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Abstract 

Head and neck squamous cell carcinoma (HNSCC) is the most common malignant tumor in the 
epithelium of the head and neck. The role of the centrosome in malignant tumors is crucial. However, 
research on the centrosome in HNSCC remains largely unexplored. In this study, bioinformatics tools 
were utilized to analyze the expression and prognostic significance of centrosome-related genes (CRGs). 
CRGs exhibited a relatively high mutation frequency in HNSCC. Consensus unsupervised clustering 
analysis based on the expression profiles of CRGs revealed significant associations with clinical features, 
prognosis and immune microenvironment in HNSCC. Prognostic features were constructed using 
univariate and LASSO Cox regression, resulting in a centrosome-related model with eleven features. 
Patients were classified into high-risk and low-risk groups based on median risk scores. External 
validation using the GSE41613 dataset from the GEO database confirmed the reliability of the 
centrosome-related model. The model was associated with the prognosis of HNSCC patients, and 
centrosome-related features could impact tumor prognosis by influencing the tumor immune 
microenvironment. Finally, qPCR showed that CRGs were highly expressed in tumor tissues. This study 
developed a novel centrosome-related prognostic model, applicable for predicting the prognosis and 
immune landscape of HNSCC patients, offering potential targets for future HNSCC treatment. 
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Introduction 
Head and neck squamous cell carcinoma 

(HNSCC) originates from the oral cavity, oropharynx, 
larynx, and hypopharynx, representing a highly 
aggressive malignant tumor with poor prognosis[1]. 
Squamous cell carcinoma is the most common cancer 
type in the head and neck region and ranks as the 
sixth most prevalent cancer globally[2]. Major risk 
factors associated with HNSCC include, but are not 
limited to, extensive tobacco and alcohol use, HPV or 
EBV infections, and genetic factors[3]. Some of these 
risk factors exhibit geographical variations; for 
instance, betel nut chewing is most prevalent in India, 
while exposure to carcinogenic air pollutants is more 

common in developing regions like India and 
China[4]. The incidence of HPV-driven HNSCC is 
increasing in Western countries[5], while EB 
virus-driven HNSCC is more common in East Asian 
developing countries[6]. HNSCC is characterized by a 
high rate of cervical lymph node metastasis, increased 
invasiveness and recurrence, leading to poor 
prognosis. Currently, the primary treatments for 
HNSCC include surgery, radiotherapy, and 
chemotherapy[7], with targeted therapy and 
immunotherapy emerging as novel cancer therapies. 
Unfortunately, the overall response rate to these 
treatments is unsatisfactory. Therefore, it is crucial to 
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identify satisfactory biomarkers or methods that can 
accurately predict the survival of HNSCC patients to 
improve their prognosis. Thus, there is an urgent need 
to identify prognostic features and potential 
mechanisms of HNSCC development. 

The centrosome is the smallest organelle in 
eukaryotic cells, serving as the microtubule 
organizing center and a key regulator of cell 
division[8]. The centrosome consists of two 
barrel-shaped centrioles and surrounding 
pericentriolar material (PCM)[9]. The centrioles have 
a diameter of 0.16-0.23 μm and a length of 0.16-0.56 
μm, arranged perpendicularly in pairs[10]. The 
centrioles are surrounded by a series of proteins, and 
the PCM is essential for centrosome replication as it 
mediates the formation and stability of daughter 
centrioles[11]. Each component of the centrosome has 
its own function. The centrosome has complex 
biological functions, mainly relying on its structure 
and a large number of centrosome-related proteins. 
The centrosome acts as a coordinating center in 
eukaryotic cells, regulating signal transduction, cell 
division, polarity, and migration[12]. The structure, 
function, and number of centrosomes are strictly 
controlled within cells. Similar to DNA, the 
centrosome replicates once per cell cycle in a 
semi-conservative manner[13, 14]. To form an 
effective bipolar mitotic spindle, the centrosome must 
replicate during the S phase, and centrosomes mature 
and separate during the G2 phase[15]. Finally, each 
daughter cell inherits one centrosome after mitosis. 
Any disruption of its function may lead to spindle 
disorganization and chromosome missegregation, 
ultimately resulting in chromosomal instability (CIN) 
and aneuploidy. Distortions in centrosome size, 
shape, number, and position are collectively referred 
to as centrosome amplification (CA)[16]. Centrosomal 
abnormalities are common in malignant tumors, and 
anomalies in centrosome number and structure are 
observed in almost all human cancers[17]. 
Furthermore, the degree of centrosomal distortion is 
correlated with the progression of malignant tumors. 
Some studies suggest that CA promotes the 
development of HNSCC, and centrosome 
overamplification is highly prevalent in HNSCC. 
Centrosome overamplification serves as a phenotypic 
marker for HNSCC and can reflect various genotypic 
changes[18]. Researchers have been delving into the 
role of the centrosome in cancer development and 
progression. However, to date, there is no relevant 
research on a centrosome-related prognostic model in 
HNSCC. Therefore, investigating centrosome-related 
gene markers in HNSCC may provide valuable 
therapeutic guidance in clinical practice. 

Materials and Methods 
Collection and Preprocessing of HNSCC 

Training Set: We selected 521 patients from The 
Cancer Genome Atlas (TCGA) database and 
downloaded their mRNA expression profiles and 
clinical information from the Genomic Data 
Commons (GDC) (https://portal.gdc.cancer.gov/). 
The expression matrix included exon model 
fragments per kilobase of exon model per million 
mapped fragments (FPKM) and count values. After 
removing cases with missing follow-up clinical 
information, the remaining HNSCC and normal 
patients were included in our training cohort. 

