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Abstract 

Pancreatic cancer (PC) is a common and highly malignant tumor. Basement membrane (BM) is formed by 
the crosslinking of extracellular matrix macromolecules and acts as a barrier against tumor cell 
metastasis. However, the role of BM in PC prognosis, immune infiltration, and treatment remains unclear. 
This study collected transcriptome and clinical survival data of PC via TCGA, GEO, and ICGC databases. 
PC patients (PCs) from the First Affiliated Hospital of Dalian Medical University were obtained as the 
clinical validation cohort. BM-related genes (BMRGs) were acquired from GeneCards and basement 
membraneBASE databases. A total of 46 differential-expressed BMRGs were identified. Then the 
BM-related prognostic model (including DSG3, MET, and PLAU) was built and validated. PCs with a low 
BM-related score had a better outcome and were more likely to benefit from oxaliplatin, irinotecan, and 
KRAS(G12C) inhibitor-12, and immunotherapy. Immune analysis revealed that BM-related score was 
positively correlated with neutrophils, cancer-associated fibroblasts, and macrophages infiltration, but 
negatively correlated with CD8+ T cells, NK cells, and B cells infiltration. PCs from the clinical cohort 
further verified that BM-related model could accurately predict PCs’ outcomes. DSG3, MET, and PLAU 
were notably up-regulated within PC tissues and linked to a poor prognosis. In vitro experiments showed 
that DSG3 knockdown markedly suppressed the proliferation, migration, and invasion of PC cells. 
Molecular docking indicated that epigallocatechin gallate had a strong binding activity with DSG3, MET, 
and PLAU and may be used as a potential therapeutic agent for PC. In conclusion, this study developed a 
BM-related model associated with PC prognosis, immune infiltration, and treatment, which provided new 
insights into PC stratification and drug intervention. 
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1. Introduction 
Pancreatic cancer (PC) has an occult onset, 

aggressive spread, and extremely poor prognosis. PC 
will likely become the major factor of cancer-related 

mortality because of its rising worldwide incidence in 
recent years. In 1990, there were about 196,000 new 
diagnoses of PC worldwide, but this increased to 
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441,000 cases in 2017[1]. Worldwide, PC was the 
fourth most prevalent malignant tumor and the 
seventh-highest rate of death due to cancer[2]. In 
America, PC was the ninth most prevalent malignant 
neoplasm and the third-highest rate of death due to 
cancer[3], and was projected to become the 
second-highest rate of death due to cancer after lung 
carcinoma in 2030[4]. In China, PC ranked as the tenth 
most prevalent malignant neoplasm and the 
sixth-highest rate of death due to cancer[5]. Due to the 
concealed beginning and the dearth of reliable early 
detection techniques, most patients have been 
diagnosed with unresectable or metastatic PC, only 
15%-20% are suitable for surgical resection[6]. 
Chemotherapy is the primary treatment for PC 
besides surgery, and first-line regimens include 
FOLFIRINOX (fluorouracil, oxaliplatin, irinotecan, 
and leucovorin) and gemcitabine in combination with 
albumin-paclitaxel[7]. A study showed that the 
median survival (MS) of advanced PC that received 
the FOLFIRINOX regimen or gemcitabine was only 
11.1 months or 6.8 months[8]. The MS of resected PC 
that received modified FOLFIRINOX or gemcitabine 
was only 54.4 months or 35.0 months[9]. Recently, 
targeted therapy and immunotherapy have continued 
to make advances and achieved good efficacy in some 
tumors, bringing new hope to tumor patients. 
However, they did not exhibit the expected efficacy in 
PC, and most of them failed in phase 1 and 2 clinical 
trials[10]. A study indicated that ibrutinib and 
durvalumab for treating PC had a complete or partial 
response rate of only 2%[11]. Thus, it is critical to 
investigate the mechanisms of PC development, 
create effective early screening techniques, and find 
new treatment strategies. 

Invasion and metastasis are important features 
of malignant tumors, and about 66.7% of patients with 
solid tumors die from metastasis[12]. The process of 
cancer cell invasion and metastasis needs destruction 
and penetration of the basement membrane (BM). BM 
is a special barrier formed by the cross-linking of 
macromolecules (laminin, type IV collagen, nidogen, 
proteoglycan, etc.) in extracellular matrix (ECM), with 
a dense structure and a pore size of about 50nm. BM is 
located beneath epithelia and endothelia and is crucial 
for cell adhesion, migration, and survival[13–16]. 
Several studies have been conducted to explore how 
cancer cells cross BM. Cancer cells themselves can 
form invadopodia rich in proteases and actin. 
Invadopodia can degrade BM components through 
proteases or reshape BM through mechanical force to 
form micron-sized pores, thereby mediating cancer 
cells to penetrate BM[17,18]. Glentis et al.[19] found 
that cancer-associated fibroblasts (CAFs) could widen 
and intenerate BM channels that allow tumor cells to 

spread. 
The abnormality of BM is linked to the onset, 

development, and outcome of numerous illnesses, 
especially malignant tumors[20–22]. Studies indicated 
that the degree of BM cross-linking was significantly 
reduced in malignant tumors, and defective or 
disrupted BM was linked to tumor development and 
unfavorable prognosis[23,24]. Pathological exami-
nation revealed that the defect of BM occurred during 
the development of preinvasive intraductal cancer 
into invasive breast cancer (BC)[25]. BC patients had a 
five-year survival rate of up to 99% if the cancer cells 
are limited to BM; 85% if the cancer cells penetrate BM 
and invade surrounding tissues; and just 27% if 
long-distance metastases take place[16]. When 
bladder cancer does not break through BM and 
lamina propria, the five-year survival rate can reach 
80%, whereas only 20% when it spreads to the bladder 
wall’s entire thickness[26]. Van der Zee et al.[27] 
found that in PC, laminin was strongly linked to 
postoperative survival, and type IV collagen was 
highly related to pathological grade. In addition, 
dysregulated BM is also closely related to tumor 
immunity and therapeutic response. A study showed 
that laminin in BM can participate in regulating the 
activation, function, and multiplication of T cells[28]. 
Therefore, exploring the process and mechanism of 
tumor cells overcoming the BM barrier can offer novel 
strategies for PC therapy. 

Based on the above evidence, this study utilized 
multiple public datasets and clinical cohort to build 
and validate the BM-derived model associated with 
PC prognosis, immune microenvironment, and 
synthetic therapy response. Besides, we identified that 
DSG3, MET, and PLAU were notably up-regulated 
within PC tissues and related to a bad outcome. The 
knockdown of DSG3 could inhibit the proliferation, 
migration, and invasion of PC cells. Epigallocatechin 
gallate had a strong binding activity with DSG3, MET, 
and PLAU and may be used as a potential therapeutic 
agent for PC. 

