Therefore, efforts to investigate the 
prognostic value and biological function of folate 
metabolism for PNECs are still of paramount 
importance. In present study, we evaluated the 
expression pattern of folate metabolism related genes 
in PNECs using both bulk RNA-seq and scRNA-seq 
data. Subsequently, we explored the prognostic role 
of these genes and identified core genes using 
through four machine learning methods. A molecular 
classification was constructed which segments the 
patients into two clusters. We then elucidated 
differences in immune infiltration characteristics, 
potential biological mechanisms, and drug sensitivity 
between the two sub-types. Finally, ALDH1L2 was 
selected and its biological role in promoting tumor 
progression was validated in vitro. 

A previous study has confirmed the elevated 
expression level of five folate metabolism enzymes in 
SCLC, including MTHFD2, PGDH3, SHMT2, 
MTHFD1 and TYMS[35]. Nevertheless, the expression 
patterns of other folate metabolism enzymes in SCLC 
and their levels of expression in other PNECs types 
remain undetermined. Moreover, evidence indicating 
the expression patterns of these enzymes at a 
single-cell level continues to be inadequate. Our study 
found that 20 genes exhibited differential expression 
in PNEC tumor tissues, including 18 upregulated and 
2 downregulated genes. Most of these genes were 
found expressed in epithelial cells, while certain 
enzymes demonstrated high expression levels in 
immune cells, such as MTHFR in monocytes, CHDH 
in macrophages, and GNMT in B cells. The result 
based on bulk RNA-seq showed that the expression 
pattern of folate metabolism related genes in PCs 
significantly diverged from that in LCNEC and SCLC, 
but closely resembled the normal tissue (Supplement 
Figure 1C). This similarity between PCs and normal 
lung was also observed in epithelial cells derived 
from scRNA-seq data. 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

6268 

 
Figure 7. Drug sensitivity analysis based on GDSC and CTRP database. A Volcano plots of 168 and 458 differential drugs across two clusters based on GDSC and CTRP database 
respectively. B Heatmap reflected the IC50 score of 168 differential drugs based on GDSC database. C Heatmap reflected the IC50 score of 458 differential drugs based on CTRP 
database. D Drug sensitivity to three platinum-based drugs in GDSC database. E Drug sensitivity to ten platinum-based chemotherapy strategies in CTRP database. 
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Figure 8. The expression level and biological functions of ALDH1L2 in PNECs cell lines. A The mRNA level of ALDH1L2 in multiple PNECs cell lines and immortalized lung 
epithelial cell. B The expression of ALDH1L2 in the NC and three ALDH1L2 knockdown groups of NCI-H446 cells. C The effect of ALDH1L2 knockdown on NCI-H446 cells 
via CCK-8 analysis. D EdU assay showed the effect of ALDH1L2 knockdown on the proliferation of NCI-H446 cells. E The migration and invasion ability of the NC and ALDH1L2 
deficient NCI-H446 cells. F The effect of ALDH1L2 knockdown on the cell cycle in NCI-H446 cells. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. 
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The prognostic value of folate metabolism 
enzymes in lung adenocarcinoma had been proved in 
our previous study[28]. However, another study 
argued that five folate metabolism enzymes exhibited 
no correlation with OS in lung squamous cell 
carcinoma and SCLC[35]. Our findings indicated that 
all folate metabolism genes were connected to the 
prognosis of PNECs, and we identified 16 as 
prognostic genes. This difference perhaps stemmed 
from the larger number of samples (n = 101 vs n = 37) 
and the testing method (RNA-seq vs IHC). From 16 
prognostic genes, we isolated three core genes 
(MTHFD2, SHMT2, and ALDH1L2) using four 
methods and constructed a molecular classification. 
Cluster 1 was characterized by a shorter survival time, 
advanced T stage and a predominance of SCLC and 
LCNEC samples. These features were consistent with 
the clinical evidence suggesting that compared to PCs, 
SCLC and LCNEC proved more malignant and 
exhibited lower survival rates due to rapid tumor cell 
proliferation.  