We downloaded somatic mutation data from the 
Genomic Data Commons (GDC, https:// 
portal.gdc.cancer.gov/) in mutation annotation 
format (MAF). The mutation data, sorted in MAF 
format, was analyzed, and the Tumor Mutational 
Burden (TMB) was calculated using the "maftools" R 
package[19]. 

Validation Set: We obtained an external dataset 
GSE41613 from the Gene Expression Omnibus (GEO) 
database (https://www.ncbi.nlm.nih.gov/geo/) 
containing 97 samples. After excluding cases with 
death due to other factors, 76 samples were retained 
and utilized as our test set. 

Selection of Differentially Expressed CRGs 
We collected a total of 727 CRGs from public 

databases and literature. Subsequently, using the 
"limma" package and setting the threshold of p < 0.05 
[20], we identified 601 differentially expressed CRGs 
(DEGs) in normal and HNSCC tissues from TCGA. 
Additionally, a heatmap was generated to visually 
display the significant expression differences of these 
DEGs between normal and HNSCC tissues. 

Protein-Protein Interaction (PPI) Analysis 
Functional interactions among proteins are 

crucial for understanding the molecular mechanisms 
of cancer. The Search Tool for the Retrieval of 
Interacting Genes (STRING v11.0) online tool 
(https://string-db.org/) was employed to establish 
potential interactions among a large number of 
genes[21]. Overlapping DEGs were input into the 
software to construct a PPI network, visualized using 
Cytoscape software 3.7 (http://www.cytoscape.org) 
[22]. 

Consensus Clustering and Evaluation of 
Expression, Prognosis, and Immune 
Infiltration 

Consensus clustering analysis was performed 
using the "ConsensusClusterPlus" package in R with 
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the optimal k value determined from 100 iterations on 
80% of the total samples[23]. The "Consensus 
ClusterPlus" package provided a clustering heatmap 
displaying the optimal k value. Through heatmap 
analysis, we differentiated the expression levels of 
CRGs between clusters 1 and 2. The "survival" 
package in R was used to assess overall survival 
between clusters 1 and 2. The "limma" R package was 
employed for differential expression gene (DEGs) 
analysis using raw counts. The volcano plot was used 
to display DEGs with adjusted p-value < 0.05 and 
|log2 fold change| > 1. 

Functional Enrichment Analysis of 
Differentially Expressed Genes and Tumor 
Mutational Burden (TMB) 

The "clusterProfiler" R package was used to 
perform Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis[24, 25]. Indicators with 
a false discovery rate (FDR)-adjusted p-value less than 
0.05 using Fisher's exact test were considered 
significant. Gene Set Enrichment Analysis (GSEA) 
was conducted using the "clusterProfiler" package 
with gene set files c2.cp.kegg.symbols.gmt and 
c5.go.symbols.gmt. To compare mutation profiles 
between high/low expression groups, we assessed 
Tumor Mutational Burden (TMB) levels, the optimal 
quantitative standard reflecting mutation levels. TMB 
scores were calculated using the "tmb" function in the 
"maftools" package. 

Evaluation of Immune Microenvironment in 
HNSCC 

We utilized the "estimate" package to calculate 
stromal, immune, and ESTIMATEScore, as well as 
tumor purity from HNSCC samples from TCGA. 
Subsequently, we used CIBERSORT to estimate the 
infiltration levels of several tumor-infiltrating 
immune cells in the tumor immune 
microenvironment (TIME)[26]. Additionally, we 
analyzed the expression of leukocyte antigen genes in 
high/low expression subgroups and described the 
tumor immune microenvironment further by 
examining the expression of 11 immune checkpoint 
genes and evaluating immune response scores using 
the "ssGSEA" algorithm. 

Construction and Validation of the 
Centrosome-Related Prognostic Model 

The TCGA validation cohort and an external 
cohort (GSE41613 dataset) were further used to 
validate the prognostic efficacy of centrosome-related 
gene features. Consequently, single-factor Cox 
analysis of overall survival (OS) was employed to 

screen CRGs with prognostic value. Subsequently, 
LASSO regression with 10-fold cross-validation was 
executed with 1,000 cycles using the "glmnet" R 
package, and 1,000 random stimuli were set. Based on 
the optimal λ value, the optimal genes were selected 
to build the model, termed the Centrosome-Related 
Survival Score (CRSS). The CRSS was calculated 
based on the expression levels of each gene and its 
corresponding regression coefficient using the 
following formula: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = ∑𝑒𝑒𝑒𝑒𝑒𝑒𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 × 𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺. 

Patients were then categorized into high-risk and 
low-risk groups based on the optimal cutoff value, 
determined using the "survminer" R package. The 
predictive sensitivity of CRSS was visualized using 
the "survivalROC" R package. The model's 
effectiveness was assessed in the validation set using 
the same coefficients and cutoff values as the training 
set. 

Construction of Nomogram and Calibration 
Plot 

In this study, a Cox regression model and the 
"rms" package in R were used to construct an 
operating system prediction nomogram, setting 
1-year, 3-year, and 5-year OS as endpoints. A 
calibration plot was employed to visualize the 
consistency between predicted 1-year, 3-year, and 
5-year OS and actual OS. 

