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Abstract 

Purpose: Brain metastases, affecting 30% of solid tumor patients, have a substantial impact on clinical 
outcomes. Developing a clinically feasible and precise prognostic model is crucial for personalized and 
comprehensive treatment. 
Methods: Parameters from blood test were collected from brain metastases patients, and were used to 
construct the four models, including univariate Cox regression, stepwise regression, LASSO regression, 
and random survival forest (RSF). Model-HP (based RSF), identified as the best-performing, was chosen. 
Model-GPAH was formed by merging Model-HP risk scores and GPA (Graded Prognostic Assessment). 
AUC, IDI, and cNRI were used to evaluate different models.  
Results: A cohort of 1,385 patients was included, with 970 patients assigned to the training cohort and 
415 patients were to the validation cohort. Compared to the other models, the Model-HP built on the 
RSF demonstrated superior performance (compared with RSF: AUC = 0.71 [0.66, 0.77], Univariate Cox 
regression: AUC = 0.65 [0.59, 0.71], P = 0.011; Stepwise regression: AUC = 0.63 [0.57, 0.69], P = 0.001; 
LASSO regression: AUC = 0.64 [0.58, 0.70], P < 0.001). Compared with Model-HP and GPA, 
Model-GPAH significantly enhanced the performance of prognosis prediction (compared with 
Model-GPAH: AUC = 0.70 [0.67, 0.73], GPA: AUC = 0.61 [0.57, 0.64], P = 0.001; Model-HP: AUC = 0.67 
[0.64, 0.70], P < 0.001). Model-GPAH performed favorably across patients receiving diverse treatments. 
Conclusions: Integrating hematological parameters into the GPA model significantly enhanced 
prognostic prediction for brain metastasis patients, highlighting blood tests' crucial role in identifying 
biomarkers for outcomes. 
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Introduction 
Approximately 30% of solid tumor patients may 

experience brain metastases, where lung cancer, 
breast cancer, and melanoma are commonly 
associated, accounting for 67%-80% of cases [1, 2]. 
Brain metastases is closely related to adverse clinical 
outcomes and poor overall survival [3]. The treatment 
for brain metastases patients undergoes a significant 

shift compared to the pre-metastatic stage. Adopting a 
multidisciplinary strategy is crucial to customize 
treatments for brain metastases patients [3]. Clinically 
feasible and accurate prognostic stratification may 
contribute to providing a reliable basis for 
personalized treatment decisions for these patients. 

The prognostic scoring systems of patients with 
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brain metastasis have consistently evolved over the 
years [4-10]. Differing from other prognostic scoring 
systems, the Graded Prognostic Assessment (GPA) is 
independent of primary tumor control, a subjective 
variable that is often challenging to consistently assess 
[9]. In the GPA, a cumulative score is assigned to each 
patient based on four weighted variables, including 
age, Karnofsky Performance Status (KPS), the number 
of brain metastases, and the presence of extracranial 
metastases [9]. In recent years, new prognostic 
criteria, extending the foundation laid by GPA, have 
incorporated additional biomarkers, like the 
Epidermal Growth Factor Receptor mutation or 
Anaplastic Lymphoma Kinase rearrangement status. 
However, these prognostic factors are only applicable 
to patients with non-small cell lung cancers that have 
brain metastases [11, 12]. Developing a new 
prognostic scoring system applicable to a wider range 
of tumors is essential for offering practical estimates 
of survival. 

Recently, machine learning (ML) has exhibited 
remarkable efficacy in various medical applications, 
including diagnosis, clinical characterization, risk 
categorization, and predicting treatment responses 
[13]. In this study, we employed two ML methods, 
including Least Absolute Shrinkage and Selection 
Operator (LASSO) and Random Survival Forest (RSF), 
to screen parameters from the blood test related to the 
prognosis of patients with brain metastases. 
Following screening, the identified key parameters, in 
collaboration with the GPA, establish an effective 
prognostic model for forecasting the prognosis of 
patients with brain metastases.  

