
Supplementary materials and methods 

Analysis of single-cell seq data 

In order to reduce the impact of batch effects on the analyzed results, the harmony method 

was used to process the data for batch correction and integration[1]. It eliminates unnecessary 

batch/technique differences when integrating multiple single-cell datasets, allowing cells of the 

same type to be clustered together rather than artificially separated due to differences in 

experimental conditions. Subsequently, the integrated single-cell data are downscaled and 

visualized using the uniform manifold approximation and projection (UMAP) algorithm. Cell type 

annotation was performed using the "singleR" package of R software[2]. We loaded the Blueprint 

Encode Data and the Novershtern Hematopoietic Data as the reference dataset and used the 

singleR algorithm to define cell subsets. The IFNA1 gene from 34 ICDGs was not found in the 

integrated scRNA-seq. The average expression heatmap of 33 ICDGs in different cell types was 

then plotted, and Featureplot was used to show the spatial distribution of expression of 

representative ICDGs genes. The AddModuleScore was used to score the set of ICDGs genes in 

order to assess the activity level of gene expression patterns closely associated with immunogenic 

death in different cells. Gene set scores were calculated for each cell using the "Seurat" R 

package. Ultimately, each cell receives a corresponding score that can be used for further analysis. 

Consensus clustering analysis 

The 34 ICD genes were extracted from Table S1 featured in an extensive meta-analysis[3]. 

The ConcensusClusterPlus tool in R was employed to conduct consensus clustering, aiming to 

pinpoint molecular subtypes linked to ICD. Ideal cluster numbers between k = 2–10 were 

assessed, and this process was replicated 1,000 times to guarantee stable results. The heat map tool 

in R was utilized to draw a cluster map. 

Functional enrichment analysis 

The "limma" R package was employed to identify differentially expressed genes (DEGs) 

among subtypes or risk categories. The criteria for significance were established as |logFC| > 1 

and an adjusted p-value < 0.05. Functional analysis through Gene Ontology (GO) and pathway 

analysis via the Kyoto Encyclopedia of Genes and Genomes (KEGG) were conducted using the 

"ClusterProfiler" R package. Gene set enrichment analysis (GSEA) was executed with GSEA 

software. 

Network analysis 

A network provides a powerful approach for depicting protein-protein interactions (PPI). 

The Search Tool for the Retrieval of Interacting Genes (STRING) database was utilized to forecast 

the PPI network of the 34 ICDGs, offering us valuable insights into the intricate dynamics of 

protein interactions. A PPI network was assembled using Cytoscape software (NIH, National 

Resource for Network Biology). 

Development and evaluation of the ICDG signature 

The “limma” R package was employed to identify differentially expressed genes (DEGs) 

across subtypes or risk categories. The significance thresholds established were |logFC| > 1 and an 

adjusted p-value < 0.05. A total of 377 ICD-related differentially expressed genes emerged from 

the consensus clustering subtypes. A univariate Cox regression analysis was conducted to assess 

the correlation between the expression levels of individual ICD-related genes and overall survival 

(OS). To mitigate the risk of overfitting, a LASSO regression analysis was performed to construct 

a prognostic model. The risk score was computed using the formula: β1 × gene1 expression + β2 × 



gene2 expression + … + βn × genen expression, where β represents the correlation coefficient. All 

patients with acute myeloid leukemia (AML) were categorized into high-risk and low-risk groups 

based on their median risk scores. The overall survival disparity between the high-risk and low-

risk cohorts was evaluated using the Kaplan-Meier (KM) curve. Fisher's exact test was applied to 

compare the age distribution and cytogenetic risk levels between groups stratified by risk. 

Cell culture 

OCI-AML3 and THP1 cells were sourced from DSMZ and cultivated in Roswell Park 

Memorial Institute (RPMI-1640) medium (Sigma), enriched with 10% fetal bovine serum (FBS, 

Sigma), 1% antibiotic-antimycotic, and 1% L-glutamine. Cell line culture was performed in 37℃

/5% CO2. 

Xenograft investigations 

The xenograft murine model was established by introducing 1×10^6 OCI-AML3 cells harboring 

sh-NC or sh-HSPA6 into NOD.Cg-Prkdc^scidIl2rg^tm1Wjl/SzJ (NSG) mice, aged between 6 to 8 

weeks. Identification of human CD45+ cells within the bone marrow was conducted through flow 

cytometry. All animal studies received endorsement from the Institutional Animal Care and Use 

Committee at Nanjing Medical University. 

Quantitative real-time PCR 

Total RNA was isolated from cell lines using TRIzol reagent (Invitrogen, United States). 

Quantitative real-time PCR (qRT-PCR) was performed as previously described[4]. The primers 

employed for qRT-PCR were: 

5′-CAAGGTGCGCGTATGCTAC-3′ (Forward Primer), 

5′-GCTCATTGATGATCCGCAACAC-3′ (Reverse Primer). 

Western blotting 

Western blotting was performed as previously described [4]. The primary antibodies, HSPA6 

and GAPDH, were obtained from Abcam, USA. Secondary antibodies, either anti-mouse or anti-

rabbit, were acquired from Cell Signaling Technology, USA. 

Transfection 

The lentivirus containing HSPA6 knockdown or a negative control sequence (NC) was obtained 

from OBIO (Obio Technology Corp, China). The transduction process was performed on OCI-

AML3 and THP1 cells. Stable pools of transductants were established through selection with 

puromycin (1 μg/ml) over a duration of two weeks. 

Cell proliferation/growth and apoptosis assays 

Cell proliferation was evaluated using the Cell Counting Kit-8 (CCK-8) proliferation assay 

(Dojindo, Japan) in accordance with the manufacturer’s guidelines. For apoptosis assessments, the 

Annexin V-FITC/PI cell apoptosis kit (Cat. No: KGA108, KeyGEN BioTECH) was utilized 

following the manufacturer’s instructions. 

 

Supplementary table 1 

Table S1. The list of 34 ICD genes 

ENTPD1 

NT5E 

CALR 

HMGB1 

HSP90AA1 



ATG5 

BAX 

CASP8 

PDIA3 

EIF2AK3 

PIK3CA 

CXCR3  

IFNA1 

IFNB1 

IL10 

IL6 

TNF  

CASP1 

IL1R1 

IL1B 

NLRP3  

P2RX7 

LY96 

MYD88 

TLR4  

CD4+ 

CD8+A 

CD8+B 

FOXP3 

IFNG 

IFNGR1 

IL17A 

IL17RA 

PRF1 

 

 

Supplementary figures 



 

Figure S1. Biological function analysis of ICD-related genes (A) The PPI analysis for ICDGs in 

AML patients. (B) The correlation of ICDGs in AML patients. (C) GO and KEGG functional 

analysis of ICDGs. 

 

 

Figure S2. The expression of 34 ICDGs between two subtypes. 

 

 



 

Figure S3. The functional enrichment analysis of 377 DEGs between risk groups. 

 

 

 



Figure S4. The expression of six genes from the risk signature between AML cell lines and the 

whole blood. 

 

Figure S5. Biological role of HSPA6 in the THP-1 cell line. The mRNA (A) and protein (B) 

levels of HSPA6 were assessed in THP1 cells transduced with sh-NC or sh-HSPA6. (C) 

Proliferation assays in THP1 cells. (D) The proportion of apoptotic cells in THP1 cells with sh-NC 

or sh-HSPA6. L: living cells; EA: early apoptosis; LA: late apoptosis. 
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