Univariate and Multivariate Cox Regression 
Univariate Cox regression was performed on 

TCGA-HNSCC, including gene expression and 
overall survival. Multivariate Cox regression was 
employed to assess independent risk factors in the 
same cohort. Genes and factors with a false discovery 
rate (FDR) < 0.05 were considered statistically 
significant. Results of univariate and multivariate Cox 
regression were obtained and visualized using the 
"ggforest" function in the "survminer" package. 
Clinical Correlation Analysis of High/Low Risk 
Subgroups in the Centrosome-Related Prognostic 
Model was performed. The clinical correlation 
heatmap of high/low-risk subgroups in the 
Centrosome-Related Prognostic Model. 

Evaluation of the Immune Microenvironment 
in HNSCC 

We used the "estimate" algorithm to calculate 
stromal, immune, and ESTIMATEScores, as well as 
tumor purity, from breast cancer samples from TCGA. 
Next, we employed algorithms including CIBERSORT 
to estimate the levels of immune cell infiltration in the 
tumor immune microenvironment (TIME). We further 
analyzed the correlation between risk scores and 
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immune cells, validated immune functional 
differences between high and low immune function 
groups, and performed Kaplan-Meier analysis on the 
survival curves of patients with high and low immune 
function. 

Prediction of Immunotherapy Sensitivity and 
Drug Response 

To validate the predictive value of 
immunotherapy response, an additional 
immunotherapy dataset was downloaded from 
http://tide.dfci.harvard.edu/. This dataset was used 
to predict immunotherapy responses. To identify 
variations in mutated genes between high and low 
expression groups of CRGs, mutation analysis was 
conducted using the "TCGAmutations" and 
"maftools" R packages. The tumor mutational burden 
(TMB) of TCGA samples was calculated using the 
"tmb" function in the "maftools" package. 
Furthermore, we analyzed the correlation between 
high/low-risk groups and immune cells. We 
downloaded the Head and Neck Squamous Cell 
Carcinoma (HNSCC) TIDE dataset, which provides 
information on tumor immune dysfunction and 
exclusion data[27]. The TIDE algorithm accurately 
predicts the efficacy of immunotherapeutic drugs 
based on TIDE scores. 

RNA Extraction and Real-time Quantitative 
PCR (qPCR) 

Total RNA was extracted from cells and tissues 
using Trizol reagent (Invitrogen, USA) according to 
the manufacturer's instructions. Subsequently, reverse 
transcription of RNA into cDNA was performed 
using the PrimeScript RT reagent kit and gDNA 
Eraser (Takara, Japan). SYBR Green dye qPCR 
analysis was carried out on the cDNA. Primer 

sequences were listed in Supplementary Table S1. 

Statistical Analysis 
The Wilcoxon rank-sum test was employed for 

differential analysis using the `wilcox.test()` function 
to calculate the p-value of the Wilcoxon rank-sum test 
for each gene between the normal and tumor groups. 
Single-variable Cox analysis was conducted on 
overall survival (OS) to determine relevant genes and 
their prognostic value. Kaplan-Meier survival curves 
were generated, and the log-rank test was used to 
compare between the two groups. Spearman 
correlation analysis was used to assess the correlation 
between the risk score of the prognostic model and 
the immune score. All statistical analyses were 
conducted using R version 4.1.1 (https://www.r- 
project.org/) and appropriate packages. Statistical 
significance was set at p < 0.05. 

Results 
Identification and Protein-Protein Interaction 
(PPI) Network of Differentially Expressed 
CRGs in HNSCC 

By consulting public databases and literature, we 
collected a total of 727 CRGs and validated the 
expression of 699 genes in our training set. 
Subsequently, we employed the "DESeq155" 
algorithm with the "limma" test to identify 601 
centrosome-related Differentially Expressed Genes 
(DEGs) between normal and HNSCC samples from 
TCGA. A heatmap further illustrated the expression 
patterns of these DEGs in normal and HNSCC tissues 
(Figure 1A). The 47 differentially expressed genes 
were uploaded to the STRING database and 
Cytoscape to construct a PPI network (Figure 1B and 
1C). 

 
 

 
Figure 1: (A)Heatmap of centrosome-associated DEGs by comparing the top 50 up-regulated and top 50 down-regulated centrosomes in HNSCC tissues in TCGA with normal 
tissues. (B-C) PPI interaction network of centrosome-associated DEGs (|logFC| = 2.0, p < 0.05). 
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Figure 2: (A) Optimal consensus clustering matrix k=2. (B)Volcano plot of the expression of centrosome-associated DEGs found by comparing the high-expression group with 
the low-expression group. Green represents down-regulated genes and red represents up-regulated genes. (C)Heat maps displaying the top 50 upregulated and top 50 
downregulated centrosome-associated DEGs between high-expression group and the low-expression group. (D) Kaplan-Meier analysis of OS curves of patients in the TCGA 
high/low expression group. (E-F) GO enrichment of centrosome-associated DEGs. (G) KEGG pathways upregulated by centrosome-associated DEGs. (H-I) Genomic enrichment 
analysis (GSEA) of high/low expression groups of centrosome-related genes (J-K). Mutant genes between high/low expression groups. Mutation information of each gene in each 
sample was shown in the waterfall plot, with various color annotations to distinguish different mutation types. The barplot above the legend exhibited the mutation burden, and 
the other barplot on the right showed the distribution of mutation types among the top 20 genes. 