Methods 
Patient cohort and data collection  

From December 2013 to August 2021, we 
retrospectively collected data on patients diagnosed 
and treated for brain metastasis at West China 
Hospital of Sichuan University. The details of this 
cohort have been described previously [14].  

In this study, the demographic and clinical 
information were meticulously collected. Baseline 
characteristics, detailed clinical presentations, 
imaging findings, and results from blood tests were 
included. Notably, the KPS of each patient was 
rigorously evaluated by two independent oncologists, 
namely Dr. Xingchen Peng and Dr. Zhigong Wei, 
ensuring an unbiased and thorough assessment. 
Common blood test (hematological parameters from 
blood test were available in over 75% patients in our 
cohort) were systematically extracted using the 
unique hospital registration ID of each patient.  

The criteria for patient inclusion and exclusion 
were as follows. Inclusion criteria: (1) The primary 
solid tumor was diagnosed. (2) Brain metastasis was 
confirmed at the initial diagnosis or upon relapse 
through imaging examinations. Exclusive criteria: (1) 
patients without available blood test results. (2) 
patients with unknown survival status.  

Outcome 
The primary outcome was overall survival (OS), 

defined as the duration from the initial brain 
metastasis diagnosis to either death or the study's 
conclusion on September 30, 2020, whichever 
occurred first. Survival status and death dates were 
queried through the Sichuan Province Household 
Registration Administration System databases.  

The construction of Model-HP 
Sixty-three hematological parameters were 

eventually selected (Table S1). A total of 1385 patients 
were allocated to the training and validation cohorts 
at a fixed ratio of 7:3 randomly. Four models were 
established to screen hematological parameters, 
leading to the construction of the effective Model-HP 
(Fig. 1). The first model was a multivariate Cox model 
based on hematological parameters which 
significantly related to OS in the univariate Cox 
model (significant threshold: p < 0.01). The second 
model was a stepwise multivariate Cox model based 
on hematological parameters which screened by 
stepwise Cox regression in the forward conditional 
method and the lowest Akaike Information Criterion 
(AIC) was the indicator to select the variables. The 
third model was a LASSO regression model. LASSO 
regression was used to select variables and Cox 
regression was applied to calculate the estimates. 
LASSO regression models were used to eliminate 
unimportant variables by penalizing the regression 
coefficients, shrinking them toward zero, and the 
degree of shrinkage depended on an additional 
parameter, λ. A 10-fold cross-validation was 
performed to determine the optimal value for λ based 
on the minimum deviance criteria. 

 The fourth model was RSF. The variable 
importance (VIMP) was obtained to assess the 
predictive capability of predictor variables. A positive 
VIMP value signified a predictive effect and the 
higher VIMP value indicated the stronger predictive 
ability. The top 25 important variables were selected, 
and then the RSF model was rebuilt.  

The accuracy and concordance of four models 
were compared with each other and with a reference 
model (univariate Cox model constructed by 63 
hematological parameters) in a validation cohort 
using Area Under the Receiver Operating 
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Characteristic Curve (AUC), continuous Net 
Reclassification Improvement (cNRI), and Integrated 
Discrimination Improvement (IDI). Integrating the 
above indicators, the optimal hematological model 
was selected and named Model-HP (model based on 
hematological parameters). 

The construction of Model-GPAH 
Based on Model-HP, indicators from GPA, such 

as age, KPS, brain metastases count, and the status of 
extracranial metastases, were incorporated into 
Model-HP, forming Model-GPAH (GPA with 
hematological parameters). The missing values for 
these GPA-related variable were imputed using 
random forest imputation. These three models were 
compared using AUC, IDI, and cNRI with the same 
procedure in the construction of Model-HP part. A 
nomogram was used to visualize the prognostic 
model. The calibration plots were employed to exhibit 
the accordance between predicted survival and actual 
survival.  