2. Materials and methods 
2.1 Data collection and preprocessing 

We collected the publicly available PC cohorts, 
which includes PC patients with transcriptomic and 
clinical survival data. Transcript, single nucleotide 
variation (SNV), copy number variation (CNV), and 
clinical survival information (comprising 185 PCs, 
Table S1) were downloaded via The Cancer Genome 
Atlas (TCGA) platform (https://portal.gdc.cancer 
.gov/). PACA-AU cohort (comprising 81 PCs) was 
obtained through International Cancer Genome 
Consortium (ICGC) platform (https://dcc.icgc.org/ 
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releases/current/Projects). GSE28735 (comprising 45 
pairs of PC and normal tissues), GSE62452 
(comprising 69 PC tissues and 61 normal tissues), 
GSE57495 (comprising 63 PC tissues), GSE78229 
(comprising 50 PC tissues), and GSE85916 
(comprising 80 PC tissues) datasets were collected 
through Gene Expression Omnibus (GEO) platform 
(https://www.ncbi.nlm.nih.gov/geo/). We 
employed “sva” tool to get rid of the batch effect 
among various datasets[29]. For screening the 
differentially expressed genes (DEGs) in PC and 
normal tissues, Genotype-Tissue Expression Project 
(GTEx) dataset (comprising 167 healthy human 
pancreatic tissues) and TCGA dataset (comprising 178 
PC tissues and 4 normal tissues) were collected 
through UCSC Xena platform (https://xenabrowser 
.net/datapages/). 

2.2 Identification and analysis of 
differentially-expressed BMRGs 

DEGs were recognized in PC and normal tissues 
by employing the “limma” package. |log2 fold 
variance (FC)| > 1 and an adjusted p-value < 0.05 
were the selection parameters[30]. BMRGs were 
collected via GeneCards platform (https://www 
.genecards.org/) as well as basement membraneBASE 
platform (https://bmbase.manchester.ac.uk)[31]. 
DEGs and BMRGs were intersected to obtain 
differentially expressed BMRGs. The “maftools” and 
“RCircos” packages were applied to investigate 
genetic alterations of differentially expressed BMRGs 
in PC. GO and KEGG enrichment analyses were 
employed to seek the biological roles involved in 
differentially expressed BMRGs. 

2.3 Building BM-related prognostic model 
According to PC sample ID, the expression and 

survival data were merged. TCGA samples were split 
7:3 at random into training and testing sets utilizing 
“caret” package[32]. Samples from ICGC-PACA-AU, 
GSE28735, GSE62452, GSE57495, GSE78229, as well as 
GSE85916 cohorts, served as verification from outside. 
Initially, prognosis-related BMRGs were screened 
utilizing univariable Cox regression. Then, LASSO 
regression was performed to combat overfitting. 
Finally, multivariable Cox regression was employed 
to further screen prognosis-related BMRGs and 
establish BM-related model. BM-related risk score of 
each sample could be computed through “predict” 
function. The risk score’s median value in the training 
cohort was applied to categorize each sample as either 
a high-risk or low-risk group. Kaplan–Meier (KM) 
curves were employed to contrast the survival 
periods. Receiver Operating Characteristic (ROC) 
curves with a time dependence were applied to assess 

the model’s capability for prediction. In addition, we 
searched twelve previously published studies on 
prognostic models in PC, and relevant genes were 
obtained from published prognostic models[33–44]. 
ROC curves and C-index were calculated to compare 
the predictive performance of BM-related model with 
published prognostic models in PC. 

2.4 Clinicopathological characteristics 
correlation and nomogram model building 

PCs were grouped by their clinicopathological 
features, and risk score in various subgroups was 
contrasted. Cox regression analysis was implemented 
to seek the independent prognostic variables. 
Clinicopathological features as well as risk score were 
further employed to build a nomogram model 
utilizing “rms” package. The calibration curve was 
used to evaluate the predictive performance. 

2.5 Gene set enrichment analysis (GSEA) 
GSEA was implemented to investigate the 

potential differences in metabolic processes and 
biological behaviours across various subgroups. And 
the reference gene sets “c5.go.v7.5.1.symbols.gmt” 
and “c2. cp.kegg.v7.5.1.symbols.gmt” were 
downloaded via MSigDB platform (https://www 
.gsea-msigdb.org/gsea/msigdb/)[45]. 

2.6 Immunoassay 

Single-sample GSEA (ssGSEA) was 
implemented to quantify the score of 16 immune cells 
and 13 immune-linked pathways in various 
subgroups. In addition, the infiltration scores of 
immune cell subpopulations calculated through 
multiple algorithms for TCGA tumors were 
downloaded via Tumor Immune Estimation Resource 
database (TIMER, http://timer.cistrome.org/)[46]. A 
platform created around TCGA database is known as 
The Cancer Immunome Atlas (TCIA, 
https://tcia.at/)[47]. It could investigate the 
intra-tumoral microenvironment and antigenic gene 
of 20 types of solid tumors, along with evaluating 
immune phenotype score (IPS) and forecast the 
susceptibility of CTLA-4 and PD-1 blockers. 
Therefore, the IPS of PCs in the TCGA cohort was 
acquired via TCIA platform. Tumor immune 
dysfunction and exclusion (TIDE) platform 
(http://tide.dfci.harvard.edu/) could assess the 
sensitivity of immunotherapy by mimicking tumor 
immune escape mechanism and was used to validate 
the relationship between BM-related score and 
immunotherapy[48]. The IMvigor210 cohort was an 
immunotherapy cohort research for urothelial 
carcinoma (UC) and was obtained in this study 
(http://research-pub.gene.com/IMvigor210CoreBiol
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ogies)[49]. Risk scores for UC patients were figured 
out based on BM-related prognostic model. Then, the 
relationship between BM-related risk scores and 
immunotherapy was evaluated. 

2.7 Drug sensitivity prediction 
The “oncoPredict” is an R package with the 

ability to forecast therapy responses and biomarkers 
for cancer patients based on cell line filtrating 
data[50]. Therefore, the “oncoPredict” package was 
employed in this study to assess variations in drug 
sensitivity across different PC subgroups. 

2.8 Acquisition of PC tissues 
We obtained 10 pairs of PC and normal tissues, 

which were derived from those with PC undergoing 
surgery in the First Affiliated Hospital of Dalian 
Medical University during 2022.01.01-2024.08.15. All 
tissues were preserved at -80 degrees Celsius before 
RNA was extracted. In addition, we also obtained 
formalin-fixed paraffin-embedded pathological 
sections of 54 PC tissues and 22 normal tissues, which 
were derived from those with PC undergoing surgery 
in the First Affiliated Hospital of Dalian Medical 
University during 2016.01.01 and 2021.12.31. All 
paraffin slices were stained utilizing hematoxylin and 
eosin methods, and PC was diagnosed through two 
experienced pathologists. The clinical stage and 
pathological grade of 54 PCs were obtained through 
the medical record system in our hospital. Survival 
data was collected via telephone follow-up until 
2023.03.28 (Table S2). Among the 54 PCs, two patients 
died from postoperative complications, and two 
failed for follow-up. Therefore, these four patients 
were not included in the prognostic analysis. 