 

Optimal Grouping and Prognostic Evaluation 
of CRGs 

To understand the value of CRGs, we conducted 
a consensus clustering analysis. Based on the 
clustering heatmap, we chose the optimal k value as 2 
for subsequent analysis (Figure 2A). After sorting out 
the data, extract the expression level of each CRGs 
gene, and divide the samples into multiple 
high-expression groups and low-expression groups 
by using the median expression level of each gene. 
Finally, perform differential analysis on the 
corresponding high and low groups, and screen out 
differentially expressed genes from the results 
according to the set fold change and FDR screening 
value. A total of 1860 DEGs were identified, including 
1244 upregulated and 616 downregulated DEGs 
(Figure 2B). Heatmap analysis indicated higher 
expression levels in Group 2 compared to Group 1 in 
HNSCC (Figure 2C). Furthermore, survival analysis 
demonstrated that patients in Cluster 1 had a 
significantly longer survival probability [p < 0.001] 
than those in Cluster 2 (Figure 2D). These results 
suggest that consensus clustering provides 
preliminary stratification of the risk in HNSCC 
patients. 

Identification and Functional Inference 
Analysis of HNSCC DEGs 

To elucidate the potential mechanisms of CRGs 
in HNSCC, Gene Ontology (GO) analysis was 
performed, providing terms for Cellular Component 
(CC), Molecular Function (MF), and Biological 
Process (BP). The results indicated enrichment of 
DEGs in various GO terms, including humoral 
immune response, processes based on intermediate 
filaments, and receptor ligand activity (Figure 2E-F). 
KEGG pathway enrichment analysis revealed 
enrichment in pathways such as neuroactive 
ligand-receptor interaction, protein digestion and 
absorption, and estrogen signaling pathway (Figure 
2G). Given the association between centrosome 
expression levels and tumor grade and prognosis in 
tongue cancer patients, we proposed the hypothesis 
that elevated centrosome expression accelerates 
tumor growth. GSEA analysis was conducted to 
elucidate the biological functions and pathways 
associated with the risk score. The results indicated a 
dynamic correlation between the high expression of 
CRGs and tumor features such as GOBP COLLAGEN 
FIBRIL ORGANIZATION, COLLAGEN 
CONTAINING EXTRACELLULAR MATRIX, 
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EXTRACELLULAR MATRIX STRUCTURAL 
CONSTITUENT, ECM RECEPTOR INTERACTION, 
FOCAL ADHESION, NEUROTINVE LIGAND 
RECEPTOR INTERACTION, RHYTHMYS IN 
CANCER, and REGULATION OF ACTIN 
CYTOSKELETON. Conversely, immune-related 
functions like IMMUNOGLOBULIN COMPLEX, T 
CELL RECEPTOR COMPLEX, ANTIGEN BINDING, 
IMMUNOGLOBULIN RECEPTOR BINDING, 
ALLOGRAFT REJECTION, ARACHIDONIC ACID 
METABOLISM, IMMUNE NETWORK FOR IGA 
PRODUCTION, OLEIC ACID METABOLISM, and 
PRIMARY IMMUNODEFICIENCY were significantly 
enriched in the low expression group (Figure 2H-I; 
Figure S1). To explore the independent prognostic 
value of CRGs, we examined the genomic mutations 
of these genes in HNSCC. Tumor Mutational Burden 
(TMB) analysis showed that TP53, TTN, and FAT1 
had high mutation frequencies in both high and low 
expression groups, with a higher mutation frequency 
in the high expression group (Figure 2J-K). 
Kaplan-Meier analysis of progression free survival 
curves for TCGA patients in the DRGs high/low 
groups showed that the high-expression group had a 
shorter survival time in most cases (Figure S2). 

Association of CRGs with the Tumor Immune 
Microenvironment (TIME) in HNSCC 

We further investigated the Tumor Immune 

Microenvironment (TIME), which plays a crucial role 
in tumor development and treatment response. We 
assessed stromal scores, immune scores, and tumor 
purity in different risk groups using the ESTIMATE 
and CIBERSORT algorithms. ESTIMATE is a method 
that evaluates the matrix-immune comprehensive 
score, matrix content score, immune cell infiltration 
level, and tumor purity of each HNSCC sample 
(Figure 3A-D). The CIBERSORT method was applied 
to study the patterns of immune cells. This was 
followed by elucidation of the composition of 
immune cells in HNSCC samples and their 
relationships (Figure 3E-F). We then further validated 
the relationship between high/low risk subgroups 
and immunotherapy and immune cell infiltration. The 
expression of immune checkpoint genes differed 
between high/low expression subgroups (Figure 3G). 
Notably, we observed that CRGs displayed 
dysregulated levels in various immune cells, 
including regulatory T cells (Tregs), follicular helper T 
cells, CD4 memory-activated T cells, CD8 T cells, M0 
macrophages, activated dendritic cells, quiescent mast 
cells, and eosinophils (Figure 3H)[28]. Additionally, 
HLA genes are closely related to tumor immunity. We 
examined whether the expression of HLA-related 
genes differed in the risk subgroups. The expression 
of HLA genes in high-risk individuals was generally 
lower than that in low-risk individuals (Figure 3I).  