Subgroup analysis  
For patients who received different treatments, 

we systematically analyzed their outcomes by 
repeatedly assessing OS and recalculating the 
performance for Model-GAPH. 

Sensitivity analysis 
The data of patients without imputation was 

incorporated into Model-GPAH for reanalysis. This 
enabled a thorough examination of the model's 
performance across the diverse cohort, thereby 
bolstering the robustness and applicability of the 
findings. 

Statistical analyses 
Continuous variables were reported with the 

mean value accompanied by the standard deviation 
(SD), while categorical data were presented as the 
count and respective percentages for each group. 
Group differences were examined by employing 
T-tests or chi-square tests.  

The predicted scores yield by Model-HP and 
Model-GPAH were defined as the risk score of the 
corresponding models. According to the cut-off value, 
patients were divided into high risk score and low 
risk score. 

 

 
Figure 1. The design of the study.     
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To illustrate the time-to-event data, 
Kaplan-Meier curves were employed, while log-rank 
tests were conducted to evaluate the differences in 
overall survival across various risk group. 

All analyses were performed with R 4.3.2. A 
2-sided p<0.05 was considered statistically significant. 

Results  
Population characteristics  

Based on the criteria for variable selection, a total 
of 63 hematological parameters were included for 
subsequent analysis. A detailed list of these selected 
variables can be found in Table S1. Following 
inclusion and exclusion criteria, a cohort of 1,385 
patients was included. For these included 
participants, lung cancer emerged as the predominant 
primary tumor, constituting 78% (1,080 cases). 
Extracranial metastases were observed in 65.1% (901 
patients), and 35.2% (487 patients) presented with 
more than three brain metastases. The included 
participants were randomly divided in a 7:3 ratio, 
with 970 patients in the training cohort and 415 
patients in the validation cohort. The population 
characteristics was provided in Table 1. 

The construction and selection of Model-HP 
The reference model was built by incorporated 

the 63 hematological parameters in one multivariate 
Cox model. The significant hematological parameters 
in the reference model were listed in Table S2.  

Four models (i.e., univariate Cox regression, 
stepwise regression, LASSO regression and RSF) were 
constructed according to the established rules. In the 
multivariate Cox model that adjusted all of the 
significant hematological parameters in univariate 
Cox model, only LDH showed a significant 
association with OS (Fig. S1). In the stepwise 
multivariate Cox model, LDH was excluded from the 
model while the absolute immature granulocytes, 
AST/ALT, and platelet count showed significant 
association with OS (Fig. S2). In the Lasso-Cox model, 
the iterative analysis involved the implementation of 
a 10-fold cross-validation method, resulting in a 
model with exceptional performance at the 
minimized λ (0.038, Log λ=-1.42). Twenty variables 
were selected into the Cox model; the details were 
listed in Figure S3. For the RFS model, the important 
variables selected by the RFS model were listed in 
Figure S4 and LDH has been assessed as the most 
important variable.  

In the model comparison part, we decided that 
the RFS model was the best-performing model 
compared with the other 3 models according to the 
comparison of AUC, IDI and NRI (Fig. 2A-D and 

Table S3). Thus, it was designated as Model-HP. Risk 
scores in Model-HP were calculated for the patients, 
and an optimal cutoff of 0.79 was determined in the 
training cohort. Subsequently, patients were stratified 
into high-risk and low-risk groups based on this 
threshold. Survival analysis revealed that, compared 
to the low-risk group, the high-risk group showed 
significantly inferior OS in both the training cohort (P 
< 0.0001, Fig. 2E) and the validation cohort (P < 
0.0001, Fig. 2F). 

