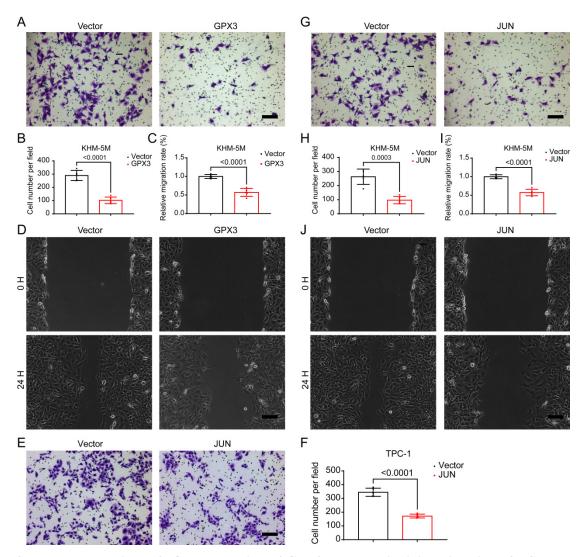
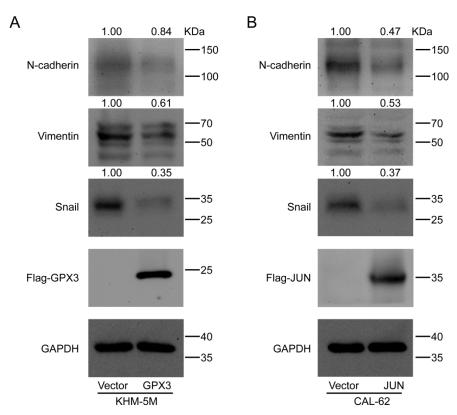

## **Supplementary Information**


## **Supplementary Figures**



Supplementary Figure 1. MR analysis of the causal effect of four DEGs on TC risk. (A-D) Forest plots showing the causal effect of each SNP in GPX3, JUN, TIAM1, and RAP1GAP on TC risk. (E-H) Scatter plots depicting the causal effect of GPX3, JUN, TIAM1, and RAP1GAP on TC risk. (I-L) Funnel plots illustrating the overall heterogeneity of MR estimates for the effect of GPX3, JUN, TIAM1, and RAP1GAP on TC. (M-P) Leave-one-out plots visualizing the causal effect of GPX3, JUN, TIAM1, and RAP1GAP on TC risk when omitting one SNP at a time.




**Supplementary Figure 2. Single-gene GSEA analysis for each of the four candidate genes using** "c2.cp.kegg.Hs.symbols.gmt" gene sets. (A, B) Top five enriched KEGG pathways for high- and low-risk groups in TIAM1. (C, D) Top five enriched KEGG pathways for high- and low-risk groups in JUN. (E, F) Top five enriched KEGG pathways for high- and low-risk groups in RAP1GAP. (G, H) Top five enriched KEGG pathways for high- and low-risk groups in GPX3.



Supplementary Figure 3. Overexpression of GPX3 and JUN inhibits migration of TC cells.

Transwell assay showing the reduced ability of KHM-5M (A-B) cells to migrate through the chamber after GPX3 overexpression. Wound healing assay demonstrating the decreased migration ability of KHM-5M (C-D) cells after GPX3 overexpression. Transwell assay showing the reduced ability of TPC-1 (E-F) cells to migrate through the chamber after JUN overexpression. Transwell assay demonstrating the decreased migration ability of KHM-5M (G-H) cells after JUN overexpression. Wound healing assay showing the reduced ability of KHM-5M (I-J) cells to migrate through the chamber after JUN overexpression. All scale bars in this figure represent 200  $\mu$ m.



**Supplementary Figure 4.** Western blot analysis indicated expression in EMT-related proteins after overexpression of GPX3 in KHM-5M (A) and JUN in CAL-62 (B) cells. GAPDH was used as an internal control.