 

 
Figure 3: Diversity of the tumor immune microenvironment in patients with high/low expression (A) ESTIMATE scoring of the high/low expression subgroup (B) Immunity 
scoring of the high/low expression subgroup. (C) Stromal cell scoring of the high/low expression subgroup. (D) Tumor purity in the high/low expression subgroup. (E)The 
percentage of each type of immune cell in high/low expression subgroup. (F) Heatmap showing the correlation between 22 kinds of TICs and numeric in each tiny box indicating 
the p value of correlation between two kinds of cells. The shade of each tiny color box represented corresponding correlation value between two cells, and Pearson coefficient 
was used for significance test. (G)Relationship between high/low expression subgroups and immune checkpoints. (H) Violin plot visualize 22 immune cell infiltrations between 
high/low expression subgroups. (I) Box plots show the differences in expression of HLA family genes between high/low expression subgroups.  
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Figure 4: Centromere-related prognostic modeling and stability validation. (A) Univariate Cox regression analysis of eleven genes based on cross-validation and least partial 
likelihood bias to further demonstrate independent prognostic-related genes and obtain gene indices. (B-C) Least Absolute Shrinkage and Selection Operator (LASSO) Cox 
regression for centromere-associated prognostic genes. (D) Kaplan-Meier analysis of OS curves for TCGA patients in the high/low risk subgroup of the training cohort. (E) 
Kaplan-Meier analysis of OS curves for GEO patients in the high/low risk subgroup of the validation cohort. (F) Time-dependent ROC analysis showing the prognostic value of 
centroid-related prognostic models in the training set. (G) Time-dependent ROC analysis showing the prognostic value of centrosome-related prognostic models in the 
validation set.  

 

Construction of the Centrosome-Related 
Prognostic Model for HNSCC 

Using univariate Cox regression analysis, we 
selected 11 genes significantly associated with the 
prognosis of HNSCC patients (p < 0.05) from 
centrosome-related DEGs. These genes included 
YPEL1, NPM1, CSNK2A2, CCNA1, CTTN, PCID2, 
PIK3R3, MARK4, SAR1, NMP3, and CCND1 (Figure 
4A). To avoid overfitting and bias, we employed 
LASSO regression analysis on the results of univariate 
regression analysis using the "glmnet" R package. 
Through cross-validation, we established a prognostic 
risk model with 11 genes as follows: Risk Score = 
[YPEL1 expression × (-0.20744)] + [NPM1 expression 
× (0.28728)] + [CSNK2A2 expression × (0.03336)] + 
[CCNA1 expression × (0.00828)] + [CTTN expression 
× (0.91382)] + [PCID2 expression × (0.22536)] + 
[PIK3R3 expression × (-0.20961)] + [MARK4 
expression × (0.26322)] + [SAR1A expression × 
(0.13187)] + [NPM3 expression × (0.94290)] + [CCND1 
expression × (0.05443)] (Figure 4B-C). 

Construction and Validation of the 
Centrosome-Related Prognostic Model 

After grouping, prognosis analysis revealed 
significantly worse outcomes for the high-risk group. 
Patients in the high-risk group had significantly 
shorter overall survival than those in the low-risk 

group (Figure 4D, p < 0.001). To further validate the 
robustness of this feature's prognostic value, we 
calculated the area under the curve (AUC) for 
predicting 1-year, 3-year, and 5-year overall survival 
(OS), resulting in AUC values of 0.628, 0.720, and 
0.639, respectively (Figure 4F). Subsequently, we 
sought to validate the prognostic prediction ability of 
the model using an independent dataset. After 
excluding cases with duplicated or incomplete 
survival information and correcting batch effects, we 
used the GSE41613 dataset as a validation cohort. 
Consistent with the results from the training cohort, 
patients in the high-risk group in the validation cohort 
exhibited shorter survival times than those in the 
low-risk group (Figure 4E). The 1-year, 3-year, and 
5-year ROC curves based on both the training and 
validation cohorts are shown demonstrating 
satisfactory prognostic value (Figure 4G). Dot plots 
indicated lower overall survival rates for patients 
with higher risk scores in each dataset. Additionally, 
differences in the expression of the 11 prognostic 
CRGs were observed between the high-risk and 
low-risk groups (Figure 5A-C). These results suggest 
that the centrosome-related prognostic model based 
on these eleven candidate genes exhibits high 
accuracy and stability in predicting HNSCC 
prognosis. 



 Journal of Cancer 2024, Vol. 15 

 
https://www.jcancer.org 

6538 

 
Figure 5: (A-C) Distribution of the training set and patterns of survival time and survival status between high/low risk subgroups. (D-E) One-way Cox analysis and multifactor 
Cox regression analysis of centrosome prognostic models. (F-I) Nomogram integrating risk score and clinical features based on the TCGA training dataset and validation dataset. 
Nomogram integrating risk score for predicting the OS rates at 1-, 3-, and 5-year of HNSCC patients. Calibration curve to evaluate the ability of Nomogram to predict OS at 1-, 
3-, and 5-year HNSCC patients. (J) Clinical correlation analysis of the centrosome high/low risk subgroup prognostic model. (K) Heatmap of clinical correlations for the 
centrosome high/low risk subgroup prognostic model. Asterisks represent statistical p values (*p < 0.05; **p < 0.01; ***p < .001). 

