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Abstract 

Endometrial carcinoma (EC) is the most common malignancies of the female reproductive system in developed 
countries and areas. Ultrasound-guided and hysteroscopic samplings are commonly used to diagnose EC. 
However, clinicians question their diagnostic efficacy and the associated patient discomfort. DNA methylation 
is the widely studied epigenetic alteration in human tumors, and tumor screening and diagnosis. This review 
summarized common methods for collecting clinical samples for methylation testing. Furthermore, we 
analyzed the diagnostic evaluation indices of different methylation marker assays in clinical diagnosis and 
discussed the challenges of methylation testing in the future application of EC diagnosis. 
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1. Introduction 
Endometrial carcinoma (EC) is the most common 

malignancy in the female reproductive system in 
developed countries. According to Global Cancer 
Statistics 2020, EC is the sixth most common cancer in 
women, with a global incidence of 417,000 new cases, 
mostly prevalent between the ages of 65 and 75[1, 2]. 
Over the past three decades, EC diagnoses have 
increased by 132% globally, and deaths have nearly 
doubled[3].  

In 1983, Oncol proposed the traditional 
classification of EC; estrogen-dependent EC (Type I 
EC) is associated with obesity, hyperlipidemia, and 
excessive estrogen Estrogen-independent EC (Type II 
EC) occurs without the aforementioned etiological 
factors[4]. Type I EC is represented by endometrioid 
carcinoma, which is characterized by a high degree of 
differentiation, generally favorable prognosis, slow 
tumor growth, and low grade and invasiveness. Type 
II EC encompasses various histological types, 
including serous, clear cell, and mixed carcinomas, 
and other rare types. Type II ECs typically exhibit 
poor prognosis, rapid tumor growth, and high 

invasiveness, often presenting with metastasis at the 
time of diagnosis[5]. In 2013, The Cancer Genome 
Atlas project conducted a large-scale molecular 
characterization of and proposed a new classification 
method based on tumor genetic mutations, copy 
number variations, mRNA expression, methylation 
profiles, and protein expression. There are four 
molecular subtypes. The POLE ultramutated type is 
characterized by a high mutation rate due to 
mutations in the POLE gene. Microsatellite instability 
(MSI) hypermutated type exhibits a high level of MSI 
and a moderate mutation rate. The copy number low 
(endometrioid) type displays low copy number 
alterations and is often associated with Type I EC[6]. 
The copy number high (serous-like) type is 
characterized by high copy number alterations and is 
typically correlated with Type II EC and a poorer 
prognosis. The molecular classification of EC allows 
clinicians to select appropriate treatments improving 
patient prognosis[5, 7]. 

Early diagnosis of EC is associated with better 
prognostic outcomes; therefore, accurate diagnosis 
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and timely treatment are crucial for its 
management[8]. Transvaginal ultrasound (TVU) is the 
preferred early screening and diagnosis option. A 
study of over 1,000 patients showed that an 
endometrial thickness of ≥ 5 mm in postmenopausal 
women had a sensitivity of 96.2% and a negative 
predictive value of 99.3% for detecting EC. However, 
TVU specificity was only 51.5%, indicating the need 
for additional screening to rule out other 
malignancies[9]. Hysteroscopy allows the direct 
sampling of suspicious lesions and can be used in 
TVU-positive and recurrently symptomatic women. 
Information from endometrial biopsy is often used for 
preoperative disease staging, is essential for surgical 
management, and guides the scope of the procedure. 
However, hysteroscopy also increases the risk of 
cancer spread, and physical discomfort and 
false-negative results are common complications[10, 
11].  

In recent years, AI has shown extensive potential 
for application in the diagnosis of EC, particularly in 
areas of pathologic analysis, molecular diagnosis, 
predictive model construction, and so on. For 
example, Li et al. developed an artificial intelligence 
system for screening and diagnosing EC, successfully 
classifying malignant and benign EC cells[12]. AI 
could also provide more precise assessments in the 
molecular classification of EC[13]. Consequently, 
safer, more effective, and reliable means of screening 
and early diagnosis in high-risk populations is needed 
to reduce lethality, improving the clinical prognosis of 
EC. 