2.9 Immunohistochemistry 
Immunohistochemistry was implemented for the 

pathological sections of 54 PC tissues and 22 
paracancerous tissues. The paraffin-embedded 
pathological specimens were split with an average 
thickness of 3 μm in a serial fashion and placed onto 
glass slides. Bake the slides in an oven at 60 ℃ for 1 
hour, then dewax until hydrated. Place the sliced 
tissue into EDTA antigen retrieval solution (PH 9.0), 
and perform antigen retrieval under the conditions of 
microwave medium heat for 8 minutes, cease fire for 8 
minutes, and medium-low heat for 7 minutes. Use 3% 
hydrogen peroxide solution to incubate within 
darkness at ambient temperature for 25 minutes to 
block endogenous peroxidase. After that, wash the 
sectioned tissue three times in PBS for 5 minutes on 
each occasion. Add 3% bovine serum albumin (BSA) 
dropwise to evenly cover the sliced tissues, and block 
for 30 minutes. Mouse anti-human DSG3 monoclonal 
antibody (R&D Systems, MAB1720, concentration 

8ug/mL), rabbit anti-human MET monoclonal 
antibody (Abcam, ab216574, dilution 1:1000), and 
rabbit anti-human PLAU polyclonal antibody 
(Abcam, ab24121, dilution 1:200) were used to be the 
initial antibodies and incubated at 4 ℃ for a whole 
night. Add a secondary antibody (horseradish 
peroxidase label) that match the initial antibody 
species and incubate at ambient temperature for 50 
minutes. Use freshly prepared 3.3‘-diaminobenzidine 
for color development. Sliced tissues were 
counterstained with hematoxylin and finally 
dehydrated and cleared using ethanol and xylene. The 
sections were examined under light microscopy. The 
tumor areas and adjacent areas were confirmed by 
pathologists. Three typical representative fields of 
view were selected for each of the tumor areas and 
adjacent areas under a 200× microscope (OLYMPUS 
DP73) for image collection. Immunohistochemical 
images were quantitatively evaluated using ImageJ 
software. Positive signals were quantified as mean 
optical density values (integrated option 
density/area). 

2.10 Immunofluorescence 
Immunofluorescence was performed to 

investigate differences in BM structures between PC 
tissues and normal tissues. Paraffin-embedded 
pathological specimens were sectioned at a thickness 
of 3 µm and mounted onto slides. The slides were 
baked at 60°C for 1 hour and then deparaffinized 
and rehydrated. Antigen retrieval was performed 
using EDTA. The sliced tissues were then incubated in 
Triton X-100 solution for 45 minutes to enhance cell 
membrane permeability. Blocking was carried out 
with goat serum at room temperature for 1 hour. 
Subsequently, rabbit anti-human Collagen IV 
monoclonal antibody (Abcam, ab214417, dilution 
1:500) were used to be the initial antibodies and 
incubated at 4 ℃ for a whole night. Then, secondary 
antibodies specific to the primary antibodies were 
added and incubated at room temperature for 1 hour. 
DAPI staining solution was used for nuclear 
counterstaining. Finally, images were captured using 
a Keyence BZ-X810 fluorescence microscope. 

2.11 Cell culture and siRNA transfection 
PC cell lines CFPAC-1 and BxPC-3 were 

acquired via Haixing Biosciences Co., Ltd, Suzhou, 
China. CFPAC-1 and BxPC-3 cells were cultured 
using Iscove’s Modified Dulbecco’s Medium and 
RPMI 1640 mixed with 10% fetal bovine serum (FBS, 
Gibco, USA), respectively. The incubation 
environment was 37 ° C with a humidity of 95% air 
and 5% CO2. Transfection reagent (Transfect-Mate) 
and siRNA were provided through GenmaPharma 
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(Suzhou, China). The siRNA sequences targeting 
DSG3 are as below: siRNA#1: 5’-GUCCGUACU 
UUGACCAAUUTT-3’; siRNA#2: 5’-GGCUUGCAGU 
AUAUUUCUUTT-3’. 

2.12 PCR 
All the RNAs of PC cells and tissues were 

collected by an extraction tool named TRIzol (Adamas 
life, Titan Scientific Co., Ltd., Shanghai, China). The 
Reverse Transcription Reagent (Yugong Biolabs Co., 
Ltd., Jiangsu, China) was utilized to obtain cDNAs. 
Real-time quantitative PCR was implemented by 
utilizing PCR Kit (Yugong Biolabs Co., Ltd., Jiangsu, 
China). The control reference used in this study was 
GAPDH. The ΔΔCt technique was utilized to quantify 
the expressed level of RNA. The primer sequence for 
humans was acquired via Sangon Biotech (Shanghai, 
China), as below DSG3, 5’-GAACCAGCAGGCA 
CACCCATG-3’ (Forward), 5’-CACCACTCACAACC 
AGACGATAGC-3’ (Reverse); MET, 5’-GTCCTATGG 
CTGGTGGCACTTTAC-3’ (Forward), 5’-TGGTTTGG 
GCTGGGGTATAACATTC-3’ (Reverse); PLAU, 
5’-TCGCTCAAGGCTTAACTCCAACAC-3’ (For-
ward), 5’-ACGGATCTTCAGCAAGGCAATGTC-3’ 
(Reverse). 

2.13 CCK-8 assay 
CFPAC-1 and BxPC-3 cells were seeded in 

96-well plates with 1 ⅹ 104 cells per well, and each 
group had 5 secondary wells. Cell viability was 
measured at 0, 24, 48, and 72 hours, respectively. Add 
100 ml of serum-free culture containing 10% CCK-8 
enhanced solution to each well and incubate for 2 
hours in a cell culture incubator. Then the OD value 
was measured at 450nm. 

2.14 Scratch assay 
The transfected CFPAC-1 and BxPC-3 cells were 

seeded in a 6-well plate. When the cell growth 
adhesion density reached 100%, a 200uL pipette tip 
was utilized to scratch the bottom of the plate 
vertically. Wash with PBS three times, and then take 
pictures at 0 and 24 hours. ImageJ software was 
utilzied to calculate the scratch area. 

2.15 Transwell assay 
A 24-well transwell chamber (Corning, NY, 

USA) was employed for Transwell invasion assay. 
The invasion assay required presetting Matrigel 
(Nova Medical Technology Co., Ltd., Shanghai, 
China) in transwell chamber. 1 ⅹ 105 BxPC-3 cells or 2 
ⅹ 105 CFPAC-1 cells with 100uL serum-free culture 
were inoculated in the upper chamber, and 800uL 
culture containing 10% FBS was added to the lower 
chamber. The cells were counted after incubation for 
24 hours. 

2.16 Candidate drug prediction and molecular 
docking 

Drug molecules that could target model genes 
were retrieved via the comparative toxicogenomics 
database (https://ctdbase.org/)[51]. The 2D structure 
of the drug molecule was downloaded via the 
PubChem database (https://pubchem.ncbi.nlm.nih 
.gov)[52] and converted to 3D structure using 
Chem3D software to optimize the structure with 
minimum free energy. The 3D structure of DSG3, 
MET, and PLAU protein was downloaded from the 
Protein Data Bank (PDB) database 
(https://www.rcsb.org)[53], and water and 
heterogeneous molecules were removed using PyMol 
software. The protein was hydrogenated using 
AutoDockTools, and the docking box parameters 
were set using the Gird module: Spacing (angstrom) 
equals 1. AutoDock vina was used to perform 
molecular docking between the drug molecule and 
the protein and calculate the binding energy. The 
smaller the binding energy, the more stable the 
docking. Binding energy less than −4.25 kcal/mol 
indicated the presence of binding activity, less than 
−5.0 kcal/mol indicated good binding activity, and 
less than −7.0 kcal/mol indicated strong docking 
activity[54]. The molecular docking results were 
visualized using PyMol software. 