 
To evaluate the accuracy of the model, we 

performed univariate and multivariate Cox regression 
analyses, incorporating pathological features. 
Univariate Cox regression analysis revealed 
associations between age, N stage, risk score, and the 
prognosis of HNSCC patients (Figure 5D-E). 
Similarly, multivariate Cox regression analysis 
showed associations between age, stage, T stage, N 
stage, and risk score with the prognosis of HNSCC 
patients (Figure 5F-I). Additionally, we constructed 
nomograms based on risk score, age, gender, T stage, 
N stage and identified that the model had good 
predictive ability (Figure 5J). Finally, we used a 
heatmap to demonstrate the relationship between the 
high/low-risk subgroups of the centrosome-related 
model and several clinical variables (Figure 5K). 

Association of Centrosome-Related Gene 
Features with the HNSCC Tumor Immune 
Microenvironment (TIME) 

Using the CIBERSORT algorithm, we 
determined the proportions of immune cell 
composition in two risk groups of HNSCC (Figure 
6A). In this study, we also focused on the 
tumor-infiltrating cells between subgroups. We found 
differences in the infiltration of B cells native, plasma 
cells, T cells CD8, T cells follicular helper, T cells CD4 
memory resting, T cells regulatory (Tregs), T cells 
gamma delta, NK cells resting, Macrophages M0, 

Dendritic cells activated, Mast cells resting, Mast cells 
activated, and Eosinophils among different groups 
(Figure 6B). The ssGSEA analysis showed a significant 
elevation of most immunocompetent immune cells in 
the low-risk group between the high-risk and low-risk 
groups (Figure 6C). By evaluating the risk scores, we 
found positive correlations of T cells CD4 memory 
resting with the risk score; while B cells, T cells CD8, T 
cells follicular helper, T cells regulatory showed 
negative correlations (Figure 6D-H). Kaplan-Meier 
analysis of OS curves for patients with diverse 
immune functions in the high/low-risk groups 
showed that the high-expression group had a longer 
survival time in most cases (Figure 7; Figure S3). 

Diverse Treatment Potential in High/Low-Risk 
Groups  

Tumor Mutational Burden (TMB) is generally 
considered high when mutations exceed 10 or 16 per 
million base pairs of DNA and is an important factor 
in tumor development, predicting the efficacy of 
immune checkpoint blockade and serving as a 
biomarker for patients benefiting from 
immunotherapy[29]. To further investigate how the 
risk-prognostic model predicts tumor development, 
we studied its relationship with TMB. We calculated 
TMB scores for patients and found higher TMB scores 
in the high-risk group (Figure 8A). Correlation 
analysis between TMB values and risk scores 
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stratified head and neck squamous cell carcinoma 
(HNSCC) patients, revealing a positive correlation 
(Figure 8B). Recently, multiple studies have indicated 
that TMB is closely related to tumor immune cell 
infiltration and affects the efficacy of immunotherapy. 
Further analysis revealed higher expression of CAF 
and MDSC in the high-risk group, while CD8 cells 
showed significantly higher expression in the low-risk 
group (Figure 8C-E). Based on the risk features of the 
centrosome-related gene subtypes, we also compared 
tumor immune dysfunction and exclusion (TIDE). We 
further investigated the differences in sensitivity to 
immunotherapy between patients in the high-risk and 
low-risk groups using the TIDE prediction score 
(http://tide.dfci.harvard.edu/). The TIDE algorithm 
is a recently developed tool for determining the 
efficacy of tumor immune checkpoint therapy. In this 
study, we found that the TIDE score in the low-risk 
group was higher than in the high-risk group. Higher 
TIDE scores indicate a higher likelihood of immune 
escape and poorer clinical efficacy of immunotherapy. 
To further study factors affecting prognosis, we also 
conducted exclusion and dysfunction scores. We 
found that the rejection score was significantly higher 
in the high-risk group (p < 0.001), while the 
dysfunction score was higher in the low-expression 
group (p < 0.001) (Figure 8F-H). 

Validation of CRGs in HNSCC 
To confirm the role of CRGs in HNSCC, we 

further validated their differential expression in 

normal and cancer samples through qPCR 
experiments. qPCR was performed on 8 paired cancer 
and adjacent normal tissues to detect mRNA 
expression levels of the prognostic CRGs. We 
observed significant differences in the expression of 
SAR1A, NPM1, NMP3, CTTN, CSNK2A2, PIK3R3, 
PCID2, MARK4 and CCNA1 between cancer and 
normal tissues (Figure 9 and Figure S4). The 
expression of these genes was significantly 
upregulated in cancer tissues. These results strongly 
support the reliability of our bioinformatics analysis. 

Discussion 
Despite advancements in treatment modalities, 

the 5-year overall survival rate for Head and Neck 
Squamous Cell Carcinoma (HNSCC) patients remains 
below 50%. Due to the lack of effective early 
monitoring and screening factors, early detection is 
challenging. By the time HNSCC is diagnosed, it is 
often in the advanced stages with a dismal prognosis. 
Therefore, identifying ideal biomarkers for predicting 
HNSCC metastasis and prognosis is crucial. 
However, risk stratification based solely on tumor 
size, lymph node, and distant metastasis, as well as 
histological grading, is insufficient to predict the 
prognosis of HNSCC patients. There is an urgent need 
for more accurate prognostic models. The impact of 
centrosomes on tumors has been studied previously, 
with multiple genes identified as regulators of 
centrosomes playing key roles in HNSCC. In this 
study, we systematically identified the expression of 

 

 
Figure 6: (A) Proportion of immune cell composition in the risk group as determined by the CIBERSORT algorithm. (B) Immune cell infiltration in the low/high-risk groups. 
Low-risk and high-risk groups are indicated by blue and red box plots. (C) Differences in immune function between high/low risk groups. (D-H) Scatter plots showing the 
correlation between the risk score and the proportion of T cells CD4, B cells, T cells CD8, T cells follicular helper, T cells regulatory. 
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CRGs in HNSCC and selected 11 genes associated 
with prognosis to construct a survival prediction 
model for HNSCC patients. The AUC values for the 
training and test groups were both greater than 0.5. 