 
 

Table 1. Characteristics of patients 

Variables Total (n = 
1385) 

Training 
cohort (n = 
970) 

Validation 
cohort (n = 
415) 

P-Value 

Age (%)       0.156 
<50 384 (27.7%) 254 (26.2%) 130 (31.3%)  
50-59 406 (29.3%) 293 (30.2%) 113 (27.2%)  
>60 556 (40.1%) 393 (40.5%) 163 (39.3%)  
Missing 39 (2.8%) 30 (3.1%) 9 (2.2%)  
Gender (%)       < 0.001 
Male 816 (58.9%) 602 (62.1%) 214 (51.6%)  
Female 569 (41.1%) 368 (37.9%) 201 (48.4%)  
BMI (SD) 22.3 (3.2) 22.3 (3.3) 22.4 (3.1) 0.628 
KPS (%)       0.316 
<70 228 (16.5%) 151 (15.6%) 77 (18.6%)  
70-80 753 (54.4%) 538 (55.5%) 215 (51.8%)  
>80 390 (28.2%) 272 (28%) 118 (28.4%)  
Missing 14 (1%) 9 (0.9%) 5 (1.2%)  
Number of brain 
metastases (%) 

      0.586 

1 478 (34.5%) 336 (34.6%) 142 (34.2%)  
2-3 142 (10.3%) 104 (10.7%) 38 (9.2%)  
>3 487 (35.2%) 335 (34.5%) 152 (36.6%)  
Missing 278 (20.1%) 195 (20.1%) 83 (20%)  
Primary cancer (%)       0.195 
Lung cancer 1080 (78%) 753 (77.6%) 327 (78.8%)  
Nasopharyngeal 
carcinoma 

86 (6.2%) 64 (6.6%) 22 (5.3%)  

Breast cancer 51 (3.7%) 30 (3.1%) 21 (5.1%)  
Other 168 (12.1%) 123 (12.7%) 45 (10.8%)  
Targeted therapy (%)       0.232 
No 951 (68.7%) 676 (69.7%) 275 (66.3%)  
Yes 434 (31.3%) 294 (30.3%) 140 (33.7%)  
Radiotherapy (%)       0.267 
No 711 (51.3%) 488 (50.3%) 223 (53.7%)  
Yes 674 (48.7%) 482 (49.7%) 192 (46.3%)  
Gamma knife 
radiosurgery (%) 

      0.185 

No 1141 (82.4%) 790 (81.4%) 351 (84.6%)  
Yes 244 (17.6%) 180 (18.6%) 64 (15.4%)  
Chemotherapy (%)       0.394 
No 499 (36%) 342 (35.3%) 157 (37.8%)  
Yes 886 (64%) 628 (64.7%) 258 (62.2%)  
Extracranial metastases 
(%) 

      0.851 

No 484 (34.9%) 341 (35.2%) 143 (34.5%)  
Yes 901 (65.1%) 629 (64.8%) 272 (65.5%)  
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Figure 2. The construction of Model-HP. (A)the comparison of AUC, IDI and NRI between the reference model, Univariate Cox regression, Stepwise regression, Lasso 
regression, and RSF. The 1-year (B), 3-year (C), and 5-year (D) ROC curves for the reference model, Univariate Cox regression, Stepwise regression, Lasso regression, and RSF. 
Kaplan–Meier curves of OS for patients in different risk levels in the training cohort (E) and validation cohort (F). GPA, Graded Prognostic Assessment; Model-HP, model based 
on hematological parameters; RSF, random survival forest; ROC, Receiver Operating Characteristic. 

 

The construction of Model-GPAH 
Utilizing Model-HP as a foundation, parameters 

derived from the GPA (i.e., age, KPS, brain metastases 
count, and the status of extracranial metastases) were 
integrated into Model-HP, thereby giving rise to 
Model-GPAH.  