Methylation transfers methyl groups from active 
methyl compounds to other compounds and occurs in 
specific proteins or nucleic acids chemically modified 
to form methylated products[14, 15]. DNA 
methylation, in which methyltransferases catalyze the 
transfer of active methyl groups to target chemicals 
without altering DNA sequence composition, is an 
important type of epigenetic regulation[16]. It usually 
occurs in the promoter region of the DNA sequence, 
and its aberrant expression can result in the aberrant 
expression of tumor-associated genes in various 
human tumors[17, 18]. Among the DNA methylation 
sites, the most prominent manifestation is using DNA 
methyltransferases to transfer methyl groups to 
cytosine 5 carbon atom of cytosine-phosphate- 
guanine (CpG) dinucleotides to form 
5-methylcytosine (5mC), interfering with promoter 
recognition and gene regulation[19]. The regions of 
aggregated CpG dinucleotides are called CpG islands, 
and the promoter regions of genes usually contain 
many CpG islands. Methylated cytosine is 
unrecognized by sulfite, determining whether and to 
what extent the DNA is methylated[18] (Fig. 1). There 

are many ways to detect DNA methylation, including 
genome-wide methylation detection technologies 
(WGBS, RRBS, Illumina EPIC BeadChip Microarray, 
MeDIP-seq and MethylRAD) and site-specific 
methylation detection technologies (pyrophosphate 
sequencing, Massarray, BSP and MSP)[20-22]. 

EC is diagnosed by detecting promoter 
methylation levels of single or multiple genes in the 
specimen of endometrium[23]. Genes with aberrant 
DNA methylation interfere with various biological 
pathways, such as cell adhesion and proliferation, cell 
cycle regulation, and apoptosis, contributing to the 
development and progression of EC[24]. Big data and 
bioinformatics have revealed that methylation 
markers can help predicting less aggressive tumors 
and are suitable for fertility preservation therapy[25]. 
This review summarized the commonly used clinical 
tests for methylation sample collection, genes or 
genomes that play a key role in the organism, and the 
diagnostic evaluation of methods for detecting 
methylation in clinical EC diagnostic applications. We 
also explored the prospects for applying DNA 
methylation in EC screening and diagnosis. 

2. DNA methylation markers for EC 
The development and progression of EC involve 

multiple biological processes and numerous genes. 
Gene methylation plays a crucial role in regulating the 
expression of related genes or controlling other genes. 
By focusing on the CpG islands within gene promoter 
regions and utilizing next-generation sequencing 
technology supported by a large number of clinical 
samples, the methylation status of some specific genes 
can be observed. From the perspective of EC etiology, 
we collected data on methylation-related genes in EC 
and clinical diagnostic information for certain genes 
to explore their feasibility as early diagnostic markers 
for EC (Table 1). 

2.1 Genes involved in regulating cell 
proliferation and differentiation 

Ras-binding domain family 1 isoform A 
(RASSF1A) regulates cellular processes such as cell 
cycle arrest, migration, microtubule stabilization, and 
pro-apoptosis in response to various stimuli[26]. 
Hypermethylation of the RASSF1A promoter is 
frequently associated with poor prognostic characters, 
including advanced clinical stage, lymph node 
and/or distant metastasis, and drug resistance[27]. 
RASSF1A may play a role in cellular proliferation and 
apoptosis via regulating the RAS-MAPK signaling 
pathway[28]. Pijnenborg et al. reported that 85% of 
patients with EC exhibited RASSF1A methylation, 
and RASSF1A promoter methylation was present in 
70% of cases in premenopausal EC[29]. Fiolka et al. 
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found a significant correlation between RASSF1A and 
higher tumor grade, deeper infiltration of the uterine 
myometrium, and metastases in the pelvic lymph 
nodes[30]. As a therapeutic target, 5-aza-2'- 
deoxycytidine (5-Aza-CdR) may reverse the 
methylation status of the RASSF1A gene, restored its 
mRNA and protein expression, and control the 
growth of EC cell lines by inducing apoptosis[31]. 