Compared to other clinical factors, the 
centrosome-related prognostic model demonstrated 
higher prognostic value. 

 

 
Figure 7: (A-F) Kaplan-Meier analysis was performed on the OS curves of patients with high/low infiltration differences in immune cells. The Kaplan-Meier and log-rank tests for 
immune cells passed the Wilcoxon rank sum test. Red and blue curves represent high infiltration and low infiltration. 

 

 
Figure 8: Mutation analysis of centrosome-associated prognostic models. (A) Differences in tumor mutational load (TMB) between high/low risk groups. (B) Correlation 
between head and neck squamous cancer patients stratified according to TMB values and risk scores. Immune characteristics of different risk subgroups. (C-E) Correlation 
analysis between high and low risk groups and immune cells. (F-H) Immunotherapy efficacy outcomes, including TIDE, exclusion, and dysfunction scores, between centrosome 
high/low risk subgroup. 
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Figure 9: (A-H) qRT-PCR results showing significant differences in the expression of SAR1A, NPM1, NMP3, CTTN, CSNK2A2, PIK3R3, PCID2, MARK4 and CCNA1 between 
cancers and paracancers. The data represent the mean ± SEM of at least three independent experiments. * p<0.05, versus Non-TSCC. 

 
Validation using TCGA and an independent 

dataset (GSE41613) indicated that the predictive 
model could be a more accurate prognostic indicator 
for patient outcomes. The model stratified HNSCC 
patients into high-risk and low-risk groups, with the 
expected poorer overall survival in the high-risk 
group. Combining risk features with clinical 
information, we constructed more accurate 
nomograms to predict HNSCC patient overall 
survival. These findings collectively suggest that 
centrosome-related features serve as a reliable 
prognostic model for HNSCC. 

Additionally, we analyzed the correlation 
between the prognostic features of each HNSCC 
patient and the immune landscape. The results 
indicated a significant association between risk scores 
and immune cell infiltration. The high-risk group 
showed a higher abundance of resting NK cells. 
Significant differences in CD8+ T cell infiltration were 
observed between different risk groups. Furthermore, 
patients in the high-risk group exhibited higher 
Tumor Mutational Burden (TMB) scores. Finally, we 

evaluated the predictive efficacy of the model for 
immunotherapy. Collectively, our findings suggest 
that our model may reflect immune infiltration and 
predict the response to immunotherapy in HNSCC. 

Alterations in the structure, number, and 
function of centrosomes in cancer cells have been 
extensively documented. Numerous studies have 
demonstrated that centrosomes and their associated 
genes play a crucial role in tumor progression, and 
targeting centrosomes as a novel approach to cancer 
treatment has garnered significant attention. 
Abnormalities in centrosome number and structure 
are detected in nearly all human cancers[30]. 
Prognostic models about centrosomes have been 
applied in a variety of cancers to predict the 
prognostic characteristics of tumors. In previous 
studies, centrosome-associated gene signatures have 
been applied in a variety of tumors such as breast 
cancer, hepatocellular carcinoma, melanoma and 
low-grade glioma. And the prognostic model 
constructed based on centrosome genes predicted 
clinical information such as OS in tumor patients. GO, 
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KEGG enrichment analysis of this model predicted its 
role in tumor progression. In addition, the model was 
further used to predict the level of mutational 
landscape, degree of immune cell infiltration and 
immune checkpoint expression in tumor patients. 
Based on this, a series of anti-cancer drug candidates 
with high sensitivity to tumor patients were 
screened[31-34]. In a study on breast cancer, 
centrosome amplification was found to trigger cell 
invasion, a behavior similar to that induced by the 
overexpression of the breast cancer oncogene ErbB2, 
and it further enhanced ErbB2-induced invasiveness. 
The researchers discovered that by increasing 
centrosomal microtubule nucleation, centrosome 
amplification activates Rac1, which disrupts normal 
cell-to-cell adhesion and promotes invasion[35]. 
Additionally, centrosome amplification has been 
associated with, and is sufficient to promote, the 
secretion of small extracellular vesicles (SEVs) in 
pancreatic cancer cells. In cancer, altered secretion of 
extracellular vesicles (EVs) contributes to tumor 
growth and metastasis[36]. Therefore, understanding 
the pivotal role of centrosomes and utilizing 
centrosome-related prognostic markers could 
facilitate the development of personalized cancer 
therapies. It was previously observed that the number 
and structural abnormalities of centrosomes differ 
significantly between normal squamous epithelial 
cells and tumor cells (both p<0.0001), suggesting that 
centrosome abnorm ies may play a critical role in 
tumor progression in head and neck squamous cell 
carcinoma (HNSCC)[37] . Additionally, some studies 
have found that centrosome hyper-amplification 
occurs at a very high frequency in HNSCC and have 
explored its potential as a marker for tumor recurre.  