In the comparison among GPA, Model-HP, and 
Model-GPAH, the results showed that Model-GPAH 

significantly outperformed GPA (Fig. 3A-D and Table 
S4). This suggested that the inclusion of hematological 
parameters significantly enhanced the model 
performance. However, compared to Model-HP, 
Model-GPAH did not demonstrate a superior 
advantage in assessments. This might be attributed to 
the inherently strong performance of Model-HP. 
Based on Model-GAPH, a Nomogram was established 
(Fig. 4). The calibration plot demonstrated high 
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accuracy in predicting the probability, aligning 
closely with both actual and predicted probabilities 
(Fig. S5). 

Risk scores were calculated for patients in 
Model-GAPH, and an optimal cutoff of 0.53 was 
identified in the training cohort to stratify patients 
into high-risk and low-risk groups. The results 
revealed that the high-risk group exhibited 
significantly poorer OS compared to the low-risk 
group in both the training cohort (P < 0.0001, Fig. 3E) 
and the validation cohort (P < 0.0001, Fig. 3F). 

Subgroup analysis  
In subgroup analyses, we independently 

reanalyzed patients that underwent chemotherapy, 
targeted therapy, radiotherapy, and gamma knife 
radiosurgery in Model-GPAH. The results showed 
outstanding performance by Model-GPAH in the 
chemotherapy, targeted therapy, radiotherapy, and 
gamma knife radiosurgery subgroups. Across these 
four subgroups, individuals identified as high-risk by 
Model-GPAH consistently demonstrated significantly 
worse prognosis than low-risk patients (Fig. 5).  

 

 
Figure 3. The construction of Model-GPAH. (A) the comparison of AUC, IDI and NRI between Model-HP, GPA, and Model-GPAH. the 1-year (B), 3-year (C), and 5-year 
(D) ROC curves for the Model-HP, GPA, and Model-GPAH. Kaplan–Meier curves of OS for patients in different risk levels in the training cohort (D) and validation cohort (E). 
GPA, Graded Prognostic Assessment; Model-HP, model based on hematological parameters; Model-GPAH, model based on GPA and hematological parameters; ROC, Receiver 
Operating Characteristic. 
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Figure 4. Nomogram for predicting 1-, 3-, and 5-year OS of patients with brain metastasis. For each patient, five lines are drawn upward to determine the points 
received from the predictors in the nomogram. The sum of these points is located on the “Total Points” axis. Besides, three lines are drawn downward to determine the 
possibility of 1-, 3-, and 5-year OS. OS, overall survival. 

 

Sensitivity analysis 
To further validate the model's applicability in 

diverse populations, the data of patients without 
imputation (Table S5) was incorporated into 
Model-GPAH for reanalysis. The results indicated 
that the patients classified as high-risk demonstrated 
markedly poor OS in comparison to the low-risk 
group. (P < 0.0001, Fig. S6).  

Discussion 
In this comprehensive retrospective cohort study 

involving patients with brain metastases from solid 
tumors, we utilized four distinct algorithms to 
construct and selectively identify an optimal 
hematologic parameter model, designated as 
Model-HP, which was employed for prognostic 
predictions in brain metastases patients. The 
integration of Model-HP risk score and the GPA 
resulted in a composite model referred to as 
Model-GPAH. Compared to GPA, Model-GPAH 
significantly enhanced the prognostic capability for 
patients with brain metastases and was applicable to 
individuals receiving various treatments. 

Hematological analysis stands out as a 
frequently employed diagnostic method in clinical 
practice. Its cost-effectiveness not only made it the 
preferred choice for patients but also facilitated 
researchers in obtaining the necessary test results 
more readily. In numerous past studies, researchers 
have successfully identified key biomarkers 
associated with the prognosis of tumors like colorectal 
cancer, breast cancer and lung cancer through the 
analysis of routine hematology examinations [15-17]. 
However, the significance of hematological 
parameters has not yet been recognized in patients 
with brain metastases. In this research, we employed 
various methodologies to construct a model, 
conducting a comprehensive comparison to identify 
an optimal model built by RSF centered on 
hematological parameters. Compared to prior studies, 
our model was applicable to brain metastases patients 
resulting from various solid tumors, showcasing a 
superior AUC value [18, 19]. This suggested that our 
model held broad applicability and remarkable 
discriminatory capability in predicting the prognosis 
of brain metastases patients.  