**Supplementary Tables 1-3 Supplementary Table 1: Sample Information of all datasets from GEO and TCGA Databases** 

| Group             | Name      | Platform | Control | treat(TC) | PMID     |
|-------------------|-----------|----------|---------|-----------|----------|
| training set      | GSE6339   | GPL4512  | 73      | 93        | 17968324 |
|                   | GSE27155  | GPL96    | 4       | 95        | 16007166 |
|                   | GSE2/133  |          |         | 93        | 16609000 |
|                   | GSE29315  | GPL8300  | 14      | 57        | NA       |
|                   | GSE33630  | GPL570   | 45      | 60        | 22266856 |
|                   | GSE33030  |          |         |           | 22828610 |
|                   | GSE35570  | GPL570   | 51      | 65        | 26810418 |
|                   | GSE50901  | GPL13607 | 4       | 61        | 25867809 |
|                   | G5L50701  |          |         |           | 32425880 |
|                   | GSE60542  | GPL570   | 28      | 28        | 25965298 |
| validation<br>set | GSE3467   | GPL570   | 9       | 9         | 16365291 |
|                   | GSE3678   | GPL570   | 7       | 7         | 30614796 |
|                   | GSE9115   | GPL9517  | 4       | 15        | 17981789 |
|                   | GSE65144  | GPL570   | 13      | 12        | 25675381 |
|                   | GSE104005 | GPL14951 | 6       | 30        | 31906302 |
|                   | GSE129562 | GPL10558 | 8       | 8         | 31498560 |
|                   | TCGA-THCA | -        | 59      | 512       |          |

**Supplementary Table 2. Clinical characteristics of Thyroid Cancer.** 

|                  | J   | UN   |                |        | G   | PX3  |                |        |
|------------------|-----|------|----------------|--------|-----|------|----------------|--------|
| Characteristics  | Low | High | Chi-<br>square | P      | Low | High | Chi-<br>square | P      |
| Age              |     |      |                |        |     |      |                |        |
| ≤55              | 175 | 180  | 0.3084         | 0.5786 | 180 | 175  | 0.1751         | 0.6756 |
| >55              | 78  | 72   |                |        | 73  | 77   |                |        |
| Gender           |     |      |                |        |     |      |                |        |
| male             | 71  | 65   | 0.3305         | 0.5654 | 62  | 74   | 1.515          | 0.2184 |
| female           | 182 | 187  |                |        | 191 | 178  |                |        |
| race             |     |      |                |        |     |      |                |        |
| Asian            | 35  | 41   | 0.8166         | 0.6648 | 35  | 41   | 1.066          | 0.5870 |
| White            | 205 | 196  |                |        | 202 | 199  |                |        |
| Other            | 13  | 15   |                |        | 16  | 12   |                |        |
| radiation        |     |      |                |        |     |      |                |        |
| NO               | 93  | 89   | 0.1138         | 0.7359 | 91  | 91   | 0.0011         | 0.9734 |
| YES              | 160 | 163  |                |        | 162 | 161  |                |        |
| pharmaceutical   |     |      |                |        |     |      |                |        |
| NO               | 229 | 226  | 0.0978         | 0.7545 | 225 | 230  | 0.773          | 0.3793 |
| YES              | 24  | 26   |                |        | 28  | 22   |                |        |
| Pathologic stage |     |      |                |        |     |      |                |        |
| Stage I-II       | 160 | 176  | 2.47           | 0.116  | 156 | 180  | 5.411          | 0.02   |
| Stage I-II       | 93  | 76   |                |        | 97  | 72   |                |        |
| Stage T          |     |      |                |        |     |      |                |        |
| T1-T2            | 156 | 153  | 0.0478         | 0.8274 | 144 | 165  | 3.895          | 0.0484 |
| T3-T4, TX        | 97  | 99   |                |        | 109 | 87   |                |        |
| Stage M          |     |      |                |        |     |      |                |        |
| M0               | 142 | 140  | 0.1233         | 0.9402 | 149 | 133  | 4.151          | 0.1255 |
| M1               | 4   | 5    |                |        | 2   | 7    |                |        |
| MX               | 107 | 107  |                |        | 102 | 112  |                |        |
| Stage N          |     |      |                |        |     |      |                |        |
| N0               | 110 | 120  | 0.9706         | 0.6155 | 102 | 128  | 11.02          | 0.004  |
| N1               | 118 | 107  |                |        | 131 | 94   |                |        |
| NX               | 25  | 25   |                |        | 20  | 30   |                |        |
| Status           |     |      |                |        |     |      |                |        |
| Alive            | 245 | 244  | 0.0001         | 0.9936 | 248 | 241  | 2.348          | 0.1254 |
| Dead             | 8   | 8    |                |        | 5   | 11   |                |        |

## Supplementary Table 3. Information for the primary antibodies used in this study.

| Antibody   | Supplier    | Catalog       | Application    |
|------------|-------------|---------------|----------------|
| N-cadherin | Proteintech | 22018-1-AP    | 1:2000 for WB  |
| Vimentin   | CST         | 5741S         | 1:1000 for WB  |
| Snail      | CST         | 3879S         | 1:1000 for WB  |
| GAPDH      | Proteintech | 60004-1-Ig    | 1:10000 for WB |
| GPX3       | Abbkine     | Cat. ABP58707 | 1:1000 WB      |
| GPX3       | Abbkine     | Cat. ABP58707 | 1:500 IHC      |
| Flag-Tag   | Sigma       | F1804         | 1:1000 for WB  |