2.17 Data analysis 
Data analysis and visualization were performed 

using R software (Ver 4.1.2) and GraphPad Prism 9. 
For continuous variables that conform to a normal 
distribution, t-test was used to compare differences 
between two groups. For continuous variables that do 
not conform to the normal distribution, Wilcoxon 
signed-rank test was used to compare differences 
between two groups, and Kruskal-Wallis test was 
used to compare differences among multiple groups. 
KM method was used to draw survival curves, and 
the log-rank test was used to compare the survival 
times of different groups. The p-value < 0.05 indicates 
statistical significance. 

3. Results 
3.1 Identification and analysis of differentially 
expressed BMRGs 

The overall process of this study is shown in 
Figure 1. We identified 5552 DEGs between PC and 
normal tissues from TCGA and GTEx datasets (Figure 
2A), 415 DEGs between PC and normal tissues from 
GSE28735 dataset (Figure 2B), and 306 DEGs between 
PC and normal tissues from GSE62452 dataset (Figure 
2C). 778 BMRGs were obtained from the GeneCards 
database with the filter condition of relevance score > 
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5. 222 BMRGs were obtained from the basement 
membraneBASE platform. A total of 898 BMRGs were 
obtained after eliminating 102 repeated genes (Table 
S3). Finally, 46 differentially expressed BMRGs were 
obtained by intersecting DEGs and BMRGs (Figure 
2D). Based on 46 differentially expressed BMRGs, 
principal component analysis (PCA) can clearly 
distinguish PC and normal tissues derived from 
TCGA and GTEx (Figure 2E), GSE28735 (Figure 2F), 
and GSE62452 (Figure 2G) datasets, suggesting that 
these BMRGs could be closely related to the 
occurrence of PC. 

The genetic alterations of 46 differentially 
expressed BMRGs in PC were investigated. Results 
showed that the SNV frequency of 46 BMRGs in PC 
was relatively low. Among 158 samples, 18 cases 
(11.39%) had SNV. The top four genes with the 
highest SNV frequency were FN1 (3%), VCAN (3%), 
EGF (2%), and FBN1 (2%). The most common type of 
SNV is missense mutation (Figure 2H). CNV occurred 

in 46 BMRGs, and the four genes with the highest 
frequency were LAMA3, COL1A1, IGTA3, and 
KRT19 (Figure 2I). The location of CNV on the 
chromosome was exhibited in Figure 2J. 

GO and KEGG enrichment analyses were 
implemented to investigate the biological functions 
and processes involved in 46 BMRGs. GO enrichment 
analysis showed that “cell-substrate adhesion”, 
“extracellular matrix organization”, “extracellular 
structure organization”, and “external encapsulating 
structure organization” were significantly enriched in 
biological process (BP); “collagen-containing 
extracellular matrix”, “endoplasmic reticulum 
lumen”, “basement membrane”, and “collagen 
trimer” were significantly enriched in cellular 
component (CC); “extracellular matrix structural 
constituent”, “integrin binding”, “extracellular matrix 
structural constituent conferring tensile strength”, 
and “glycosaminoglycan binding” were significantly 
enriched in molecular function (MF) (Figure 2K). 

 

 
Figure 1. Flowchart of this study. 
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KEGG pathway enrichment analysis showed that 
“ECM-receptor interaction”, “focal adhesion”, 
“PI3K-Akt signaling pathway”, “small cell lung 

cancer”, and “proteoglycans in cancer” were 
significantly enriched (Figure 2L). 

 

 
Figure 2. Identification and analysis of differentially-expressed basement membrane-related genes (BMRGs). The differentially expressed genes (DEGs) between pancreatic 
tumors and normal tissues from TCGA and GTEx datasets (A), GSE28735 dataset (B), and GSE62452 dataset (C). (D) The intersection of DEGs and BMRGs. Principal 
component analysis based on the expression of differentially-expressed BMRGs could clearly distinguish pancreatic tumor and normal tissues in TCGA and GTEx (E), GSE28735 
(F), and GSE62452 (G) datasets. (H) The SNV of differentially-expressed BMRGs in pancreatic cancer (PC). (I) Frequency of copy number variation (CNV) of BMRGs in PC. (J) 
The location on the chromosome where CNV occurs. GO (K) and KEGG (L) analyses. 
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3.2 Construction, validation, and comparison 
of BM-related prognostic model 

While previous research has reported the clinical 
value of BM-related signatures in various human 
malignancies, including PC, these studies typically 
used only one or two publicly available PC 
cohorts[55,56]. Our study collected seven publicly 
available PC cohorts. More importantly, we further 
validate the model’s reliability with a clinical cohort 
from the First Affiliated Hospital of Dalian Medical 
University. 

In this study, PC samples from the TCGA 
database were randomly divided into a training 
cohort and an internal validation cohort according to 
7:3. Univariable Cox regression identified 36 
prognostic-related BMRGs (Table S4). To prevent 
overfitting among genes, seven prognostic-related 
BMRGs were screened using LASSO regression 
(Figures 3A and B). Finally, multivariable Cox 
regression was utilized to further obtain 
prognostic-related BMRGs and build a prognostic 
model including DSG3, MET, and PLAU (Figure 3C). 
KM curves showed that in the training cohort (Figure 
3D), internal validation cohort (Figure 3E), and the 
entire TCGA cohort (Figure 3F), the survival time of 
the low-risk PCs was significantly higher than that of 
the high-risk PCs. The AUC values for 1, 3, and 5 
years were 0.774, 0.700, and 0.847 in the training 
cohort (Figure 3G), 0.724, 0.775, and 0.840 in the 
internal validation cohort (Figure 3H), and 0.729, 
0.719, and 0.822 in the entire TCGA cohort (Figure 3I), 
respectively. These results indicated that the model 
has good predictive performance. Risk score curves 
and survival status scatter plots showed that patients 
in the high-risk group had lower survival rates than 
those in the low-risk group from the training cohort 
(Figure 3J), internal validation cohort (Figure 3K), 
and the entire TCGA cohort (Figure 3L). 

To illustrate the reliability of the model, 
GSE28735 (Figure 4A), GSE57495 (Figure 4B), GSE 
62452 (Figure 4C), GSE78229 (Figure 4D), GSE85916 
(Figure 4E), and ICGC-PACA-AU (Figure 4F) data-
sets, serving as external validation cohorts, showed 
that PCs with high-risk score had significantly lower 
survival times than those with low-risk score. In 
addition, by comparing the AUC value and C-index 
with published prognostic models for PC[33–44], we 
found that BM-related prognostic model has better 
predictive performance (Figures 4G and H). 

3.3 Clinicopathological characteristics 
correlation, independent prognostic factors 
analysis, and nomogram prediction model 
construction 

The relationship between BM-related risk scores 

and clinicopathological characteristics was further 
assessed. Results showed that there were no 
significant differences in risk scores in the different 
ages (Figure 5A), genders (Figure 5B), N stages 
(Figure 5D), and M stages (Figure 5E). Nevertheless, 
in patients with higher T stages (Figure 5C), 
pathological grades (Figure 5F), and clinical stages 
(Figure 5G), the risk score was notably higher. The 
univariable and multivariable Cox regression 
suggested that age and risk score were independent 
adverse prognostic factors for PCs (Figures 5H and I). 
Then, a nomogram model was constructed using risk 
score and clinicopathological characteristics to better 
predict PCs’ prognosis (Figure 5J). The calibration 
curves showed that the 1, 3, and 5-year survival rates 
projected by the nomogram were comparatively near 
to the true survival rates (Figure 5K), suggesting that 
nomogram model had an excellent prediction 
performance. 