The calcineurin 13 (CDH13) gene is a novel 
member of the calcineurin superfamily. It is primarily 
expressed on transmembrane glycoproteins on the 
surface of epithelial cells and mediates intercellular 
Ca2+dependent adhesion to maintain normal tissue 
structure[32]. CDH13 expression in many tumor cell 
lines inhibits cell proliferation and invasiveness, 
increases susceptibility to apoptosis, and reduces 
tumor growth in vivo models[33]. CDH13 
hypermethylation is an independent prognostic factor 
in EC. Early reports have identified significant 
changes in the methylation of the CDH13 promoter 
during the development and progression of EC[34]. 
Yan Sheng and colleagues demonstrated that 
treatment with 5-Aza-CdR or trichostatin A partially 
reversed mRNA levels, proving that the methylation 
of CDH13 is one of the main reasons for its decreased 
expression in cancer cells[35]. Clinical analysis of EC 
samples revealed that the methylation level of the 
CDH13 promoter ranged from 80% to 81.36%, while 
in atypical hyperplasia samples, it ranged from 50% to 
51.7%[36, 37]. Krasnyi's team found that cysteine 

dioxygenase type 1 (CDO1) and CDH 13 gene 
methylation levels in EC tissue samples (stage IA) 
predicted the outcome of drug treatment[38]. 

 

Table 1. Sensitivity, specificity, and AUC values for using gene 
methylation to diagnose EC 

Gene AUC Sensitivity Specificity Reference 
Single-gene 
CDO1 0.842-0.968 82.0% 93.8% [66, 50, 116] 
BHLHE22 0.95 83.7% 93.7% [50] 
CELF4 0.94 96.0% 78.7% [50] 
ZNF662 0.89 92.0% 80% [50] 
ZNF454 0.938 79.55% 93.42% [50] 
CDH13 0.67-0.88 81.36% / [37, 117, 118] 
RASSF1A 0.75 85.4% 70% [37, 117, 119] 
CELF4 0.96 96.0% 78.7% [31] 
HAND2 0.91 / / [28] 
ROR2 0.665 / / [66] 
EDNRB 0.845 / / [66] 
NDN 0.985 / / [66] 
DCAF12L1 0.704 / / [120] 
MSX1 0.73 / / [120] 
Multi-gene 
CDO1+CELF4 / 87.5% 90.8% [50] 
CDO1+BHLHE22 0.86 92.9% 77.7% [121] 
BHLHE22+CDO1+HAND2 / 87% 86% [46] 
BHLHE22+CDO1+TBX5 / 89.1% 88% [46] 
CDO1+CELF4+ BHLHE22 / 91.8% 95.5% [50] 
CDO1+ ZNF454 0.931 90.91% 86.84% [116] 
EMX2OS+NBPF8+ SFMBT2 0.98 97% 97% [99] 
DCAF12L1+MSX1 0.867 / / [120] 

 

 

 
Figure 1. Altered gene methylation sites and gene changes after PCR amplification by sulfite treatment. 
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Heart and neural crest derivatives expressed 2 
(HAND2) gene encode a transcription factor that 
belongs to the basic Helix-Loop-Helix (bHLH) family. 
It is primarily expressed in cardiac development and 
neural crest derivatives[39]. HAND2 is crucial in 
regulating embryonic development, cell proliferation, 
and differentiation, particularly in the development of 
the right ventricle of the heart, neural crest cells, and 
limb buds[40]. HAND2 is present in endometrial 
stromal cells, where it inhibits ligand-dependent 
transcriptional activation of estrogen receptor alpha 
(ERα) and activates interleukin-15 transcription[41]. 
Reportedly, increased methylation of HAND2 is a 
hallmark of endometrial precancer, typically 
correlated with decreased RNA and protein levels. 
Women with high levels of HAND2 methylation 
respond less effectively to progesterone therapy for 
endometrial precancer[42]. 