Centrosome aberrations are closely linked to the 
tumor immune microenvironment (TIME). Therefore, 
we focused on investigating the differences in 
immune cell subpopulation composition between 
different risk groups. TIME comprises tumor cells, 
immune cells, and cytokines, and the interactions 
between these components, categorized as either 
anti-tumor or pro-tumor, determine the direction of 
anti-tumor immunity[38]. Our findings revealed that 
cancer-associated fibroblasts (CAF) and myeloid- 
derived suppressor cells (MDSCs) were highly 
expressed in the high-risk group, while CD8+ T cells 
were significantly elevated in the low-risk group. 
CAFs, also known as activated fibroblasts, are central 
components of the reactive stroma within TIME. 
CAFs are activated through diverse pathways and 
contribute to tumor growth, angiogenesis, invasion, 
metastasis, extracellular matrix (ECM) remodeling, 
and even chemotherapy resistance. CAFs interact 
with other immune components within TIME, 

establishing an immunosuppressive microenviron-
ment that enables cancer cells to evade immune 
surveillance[39]. CAFs primarily remodel the ECM, 
creating a physical barrier between immune cells and 
cancer cells, thereby preventing immune cell 
infiltration and migration, ultimately suppressing the 
immune response to tumors. There is a strong 
correlation between ECM remodeling and cancer 
chemotherapy resistance, as it can prevent T cell 
attacks by therapeutic PD-1 inhibitors, thus 
promoting resistance to immune checkpoint 
inhibitors[40]. MDSCs, derived from hematopoietic 
stem cells (HSCs), play a pivotal role in promoting 
tumor immune escape by inhibiting tumor-killing 
immune cells and acting synergistically with other 
suppressive immune cells. Tumor-infiltrating MDSCs 
typically express high levels of PD-L1, and they 
increase PD-L1 expression by interacting with PD-1 
on T cells, leading to T cell dysfunction[41]. MDSCs 
can also induce T cell autophagy, cell cycle arrest, and 
even cell death by depleting essential amino acids 
necessary for T cell growth and differentiation[42]. In 
our centrosome-associated prognostic model, patients 
in the high-risk group exhibited an inhibitory immune 
microenvironment with higher infiltration of CAFs 
and MDSCs, suggesting that these patients are in an 
immunosuppressive state. This finding is consistent 
with the survival curve predictions from our model, 
which may explain the poor prognosis observed in the 
high-risk group. Thus, centrosome aberrations may be 
able to remodel tumor TIME to promote immune 
escape of tumor cells. 

To facilitate the clinical application of CRGs, 
candidate genes for the centrosome-related prognostic 
model were determined using univariate Cox 
regression analysis and the LASSO algorithm, 
resulting in the identification of YPEL1, NPM1, 
CSNK2A2, CCNA1, CTTN, PCID2, PIK3R3, MARK4, 
SAR1, NMP3, and CCND1. YPEL1, located on human 
chromosome 22q11.2, is reported to be a nuclear 
protein with potential regulatory roles in cell 
division[43]. In various cancer types, YPEL1 may 
exhibit either oncogenic or anti-tumor functions[44]. 
NPM1 is a multifunctional protein crucial for cell 
cycle control and centrosome replication[45]. Its 
overexpression has been reported in various tumors, 
promoting tumorigenesis and progression[46]. 
CSNK2A2, a serine/threonine protein kinase, is 
involved in cell cycle control and apoptosis[47]. 
CCNA1 regulates DNA synthesis and replication, 
playing a vital role in the transition from the G1 phase 
to the S phase of the cell cycle[48]. CTTN, a 
cytoskeleton-related scaffold protein, promotes cancer 
cell invasiveness in many tumors[49]. PCID2, also 
known as CSN12, has been studied for its molecular 
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mechanisms in colorectal cancer[50]. PIK3R3, part of 
the PI3K regulatory domain, is upregulated in various 
cancers, playing a crucial role in tumorigenesis, cell 
proliferation, and metastasis[51]. MARK4, a member 
of the MARK family, is associated with diseases such 
as cancer, Alzheimer's, and metabolic syndrome[52]. 
SAR1, involved in regulating COPII vesicle assembly 
on the endoplasmic reticulum membrane, plays a role 
in tumor development[53]. NMP3, associated with 
diseases including lung adenocarcinoma, is known 
for its strong expression in various cell types, 
primarily localized in the cell nucleus. CCND1 is a 
key activator of cyclin-dependent kinase 4/6 in the 
cell cycle, critical for initiating DNA replication[54]. 

Inevitably, this study has several limitations. 
Primarily, our model should be validated by 
additional datasets or prospective trials to enhance 
the model's generalizability and the persuasiveness of 
the study. Additionally, it is needed to further 
elucidate the mechanisms and functions of 
centrosome features in tumor development and 
HNSCC progression.  

Conclusions 
In summary, based on 11 selected CRGs, we 

have established a novel prognostic model for 
HNSCC, which was externally validated. This model 
provides a new reference for predicting the prognosis, 
immune infiltration, and immunotherapeutic 
response of HNSCC. In vitro evaluation of 
centrosome-related gene expression further highlights 
the clinical significance of CRGs in HNSCC patients, 
offering new insights for developing more effective 
therapeutic targets in the future. 
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