3.4 GSEA 
To seek the potential diversities within biological 

behavior between different risk subgroups, GSEA was 
employed. Results showed that based on 
“c5.go.v7.5.1.symbols.gmt” gene set, the enrichment 
pathways within high-risk PCs encompassed 
“epidermis development”, “keratinocyte 
differentiation”, “mitotic nuclear division”, “cell 
substrate junction”, “chromosomal region”, and 
“DNA packaging complex” (Figure 6A); the 
enrichment pathways within low-risk PCs 
encompassed “regulation of hormone levels”, 
“regulation of ion transmembrane transport”, 
“regulation of membrane potential”, “cation channel 
activity”, and “T cell receptor complex” (Figure 6B). 
Based on “c2.cp.kegg.v7.5.1.symbols.gmt” gene set, 
the enrichment pathways within high-risk PCs 
encompassed “ECM receptor interaction”, “focal 
adhesion”, “P53 signaling pathway”, “pathways in 
cancer”, and “small cell lunger cancer” (Figure 6C); 
the enrichment pathways within low-risk PCs 
encompassed “drug metabolism cytochrome P450”, 
“maturity onset diabetes of the young”, “neuroactive 
ligand receptor interaction”, and “proximal tubule 
bicarbonate reclamation” (Figure 6D). It could be 
found that the enrichment pathways of the high-risk 
subgroup are similar with the biological processes 
involved in differentially expressed BMRGs, while the 
enrichment pathways in the low-risk subgroup is 
mainly related to normal physiological function and 
immunity. 

3.5 Tumor microenvironment and 
immunotherapy 

Tumor immune microenvironment was 
evaluated using multiple algorithms in this study. The 
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ssGSEA manifested that the CD8+ T cells, NK cells, 
and Type II IFN response within low-risk PCs 
exhibited a notably elevated level (Figure 7A), while 
macrophages, APC co-inhibition, APC co-stimulation, 
MHC class I, and parainflammation within high-risk 
PCs exhibited a notably elevated level (Figure 7B). 
Based on the infiltrated scores of immune cell 
subpopulations obtained via TIMER database, the 
correlation of BM-related risk score and immune cell 
subpopulations were further assessed (Figures 7C 

and D). Results demonstrated a significantly negative 
correlation between BM-related risk score and CD8+ 
T cells, NK cells, B cells, monocytes, and endothelial 
cells, and these cell subpopulations had notably 
higher abundance in low-risk PCs. However, 
macrophage M0, neutrophils, and CAFs showed a 
substantially positive connection with BM-related risk 
score, and these cell subpopulations had substantially 
higher levels in high-risk PCs. 

 

 
Figure 3. Construction and internal validation of basement membrane-related prognostic model. Coefficient path diagram (A) and cross-validation curve (B) of LASSO 
regression. (C) DSG3, MET, and PLAU were utilized to build the basement membrane-related prognostic model. Kaplan-Meier curves showed that the survival time of low-risk 
pancreatic cancer (PC) was notably higher than that of high-risk PC in the training cohort (D), internal validation cohort (E), and the entire TCGA dataset (F). ROC curves of 
the training cohort (G), internal validation cohort (H), and the entire TCGA dataset (I). Risk score curves and survival status scatter plots of the training cohort (J), internal 
validation cohort (K), and the entire TCGA dataset (L). 
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Figure 4. External validation and comparison of basement membrane-related prognostic model. In external validation cohorts GSE28735 (A), GSE57495 (B), GSE62452 (C), 
GSE78229 (D), GSE85916 (E), and ICGC-PACA-AU (F), Kaplan-Meier curves showed that the survival time of low-risk pancreatic cancer (PC) was notably higher than that of 
high-risk PC. The AUC value (G) and C-index (H) of basement membrane-related prognostic model were higher than those of the other twelve published models. 

 
Besides, immunotherapy responses in different 

subgroups were investigated. The IPS for CTLA-4 
within low-risk PCs was noticeably greater than that 
within high-risk PCs, suggesting that immunotherapy 
could be more beneficial for low-risk PCs, especially 
CTLA-4 blockers (Figure 8A). To validate this finding, 
TIDE scores were computed in various subgroups. 
PCs from TCGA cohort suggested that low-risk PCs 
had noticeably lower TIDE scores, which indicated 
that low-risk PCs were more sensitive to 
immunotherapy (Figure 8B). Similarly, the external 
cohorts also suggested that low-risk PCs had lower 
TIDE scores (Figures 8C-I). Besides, the 
immunotherapy dataset Imvigor210 including 348 
UCs was employed further to evaluate the connection 

between BM-related risk score and immunotherapy. 
The prognosis of UCs with a low BM-related score 
was better than that of UCs with a high BM-related 
score, indicating that the BM-related prognostic 
model may apply to different tumors (Figure 8J). The 
BM-related scores within the immunotherapy 
responder group were smaller than those within the 
non-responder group (Figure 8K). Further analysis 
showed that PLAU within immunotherapy response 
group had a considerably lower expression than that 
within immunotherapy non-response group (Figure 
8L). The above results indicated that PCs with a low 
BM-related score had higher infiltration of CD8+ T 
cells and were more likely to benefit from 
immunotherapy. 
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Figure 5. Clinicopathological characteristics correlation, independent prognostic analysis, and nomogram prediction model construction. The difference of risk score in various 
age groups (A), gender groups (B), T stages (C), N stages (D), M stages (E), pathological grades (F), and clinical stages (G). (H) The univariable Cox regression showed that 
age, pathological grade, and basement membrane (BM)-related risk score were significantly associated with the prognosis of pancreatic cancer (PC). (I) The multivariable Cox 
regression showed that age and BM-related risk score were the independent prognostic factors of PC. (J) Nomogram prediction model was built using clinicopathological 
characteristics and BM-related risk score. (K) The calibration curve showed that the 1, 3, and 5-year survival rates predicted by the nomogram model were relatively close to 
the true survival rates. 
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Figure 6. Gene set enrichment analysis (GSEA). GSEA showed the top 10 significantly enriched pathways of the high-risk group (A) and the low-risk group (B) based on the 
gene set “c5.go.v7.5.1.symbols.gmt”. GSEA showed the top 10 significantly enriched pathways of the high-risk group (C) and the low-risk group (D) based on the gene set 
“c2.cp.kegg.v7.5.1.symbols.gmt”. 

 
 

3.6 Chemotherapy and targeted therapy 
sensitivity 

Chemotherapy and targeted therapies are 
important in improving PC prognosis. Nevertheless, 
primary or secondary drug tolerance can cause 
individual differences in efficacy. Therefore, 
identifying the highly sensitive drugs for each PC 
patient is essential to improve the effectiveness of 
drug therapy and develop a personalized treatment 
plan. This study identified 149, 160, 141, 160, 152, 130, 
and 90 drug molecules with significantly different 
sensitivity in various risk group from the TCGA, 
GSE28735, GSE57495, GSE62452, GSE78229, 
GSE85916, and ICGC-PACA-AU cohorts, respectively 
(Table S5). After the intersection of all the cohorts, 
there were 74 drug molecules with significant 
sensitivity differences (Figure 9A). PCs with a lower 
BM-related score were more sensitive to cytarabine 

(Figure 9B), irinotecan (Figure 9C), KRAS(G12C) 
Inhibitor-12 (Figure 9D), oxaliplatin (Figure 9E), and 
sorafenib (Figure 9F). 