The bHLH Family Member e22 (BHLHE22) is a 
transcriptional repressor and regulates cell 
differentiation during neuronal development[43]. The 
expression of BHLHE22 protein was significantly 
lower in EC than in normal endometrium. High 
expression of BHLHE22 correlated with the MSI 
subtype, tumor grade, and patient age, and 
significantly improved survival outcomes[44, 45]. 
Furthermore, BHLHE22 overexpression inhibited the 
proliferation and migration of EC cells[45]. Phui-Ly 
Liew discovered that the highly methylated panels 
BHLHE22/CDO1/HAND2 (87.0% sensitivity and 
86.0% specificity) and BHLHE22/CDO1/TBX5 (89.1% 
sensitivity and 80.0% specificity) exhibited significant 
differences, effectively distinguishing between benign 
and malignant endometrial lesions[46]. Rui-Lan 
Huang used methylation-specific PCR (QMSP) on 146 
cervical scrapings and found that a panel consisting of 
any two of the three highly methylated genes 
BHLHE22, CDO1, and CELF4 demonstrated a 
sensitivity of 91.8% and a specificity of 95.5%[31]. In a 
recent study, the team led by Kuo-Chang Wen 
utilized MPap detection technology and observed that 
the sensitivity and specificity of the genes CDO1 / 
BHLHE22 in EC were above 90% and 70%, 
respectively[47]. 

As an oncogene, the tumor suppressor activity of 
phosphatase and tensin homolog (PTEN) primarily 
depends on its lipid phosphatase function, inhibiting 
PI3K/AKT activation. Consequently, PTEN regulates 
various cellular processes, including proliferation, 
survival, energy metabolism, cell structure, and 
motility[48]. Khatami's team observed PTEN 
promoter methylation in 52.0% of EC tumor tissues, 
compared to 13.6% in non-tumor tissues[49]. Gotoh et 
al. employed DNA methylome microarray sequencing 
and found PTEN mutations and clonal expansion of 

tumor cells in atypical hyperplasia samples[50]. Liew 
et al. also demonstrated that PTEN mutations were 
seldomly present in cervical scrapings of normal 
endometrium (25%) and benign uterine lesions (10%), 
but adding PTEN mutation testing to the 
BHLHE22/CDO1-based methylation assay did not 
enhance the detection efficiency of EC[46]. 

Adenomatous polyposis coli (APC) is a gene that 
disrupts the Wnt/β-catenin signaling pathway, 
preventing it from taking part in organ development, 
cell proliferation, survival, differentiation, and 
migration[51]. Zysman's team studied 114 
endometrial adenocarcinoma specimens, and 
illustrated that the frequency of APC 
hypermethylation was increased in MSI+ endometrial 
tumors[52]. Ignatov et al. reported that DNA 
methylation frequency of the APC gene increased 
from atypical hyperplasia (23.5%) to early-stage EC 
(77.4%) and then gradually decreased in advanced 
carcinoma (24.2%)[53]. However, in a recent study, 
Lou et al. observed hypomethylation in the promoter 
of APC and upregulation of gene expression in 
mutant EC samples[54]. 

The P16 gene belongs to the inhibitor of 
cyclin-dependent kinase 4 (INK4) gene family. It 
consists of four members, p16 INK4A, p15 INK4B, p18 
INK4C, and p19 INK4D, and possesses biological 
properties of cell growth inhibition and tumor 
suppression[55]. Moreover, p16 inhibits cell cycle 
protein-dependent kinases, leading to G1 cell cycle 
arrest, whereas methylated p16 leads to tumor 
development[56, 57]. In a meta-analysis including 264 
cases of EC patients, hypermethylation of the p16 
gene promoter was associated with an increased risk 
of EC[58]. Multi-institutional studies have 
demonstrated that p16 methylation is rare in 
precancerous lesions, but predominant in advanced 
EC, and therefore is not indicated for early screening. 
However, it can be used as a potential prognostic 
marker[59]. 

2.2 Genes related to hormone and metabolism 
The imbalance of estrogen and progesterone is a 

significant cause of endometrial carcinogenesis, 
particularly in Type I EC. Hyperlipidemia and slow 
fat metabolism are also high-risk factors for EC. 