 Journal of Cancer 2025, Vol. 16 

 
https://www.jcancer.org 

696 

 
Figure 5. Kaplan–Meier curves of OS for patients who underwent different treatments. The survival of the low- and high-risk groups in patients with chemotherapy 
(A), radiotherapy (B), Target therapy (C), and gamma knife radiosurgery (D). OS, overall survival. 

 
The hematological parameters identified in this 

study have been discussed in several previous 
studies. Lactate dehydrogenase (LDH) and 
Hydroxybutyrate dehydrogenase (HBDH) have been 
recognized as crucial prognostic indicators in cancer 
patients [14, 20]. The Albumin-to-Alkaline 
Phosphatase Ratio (AAPR), as proposed by numerous 
studies, has been substantiated as a critical prognostic 
determinant for patients with various solid tumors. A 
diminished pretreatment AAPR was notably related 
to unfavorable clinical outcomes [21, 22]. Similar to 
this study, earlier research findings suggested there 
was a potential association between coagulation- 
related biomarkers and the prognosis of cancer 
patients. Notably, there was a significant association 
between fibrinogen (FIB) and the prognosis of 

patients with esophageal and prostate cancer [23, 24]. 
Additionally, thrombin time (TT) showed a significant 
correlation with the survival outcome of breast cancer 
patients [25]. Furthermore, the RSF model contributed 
to identifying indicators, such as High-density 
lipoprotein (HDL) and Triglyceride, linked to lipid 
metabolism. This suggested that disturbances in lipid 
metabolism might contribute to tumor progression 
[26, 27]. In addition to extensively discussed 
inflammatory cells, we've identified indicators, such 
as those related to red blood cells and electrolytes, 
that have been less explored in prior research [28-30]. 
These factors may significantly impact the prognosis 
of cancer patients, underscoring the need for further 
exploration in future studies. 

To the best of our understanding, this study 
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represented the most comprehensive effort to 
construct a prognosis model for patients with brain 
metastases using hematological parameters. The large 
cohort of this study ensured the robustness and 
reliability of the research findings. The utilization of 
parameters derived from routine blood tests 
enhanced the model's practical applicability in clinical 
settings. Methodological innovation based on RSF 
ensured the high flexibility and accuracy of the 
Model-GPAH. Furthermore, integrating Model-HP 
with the GPA model resulted in the formation of the 
new Model-GAPH, achieving further enhancement in 
model performance.  

Several limitations should be considered. Firstly, 
the retrospective study design brings forth the 
potential for selection bias and residual confounding. 
Moreover, the patient cohort was recruited from a 
single institution, and the validation process was 
limited to internal validation. To affirm the model's 
widespread applicability, external validation is 
essential. 

In summary, by applying machine learning 
methods, this study successfully identified the 
optimal hematological parameter model, designated 
as Model-HP, for patients with brain metastases. The 
integration of Model-HP into the traditional GPA risk 
model significantly improves the accuracy of 
prognosis predictions. Therefore, highlighting routine 
hematological test in patients with brain metastases is 
crucial for precise prognosis prediction and 
facilitating informed clinical and treatment 
decision-making. Future research should conduct 
external validation of Model-GAPH in multi-center, 
large-scale patient cohorts and carry out prospective 
studies to verify its clinical effectiveness. 
Additionally, other biomarkers and clinical indicators 
can be integrated to construct a more comprehensive 
prognostic assessment tool. Moreover, applying 
advanced algorithms such as deep learning can 
optimize model performance, while leveraging big 
data analysis to uncover prognostic-related factors. 
These efforts will provide effective support for 
prognostic assessment and clinical decision-making in 
patients with brain metastases. 
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