3.7 Expressed and prognostic validation by 
clinical cohort 

Samples from TCGA and GTEx (Figures 10A-C), 
GSE28735 (Figures 10D-F), and GSE62452 (Figures 
10G-I) datasets suggested that DSG3, MET, and 
PLAU were notably up-regulated in PC tissues in 
comparison to normal tissues. To further verify the 
expression of DSG3, MET, and PLAU. we obtained 10 
pairs of PC and normal tissues from the First 
Affiliated Hospital of Dalian Medical University and 
further performed PCR experiments. Results showed 
that DSG3, MET, and PLAU had significantly higher 
RNA levels within PC tissues than normal tissues 
(Figures 10J-L).  
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Figure 7. Immune infiltration analysis. (A) Single-sample gene set enrichment analysis (ssGSEA) showed that CD8+ T cells and NK cells had higher infiltration levels in the 
low-risk group, while macrophages had significantly higher infiltration levels in the high-risk group. (B) ssGSEA showed that Type II IFN response in the low-risk group had a 
significantly higher score, while APC co-inhibition, APC co-stimulation, MHC class I, parainflammation, and Type I IFN response in the high-risk group had significantly higher 
scores. XCELL, TIMER, QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT-ABS, and CIBERSORT algorithms were employed to assess the correlation of BM-related risk score 
and immune cell subpopulations (C), as well as the difference in the infiltration levels of immune cell subpopulations between high- and low-risk subgroups (D). 
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Figure 8. Immunotherapy response. (A) The immune phenotype score (IPS) for CTLA-4 in the low-risk PC was notably higher than that in high-risk PC. PC from TCGA (B), 
GSE28735 (C), GSE57495 (D), GSE62452 (E), GSE78229 (F), GSE85916 (G), ICGC-PACA-AU (H), and merged all cohort (I) showed that tumor immune dysfunction and 
exclusion (TIDE) score was notably higher in high-risk group. (J) The basement membrane-related prognostic model was applied to Imvigor210 cohort, the survival time in 
low-risk group was notably higher than that in high-risk group. (K) The risk score of patients in the immunotherapy responder group was lower than that of the non-responder 
group, and the difference is very close to statistical significance. (L) PLAU expression in the immunotherapy response group was significantly lower than that in the non-response 
group. 
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Figure 9. Drug sensitivity analysis. (A) Intersection of drug molecules with significantly different sensitivities between high- and low-risk subgroups from all cohorts. The low-risk 
group was more sensitive to cytarabine (B), irinotecan (C), KRAS(G12C) Inhibitor-12 (D), oxaliplatin (E), and sorafenib (F). 

 
In addition, we also obtained paraffin-embedded 

pathological sections of 54 PC tissues and 22 normal 
tissues from the First Affiliated Hospital of Dalian 
Medical University. Meanwhile, clinicopathological 
and survival information of 54 patients with PC was 
collected. To investigate the differences in BM 
structure between PC and normal tissues, we 
performed immunofluorescence staining for the 
classical BM marker type IV collagen[23,57]. Results 
showed that BM structure was intact and regular in 
normal tissues, whereas it was fragmented and 
irregular in PC tissues (Figures 11A-B). 
Immunohistochemistry was performed to investigate 
to the expression of model genes. And results showed 
that DSG3, MET, and PLAU had higher protein levels 
within PC tissues in comparison to adjacent tissues 
(Figures 12A-I). Clinical survival information and 
DSG3, MET, and PLAU expression of 54 PC samples 
were further combined. Results showed that DSG3, 
MET, and PLAU had significantly higher levels 
within advanced PCs (Figures 13A-C). DSG3 and 
PLAU were had significantly higher levels within 
higher pathological grades (Figures 13D and F). MET 
had a higher level in PC with higher pathological 
grade, but no statistical difference, which could be 
related to the limited patient number (Figure 13E). 
KM curves suggested that up-regulation of DSG3, 

MET, and PLAU was linked to a poorer outcome 
(Figures 13G-I). Subsequently, this study further 
calculated the BM-related risk score for each PC 
patient based on the expression of DSG3, MET, and 
PLAU. The BM-related risk score was remarkably 
higher within higher clinical stage and pathological 
grade (Figures 13J and K). KM curves indicated that 
PCs with a high BM-related risk score had a poorer 
outcome (Figure 13L). 

3.8 DSG3 knockdown inhibited the 
proliferation, migration, and invasion of PC 
cells 

Based on the above findings, DSG3, MET, and 
PLAU are upregulated in PC and are associated with 
poor prognosis. MET and PLAU have been 
extensively reported in various cancers, including 
PC[58–61]. Cancers with poorer prognoses typically 
exhibit enhanced proliferation, migration, and 
invasion capabilities in their cells. Therefore, this 
study further explored the function of DSG3 in PC 
cells. The siRNA targeting DSG3 was transfected into 
PC cells BxPC-3 and CFPAC-1. PCR results showed 
that DSG3 was successfully knocked down in BxPC-3 
and CFPAC-1 cells (Figures 14A and B). CCK-8 
assays indicated that DSG3 knockdown could 
suppress the proliferation of BxPC-3 and CFPAC-1 
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cells (Figures 14C and D). Scratch assays 
demonstrated that DSG3 knockdown could 
significantly reduce the migration of BxPC-3 and 
CFPAC-1 cells (Figures 14E and F). Transwell 
invasion assays showed that DSG3 knockdown could 

suppress the invasion of BxPC-3 and CFPAC-1 cells 
(Figures 14G and H). These results suggested that 
DSG3 knockdown may inhibit the proliferation, 
migration, and invasion of PC cells. 

 

 
Figure 10. DSG3, MET, and PLAU expression. Pancreatic cancer from TCGA and GTEx (A-C), GSE28735 (D-F), and GSE62452 (G-I) datasets suggested that DSG3, MET, and 
PLAU were notably up-regulated in PC tissues in comparison to normal tissues. PCR showed that DSG3 (J), MET (K), and PLAU (L) had significantly higher RNA levels within 
PC tissues than normal tissues. (ns P-value > 0.05; * P-value < 0.05; ** P-value < 0.01; *** P-value < 0.001). 
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Figure 11. Immunofluorescence. (A) Immunofluorescence image of basement membrane (BM) structure in normal tissues with Collagen IV (red) and nuclei (DAPI; blue). (B) 
Immunofluorescence image of BM structure in pancreatic cancer tissues with Collagen IV (red) and nuclei (DAPI; blue). 