CDO1 is a critical enzyme in cysteine catabolism 
and vital in physiological processes, including lipid 
metabolism, organismal growth, and development 
[60]. CDO1 enhances the production of reactive 
oxygen species to induce apoptosis. It interacts with 
peroxisome proliferator-activated receptor γ, 
activating the key tumor suppressor transcription 
factor CCAAT/enhancer-binding protein (C/EBP) α, 
thereby inhibiting tumor progression[61, 62]. CDO1 is 



 Journal of Cancer 2025, Vol. 16 

 
https://www.jcancer.org 

816 

a potential tumor suppressor gene. In cancers such as 
renal cell, breast, and colorectal cancer, the promoter 
region of CDO1 frequently undergoes 
hypermethylation, leading to reduced or absent 
expression[63, 64]. This methylation-induced 
silencing may allow cancer cells to evade cell death by 
oxidative stress, promoting tumor survival and 
progression[65]. Clinical data suggest that CDO1 is 
significantly hypermethylated in Types I and II of EC, 
and it can serve as a diagnostic marker to distinguish 
between cancerous and normal tissues[66, 67]. 

Estrogen receptor 1 (ESR1) is the gene that 
encodes ERα. This nuclear receptor predominantly 
regulates gene expression by binding to estrogens, 
such as 17β-estradiol. It plays a vital role in the 
development of the reproductive system, bone health, 
cardiovascular function, and the growth and 
differentiation of breast tissue[68, 69]. SNAI2 
promotes ESR1 methylation by recruiting DNA 
methyltransferase 3B rather than DNA 
methyltransferase 1 in ERα-positive breast cancer cells 
and may contribute to cell adhesion and junctions[70]. 
However, the role of ESR1 methylation in the 
development of EC remains controversial. Carla 
Bartosch and colleagues analyzed ERα and PRA 
promoter methylation in 45 cases of EC and 
concluded that the methylation of these genes plays a 
limited role in the etiology of the disease[71]. Vanessa 
Todorow demonstrated that in three out of five EC 
cell lines, the promoter region of ESR1 was 
methylated, suggesting that ESR1 methylation may 
influence EC development[72]. Results of 
bioinformatics analysis also support this 
viewpoint[73, 74]. PIWIL1 mediates the ERα signaling 
pathway involved in E2-stimulated carcinoma cell 
proliferation, which may be one of the mechanisms by 
which ESR1 methylation contributes to EC 
progression[75]. 

2.3 Genes involved in expression regulation 
and epigenetics 

The impairment of gene repair function and the 
body's immune system affect cancer progression in 
terms of prevention and elimination. Meanwhile, 
focusing on the methylation changes of the genes 
themselves, it is important to consider that alteration 
of genes that promote methylation can also impact EC 
development and progression. These genes have 
broader effects and can assist in the early diagnosis 
and prognostic assessment when used alongside 
methylation biomarkers.  

The human mutL homolog 1 (hMLH1) gene 
undergoes DNA mismatch repair (MMR) gene 
mutations in Lynch syndrome, commonly used in the 
pathologic diagnosing of rectal carcinoma and ECs[6, 

76]. Two-thirds of EC exhibit dMMR, mainly caused 
by methylation of the MLH1 promoter[77]. 
Three-quarters of EC patients aged 36–59 exhibited 
methylation of the MLH1 gene. Annukka Pasanen et 
al. found that 76% of 244 dMMR cases were associated 
with methylation[78, 79]. Kahn et al. analyzed that 
86.3% (1016/1159) patients’ loss of MLH1 staining 
were due to MLH1 methylation[80]. Clinical studies 
have found that tumor size is significantly associated 
with MLH1 methylation[81, 82]. Thus, hMLH1 
methylation testing may be used as an early clinical 
screening and prognostic indicator for patients with 
EC[34]. 

Methyl-CpG-binding protein 2 (MeCP2) is a 
protein essential to regulating gene expression and 
DNA methylation[83]. It was initially studied 
extensively for its involvement in Rett syndrome, a 
neurodevelopmental disorder that affects brain 
development[84]. MeCP2 binds to methylated CpG 
dinucleotides and interacts with other proteins to 
either repress or activate the expression of specific 
genes[85]. In EC research, MeCP2 is associated with 
decreased promoter methylation, leading to higher 
expression levels and promoting methylation of other 
genes. Gene mutations in MeCP2 are associated with 
a favorable prognosis[86, 87]. Yuning Xiong et al. 
discovered that MeCP2 specifically binds to and 
methylates the hMLH1 promoter[88]. Yongli Chu's 
team found that MeCP2 plays a key role in the 
silencing of the progesterone receptor-B (PR-B) gene, 
suggesting that epigenetic reactivation of PR-B could 
be explored as a potential strategy to sensitize 
PR-B-negative EC to progestin therapy[89]. 