The efficacy of immunotherapy in SCLC has 
been confirmed in several clinical trails[36, 37]. 
Unfortunately, there is a lack of substantial evidence 
to affirm the clinical benefits of immunotherapy in 
LCNEC and PCs. T cells and macrophages have been 
validated playing an important role in tumor 
progression and treatment[23, 25, 26]. In our study, the 
results showed a considerably higher abundance of T 
cells and macrophages in cluster 1 compared to 
cluster 2. The expression level of specific immune 
checkpoints and HLA family members was increased 
in cluster1. Previous studies revealed that the 
expression level of PD-L1 in SCLC approximated to 
LCNEC and exceeded those of PCs[38-40]. In addition, 
the immune score, stromal score, and ESTIMATE 
score were higher in Cluster 1 compared to Cluster 2. 
These results implied that the immune infiltration 
patterns between SCLC and LCNEC are similar, 
creating a distinct contrast with PCs (Supplement 
Figure 3). From these findings, the efficacy of 
immunotherapy in LCNEC can be reasonably 
deduced.  

Among the PNECs sub-types, PCs was 
characterized by a low proliferation rate of tumor cells 
and a favorable prognosis. Our research also observed 
advanced T-stage and poor survival in Cluster 1, 
where the samples consisted predominantly of SCLC 
and LCENC. Aberration in cell cycle causes the 
uncontrolled cell proliferation and eventually lead to 
tumor formation, which makes inhibiting tumor cell 
cycle the fundamentally principle in cancer 
treatment[41, 42]. Platinum-based chemotherapy is 
remains one of the most crucial therapeutic strategies 
of PNECs, especially in treating SCLC. 

Platinum-based drugs, a subset of cell cyclin-specific 
drugs, exerts their anti-tumor function by forming 
Pt-DNA adducts. Our study reveals that cell cycle 
related pathways were upregulated in Cluster 1, 
suggesting it may be more responsive to 
platinum-based chemotherapy. This inference was 
further substantiated by the drug sensitivity analysis 
and consistent to the clinical evidence that 
platinum-based drugs are comparatively more 
effective in treating SCLC and LCNEC than PCs[43].  

Aldehyde dehydrogenase 1 family member 2 
(ALDH1L2), a 10-formyltetrahydrofolate (10-fTHF) 
dehydrogenase, can catalyzes the 10-fTHF 
dehydrogenase reactions that produce mitochondrial 
NADPH, thereby exerting antioxidant functions[44-46]. 
The expression of ALDH1L2 have been observed 
increased in multiple tumor types[47]. Prior research 
demonstrated that ALDH1L2 is highly expressed in 
colorectal cancer and is correlated with the poor 
prognosis[48, 49]. The pro-tumorigenic functions of 
ALDH1L2 was also observed in in pancreatic 
cancer[50]. Contrarily, a recent study found that 
enhancement of ALDH1L2 expression could inhibit 
the metastatic capability of breast cancer cells[44]. Our 
study indicated high expression of ALDH1L2 in SCLC 
cell lines, with the expression generally exceeding that 
in PCs cell lines. Subsequent results suggested that 
compared with the control group, ALDH1L2 
knockdown markedly repressed the proliferation and 
migration capacity of tumor cells. Flow cytometry 
revealed that ALDH1L2 deficiency increased cell 
proportion in S phase while diminishing that in 
G0/G1 phase, indicating that ALDH1l2 deficient 
tumor cells were arrested at S phase.  

The present study was affected by several 
significant limitations. First, only one bulk RNA-seq 
data was obtained due to the rarity of PNECs, 
resulting in a deficit of external validation datasets. 
Second, the scRNA-seq data of SCLC derived from 
xenograft tumor models causing a loss of TME 
information. Third, the expression level of ALDH1L2 
was not evaluated in tissues because of the limited 
PNECs samples. Additional large-scale datasets were 
needed to verify the role of folate metabolism related 
genes inPNECs, and biological mechanisms of 
ALDH1L2 needed to be further explored by 
experiments in vivo and in vitro. 

In conclusion, we constructed a new gene 
signature centered on folate metabolism enzymes. 
Our research revealed differential expression of folate 
metabolism related genes between PNECs tumor 
tissues and normal lung tissues, exhibiting prognostic 
relevance. PNECs samples could be divided into two 
clusters which displayed the significant disparities in 
prognosis, immune infltration, biological 
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mechanisms, and drug sensitivity. For the first time, 
the pro-tumorigenic functions of ALDH1L2 in PNECs 
were confirmed in vitro experiments. Our study not 
only enriched the understanding of PNECs 
pathogenesis, but also provide a new insight for 
therapeutic strategies for PNECs patients. 
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