 

3.9 Potential therapeutic drug and molecular 
docking 

The comparative toxicogenomics database was 
used to search for drug molecules that could target 
DSG3, MET, and PLAU in pancreatic tumors, 
obtaining 4, 26, and 39 drug molecules, respectively 
(Table S6). After intersection, two drug molecules 
epigallocatechin gallate and tobacco smoke pollution 
were obtained (Figure 15A). Based on relevant data 
from the comparative toxicogenomics database, 
epigallocatechin gallate can decrease the expression 
levels of DSG3, MET, and PLAU. Epigallocatechin 
gallate is an active compound in green tea, which has 
been shown to inhibit cancer cell proliferation and 
angiogenesis, and is a potential therapeutic agent for 
malignant tumors[62]. Subsequently, we performed 
molecular docking of epigallocatechin gallate with 
DSG3, MET, and PLAU (Figures 15B-D). The binding 
energy of epigallocatechin gallate with DSG3, MET, 
and PLAU were -8.0 kcal/mol, -10.6 kcal/mol, and 
-9.5 kcal/mol, respectively (Table S7), indicating that 
epigallocatechin gallate has a strong binding activity 
with DSG3, MET, and PLAU and may be used as a 
potential therapeutic agent for PC. 

4. Discussion 
PC is characterized by substantial malignancy, 

strong invasiveness, and extremely poor 
prognosis[63]. Additionally, PC has an insidious onset 

and atypical early symptoms. About 80-85% of PCs 
miss out on the chance of undergoing surgery when 
diagnosed[6]. Despite receiving surgical treatment 
and adjuvant treatment after surgery, about 70% of 
PCs will still have recurrence and metastasis within 2 
years after surgery[64–66]. Invasiveness and 
metastases are important features of malignancies and 
are responsible for 66%–90% of deaths in cancer 
patients[67]. BM is formed by cross-linking 
macromolecules in the ECM and acts as a barrier to 
cancer cell aggressiveness and metastases. The 
destruction and structural disorder of BM are 
important processes for PC cells to invade the 
surrounding stroma[57]. 

We found 46 differential BMRGs between PC 
and normal tissues, which were notably enriched in 
“basement membrane”, “focal adhesion”, 
“ECM-receptor interaction”, and “PI3K-Akt signaling 
pathway”. Focal adhesion can attach the ECM to the 
cytoskeleton inside and is crucial for preserving cell 
survival, proliferation, differentiation, and movement 
by regulating cell morphology and intracellular signal 
transduction[68,69]. Studies manifested that the 
dysregulation of focal adhesion and ECM-receptor 
interaction is closely associated with tumor cell 
shedding, adhesion, invasion, and metastases[70,71]. 
As one of the important signaling within cells, 
PI3K/Akt could enhance cell viability, prevent 
apoptosis, etc.[72,73]. Besides, PI3K/Akt signaling is 
crucial in the pathological process of human cancer. 
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Its abnormal activation could cause the change of a 
series of downstream proteins, thereby promoting 
cancer cell growth, invasiveness, and metastases[74–
76] and inducing the formation of tumor 

neovascularization[77,78]. Therefore, BMRGs may 
participate in the above processes to facilitate the 
occurrence and progression of cancer. 

 
Figure 12. Immunohistochemistry. Immunohistochemical images of DSG3 (A), MET (D), and PLAU (G) in pancreatic cancer (PC) and normal tissues. The 
immunohistochemistry results of 24 pairs of PC and normal tissues indicated that protein levels of DSG3 (B), MET (E), and PLAU (H) in PC tissues were notably higher than 
those in normal tissues. The immunohistochemistry results of 54 PC and 24 normal tissues indicated that protein levels of DSG3 (C), MET (F), and PLAU (I) in PC tissues were 
notably higher than those in normal tissues. (ns P-value > 0.05; * P-value < 0.05; ** P-value < 0.01; *** P-value < 0.001). 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

6291 

 
Figure 13. Clinical cohort validation of basement membrane-related prognostic model. The expression levels of DSG3 (A), MET (B), and PLAU (C) between stage I and stage 
II-IV pancreatic cancer (PC). The expression levels of DSG3 (D), MET (E), and PLAU (F) between pathological grade 1-2 and pathological grade 3-4 PC. Kaplan-Meier curves 
showed that the prognoses of DSG3 (G), MET (H), and PLAU (I) high-expression subgroup were notably worse than those of the low-expression subgroup. (J) The BM-related 
risk score of PCs with stage II-IV was notably higher than that of PCs with stage I. (K) The BM-related risk score of PCs with pathological grade 3-4 was notably higher than that 
of PCs with pathological grade 1-2. (L) Kaplan-Meier curves showed that PCs with a high BM-related risk score had a notably worse prognosis than PCs with a low BM-related 
risk score. 
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Figure 14. In vitro experiment. PCR showed that DSG3 was successfully knocked down in BxPC-3 (A) and CFPAC-1 (B) cells. CCK-8 assays indicated that DSG3 knockdown 
could significantly restrain the proliferation of BxPC-3 (C) and CFPAC-1 (D) cells. Scratch assays indicated that the migration ability of BxPC-3 (E) and CFPAC-1 cells (F) was 
significantly inhibited after DSG3 knockdown. Transwell invasion assays indicated that the invasion ability of BxPC-3 (G) and CFPAC-1 cells (H) was significantly inhibited after 
DSG3 knockdown. (ns P-value > 0.05; * P-value < 0.05; ** P-value < 0.01; *** P-value < 0.001). 

 
To stratify PCs and assess prognosis, the 

BM-related risk score model (including MET, DSG3, 
and PLAU) was constructed and validated using 
different public databases and clinical cohort. MET is 
a proto-oncogene encoding the mesenchymal-to- 
epithelial transition protein which belongs to the 
tyrosine kinase receptor. As a ligand, hepatocyte 
growth factor may attach with the extracellular region 
of MET protein, then activate the kinase and 
phosphorylate the tyrosine. Phosphorylated MET 

protein can recruit a variety of effector molecules and 
activate a series of downstream signaling, including 
PI3K/Akt and ERK/MAPK[58,79,80]. The high 
expression of MET was found within various 
malignancies, encompassing head and neck 
squamous cell carcinoma[81,82], lung cancer[83,84], 
esophageal cancer[85], gastric cancer[80,86,87], 
colorectal cancer[88,89], hepatocellular carcinoma[90], 
PC[91], and kidney cancer[92,93]. This study showed 
that MET in PC tissues was significantly up-regulated 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

6293 

and linked to a poor outcome. DSG3, as one kind of 
calcium-bound transmembrane glycoprotein among 
members of the cadherin superfamily, plays an 
intercellular connection role in desmosomes, and 
participates in many signaling pathways[94]. Xin et 
al.[95] showed that DSG3 was down-regulated within 
oral squamous cell carcinoma, and low DSG3 
expression was linked to higher pathological grade 
and lymph node metastasis rate. However, some 
studies found that DSG3 had a cancer-promoting 
effect, and upregulation of DSG3 was related to tumor 
development and bad outcomes, such as head and 
neck cancer[96] and esophageal cancer[97]. Therefore, 
DSG3’s function in different tumors remains 
controversial. This study showed that DSG3 was 
substantially up-regulated within PC and related to 
higher TNM stage and worse outcomes. In vitro 
experiments showed that DSG3 knockdown could 
inhibit the proliferation, migration, and invasion of 
PC cells. PLAU encodes the production of 
urokinase-type plasminogen activator which belongs 
to one kind of serine protease and could promote the 
conversion of plasminogen to plasmin[98,99]. Studies 
showed that PLAU may directly or indirectly degrade 
the ECM elements, including laminins and collagen 
fibers, by activating matrix metalloproteinases, 
thereby facilitating tumor cell metastasis and 

angiogenesis[100,101]. A meta-analysis[102] mani-
fested that PLAU was involved in shorter overall and 
recurrence-free survival of gastroesophageal cancer. 
This study indicated that PLAU was notably 
up-regulated within PC and related to PC progression 
and poor prognosis. 