CUGBP Elav-like family member 4 (CELF4) is a 
member of the CELF protein family, which is 
involved in regulating processes such as alternative 
RNA splicing, post-transcriptional regulation, 
translation, and mRNA degradation[90]. Similar to 
CDO1 and BHLHE22, CELF4 was also first identified 
and reported by Huang et al. to exhibit abnormally 
elevated methylation in EC. Statistical analysis 
showed that CELF4 had a sensitivity of 96.0%, a 
specificity of 78.7%, and an AUC of 0.94[31]. In recent 
studies, researchers have shown a preference for the 
combined detection of CDO1 and CELF4 methylation, 
with sensitivity ranging from 84.9% to 87.5% and 
specificity from 86.6% to 95.9%[67, 91, 92]. 
Additionally, Zhao et al. and Kong et al. both 
suggested that combining BMI index and the joint use 
of TVU could improve the prediction of EC 
screening[67, 93]. However, a recent study also 
indicated that the combined use of CDO1 and CELF4 
did not lead to better screening outcomes, with AUC 
values of only 0.6000 and 0.5286, respectively[94]. 
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3. Sample collection for DNA 
methylation detection 

In populations with a low incidence of EC, TVU 
followed by endometrial biopsy is the most 
cost-effective strategy[95]. Surgical anesthesia can 
greatly reduce the pain associated with endometrial 
sampling. Nonetheless, it is difficult to ensure that 
patients can be painlessly sampled in outpatients for 
large-scale screening[96]. With the advancement in 
molecular methylation technology, the method of 
collecting vaginal fluid, urine, and blood samples to 
detect tumor methylation markers and understand 
their prognosis is gradually being applied in clinical 
diagnosis (Table 2). 

 

Table 2. Changes in AUC values across genes for different clinical 
modes of endometrial sampling. 

Gene Vaginal fluid 
(Tao brush) 

Vaginal fluid 
(Pap brush) 

Vaginal fluid 
(tampons) 

Urine Blood 

BHLHE22 0.878     
CDO1 0.842     
TBX5 0.703     
HAND2 0.767     
MME 0.7     
PCDHGB 7 0.83 0.86    
HIST1H4F  0.951    
RASSF1  0.938 0.75   
HTR1B   0.82   
HOXA9   0.74   
GHSR    0.95  
SST    0.92  
ZIC1    0.86  
ZSCAN12/OXT     0.99 
MLH1     0.96  
CDH13   0.67   
ADCYAP1 0.86  0.67   
ASCL2 0.86  0.68   
HS3HT2 0.81  0.67   
HTR1B 0.8  0.82   
MME 0.68  0.7   
NYP 0.86  0.66   
GTF2A1 0.76  0.43   
HAAO   0.68   
HSP2A   0.54   
Reference [46, 122-124] [122, 123] [37] [111] [114, 125] 

 

3.1 Vaginal fluid collection 
The collection of vaginal secretions can capture 

exfoliated endometrial cells, allowing for pathological 
and molecular diagnostics. Though this approach is 
non-invasive and relatively simple to perform, its 
sensitivity remains relatively low, which may result in 
false-negative outcomes, thus limiting its accuracy in 
detecting early-stage EC. Commonly used method to 
collect vaginal fluid is tampon, which significantly 
reduces the pain caused by endometrial sampling. A 
clinical trial used a visceral analog scale to compare 

pain associated with tampon collection, tampon 
brushing, and endometrial biopsy. Concludingly, 
pain linked to tampon collection was easy to tolerate 
by the patients while still achieving good diagnostic 
efficiency[97-99]. Moreover, Bakkum-Gamez et al. 
reported that methylation of vaginal fluid collected 
from tampons for detecting EC exhibited high 
sensitivity and strong specificity, and adding EDTA 
buffer to the PBS-based tampon buffer improved 
sensitivity and specificity[100]. 