Tumor immune environment is currently a hot 
topic in the field of oncology and is related to cancer 
progression and immunotherapy response. This study 
manifested that PCs with a low BM-related score had 
higher infiltrations of CD8+ T cells, NK cells, and B 
cells, while PCs with a high BM-related score had 
higher infiltrations of neutrophils, and CAFs. As one 
of the main effector cells of anti-cancer immunity, 
CD8+ T cells could destroy tumor cells through 
cytotoxicity and inhibit tumor angiogenesis by 
secreting interferon gamma[103]. High abundance of 
CD8+ T cells is generally linked to higher 
immunotherapy response and better outcome for 
cancer patients, such as colon cancer[104], gastric 
cancer[105], and PC[106]. This was consistent with 
our findings that PCs with high levels of CD8+ T cells 
had a better prognosis and a greater likelihood of 
benefit from immunotherapy. NK cells are involved 
in tumor immune surveillance and can quickly 
recognize cancer cells without prior sensitization. It 
could directly kill cancer cells through releasing 

 
Figure 15. Candidate drug prediction and molecular docking. (A) The intersection of drug molecules targeting DSG3, MET, and PLAU. Molecular docking results of 
epigallocatechin gallate with DSG3 (B), MET (C), and PLAU (D). 
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cytotoxic granules comprising perforin and 
granzyme, and could also destroy cancer cells 
through excreting immunomodulatory cytokines like 
nitric oxide and expressing other tumor necrosis 
factor family members[107–109]. In contrast to T cells, 
there is debate concerning B cells’ involvement in 
cancer[110]. Zhang et al.[111] manifested that the high 
abundance of B cells within lung adenocarcinoma 
tissue was connected with a good outcome. Iglesia et 
al.[112] investigated 11 tumors derived from TCGA 
platform and revealed that the elevated B cell levels 
predicted high survival times in most tumors. 
However, there are also studies showing that B cells 
can promote tumor development. Yang et al.[113] 
suggested that B cells with STAT3 activation could 
promote tumor angiogenesis and thereby promote 
tumor development, and therefore can be used as a 
potential treatment target. Woo et al.[114] found that 
the abundance of CD20+ B cells within prostate cancer 
tissue was increased compared with normal prostate 
tissue and was linked to prostate cancer progression 
and recrudesce. Chen et al.[115] identified two main B 
cell subtypes: naive-like B cells and plasma-like B 
cells, utilizing single-cell RNA sequencing. Naïve-like 
B cells have inhibitory effects on the proliferation of 
lung cancer cells, while plasma-like B cells can 
suppress lung cancer cell growth in the early stages 
and promote lung cancer cell growth in the advanced 
stages. Therefore, the function of B cells on tumors 
may be related to their different subtypes. 
Neutrophils, as first responders to infection and 
inflammation, are an essential part for innate 
immunity, and neutrophils’ impact on tumors has 
currently attracted increasing attention from 
oncologists[116]. Many studies showed that 
neutrophils have pro-cancer effects by promoting 
tumor growth and metastasis[117–119], angiogenesis 
[120,121], remodeling ECM[122], and suppressing 
anti-tumor immunity[123]. However, several studies 
manifested that neutrophils could restrain tumor cell 
proliferation and therefore have the potential for 
anti-tumor effects[124,125]. The contradictory roles 
displayed by neutrophils in tumor progression may 
be the result of their different plasticity and functional 
states[126,127]. In addition to immune cells, CAFs are 
also one an important cellular elements within TME 
and participate in a series of cancer-promoting 
processes, like cancer cell migration, chemotherapy 
and radiotherapy resistances, and immune 
suppression[128–131]. Glentis et al.[19] found that 
CAFs can expand the gaps of BM by applying 
mechanical forces such as contraction and stretching, 
thereby assisting tumor cell metastasis. 

The current first-line treatment for PC is the 
FOLFIRINOX regimen or gemcitabine plus 

albumin-paclitaxel. Frustratingly, even with first-line 
chemotherapy, merely 30% of PCs are sensitive[132]. 
Drug resistance, either primary or secondary, is the 
primary reason for therapy failure and plays a vital 
function in the high mortality rate of cancer patients. 
It is crucial to understand the potential molecular 
mechanism of drug resistance and to search for 
individualized sensitive drugs. Fridman et al.[133] 
found that recombinant BM and laminin could 
promote lung cancer cell lines’ tumorigenicity and 
chemotherapy resistance. This study demonstrated 
that BM-related risk score was linked to 
chemotherapy and targeted therapy sensitivity. PCs 
with a low BM-related score were more sensitive to 
oxaliplatin, irinotecan, cytarabine, and KRAS(G12C) 
inhibitor-12. Oxaliplatin and irinotecan are two drugs 
in the FOLFIRINOX regimen. This may partially 
explain why PCs with a low BM-related score had a 
higher survival. An important feature of the 
pathogenesis of PC is KRAS mutation, with a 
mutation frequency of about 90%. KRAS codon 12 
mutations (71%) are the most common, including 
G12D (42%), G12V (32%), G12R (15 %), G12C (1.5%), 
G12A (0.4%), and G12S (0.1%)[134–136]. Therefore, 
targeting KRAS mutations in PC therapy has a 
theoretical basis and prospect. There are currently 
early clinical studies on KRAS G12C in the treatment 
of PC, which have shown good results[134,136,137]. 

Immunotherapy has developed rapidly in recent 
years, bringing new hope for cancer treatment. 
Immunotherapy has been used to improve the 
prognosis of numerous malignancies, comprising 
non-small cell lung cancer[138], hepatocellular 
carcinoma[139], renal carcinoma[140], melanoma 
[141], and esophageal squamous cell carcinoma[142]. 
Nevertheless, due to the complicacy and 
heterogeneity of tumorigenesis, the overall response 
rate for immunotherapy is low, and only 10%-30% of 
patients can benefit from immunotherapy[143]. 
Therefore, identifying patient subpopulations that are 
sensitive to immunotherapy is beneficial to the 
development of precision oncology medicine. This 
study showed that immunotherapy was 
more beneficial for PCs with a low BM-related score. 
Therefore, there may be a potential link between BM 
and tumor immunotherapy response. We also look 
forward to more research to explore in the future. 

5. Conclusion 
 This study developed and validated a 

BM-related risk score model (including DSG3, MET, 
and PLAU) in PC using multiple public and clinical 
cohorts, with a good prediction efficiency for the 
prognosis, tumor immune environment, and therapy 
response. DSG3, MET, and PLAU were notably 
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up-regulated within PC tissues and linked to a poor 
prognosis. And DSG3 knockdown markedly inhibited 
the proliferation, migration, and invasion of PC cells. 
Epigallocatechin gallate had a strong binding activity 
with DSG3, MET, and PLAU and may be used as a 
potential therapeutic agent for PC. These results 
offered novel insights into PC stratification and drug 
intervention. 
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