3.2 Endometrial cell collection with special 
collectors  

Endometrial cell collection is the method for 
direct collection of endometrial cells. The widely used 
devices to collect endometrial samples include 
ceramic and pasteurized brushes. The ceramic brush 
method is one of the most widely used endometrial 
sampling devices[101]. In a meta-analysis of more 
than 700 individuals, the ceramic brush method of 
endometrial cytology sampling was demonstrated to 
be less invasive, less expensive, and more suitable 
than endometrial biopsy for screening and diagnosing 
precancer and malignancy[102, 103]. Another study 
illustrated that the sensitivity of endometrial cells 
obtained by ceramic brushing was comparable to that 
of biopsy tissue for detecting atypical hyperplasia and 
EC[104] (Table 2). Compared to collecting vaginal 
fluid, the use of an endometrial brush allows for the 
direct collection of abnormal cells, offering higher 
sensitivity and specificity. This approach aids in 
detecting early cancerous changes and reduces the 
rate of false-negative results. 

3.3 The urine collection 
Urine testing enables comprehensive screening, 

improves patient autonomy, and ensures high 
diagnostic efficiency[105, 106]. Urine testing can 
obtain DNA from locally shed cellular tumors and 
tumor-free cells, such as cells excreted through the 
kidneys Second-generation sequencing, microRNA 
detection, and quantitative SWATH analysis have 
recently been used to collect patients' urine to 
diagnose EC[107-109]. Wever et al. set up a value of 
urine, cervicovaginal self-sampling, and the clinician's 
cervical sampling of the three groups of sampling 
methods to carry out methylation detection[110]. The 
quantitative methylation-specific PCR was used to 
detect nine DNA methylation markers; significantly 
higher methylation levels were found in all groups 
compared with healthy controls[110]. Another study 
divided the urine samples into three fractions (whole 
urine, urine sediment, and urine supernatant) and 
analyzed DNA methylation markers. All DNA 
methylation markers exhibited increased methylation 
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levels in all urine fractions of EC patients compared to 
healthy controls[111]. Whole urine samples 
demonstrated the highest ability to discriminate 
patients from controls[111]. However, using urine 
specimens for EC diagnostic studies is not widely 
used as compared to vaginal fluid specimens, 
possibly due to the inability to directly obtain 
endometrial cells, while its screening and diagnostic 
accuracy remain to be discussed. 

3.4 Patient blood or plasma samples collection 
Patient blood or plasma samples allow 

monitoring of small fragments of DNA shed into the 
bloodstream by the tumor cells, including circulating 
extracellular nucleic acid, circulating tumor DNA 
(ctDNA), and circulating tumor cells[112]. DNA from 
these samples is analyzed to detect point mutations, 
copy number alterations, gene fusions, and DNA 
methylation. This method demonstrated good 
applicability for cancer diagnosis, determining 
prognosis, targeting gene-specific therapies, 
monitoring/predicting disease recurrence, and 
treatment response[113]. Researchers have 
established the digital droplet PCR (ddPCR) method 
to detect hypermethylated ctDNA in plasma of EC 
patients with high analytical specificity and 
sensitivity in retrospective and cohort studies[114]. 
The ddPCR exhibited good clinical diagnostic 
performance in other cancer studies, such as ovarian 
and colorectal cancer[115]. However, diagnosis of EC 
by detecting DNA methylation in blood has not been 
studied on a large scale in clinical settings. Early 
detection of EC by using blood samples may not be 
suitable for screening of earlier stage of EC. 

Despite various methods for EC screening via 
DNA methylation testing, a single test cannot fully 
replace cervical biopsy. Thus, a combined approach is 
needed to enhance screening accuracy. Herzog et al. 
focused on specific DNA regions within genes such as 
ZSCAN12 and GYPC using qMSP (quantitative 
methylation-specific PCR) in the WID quantitative EC 
(WID-qEC) assay, demonstrating high sensitivity and 
specificity in detecting different stages and types of 
EC[20]. Therefore, we should not be limited to DNA 
methylation alone. Diversifying biomarker detection 
and combining multiple methods can significantly 
improve screening accuracy. 

4. Conclusion 
Epigenetics and DNA methylation are novel and 

promising techniques for biomarker discovery and 
subsequent screening. Genome-wide and site-specific 
methylation assays play an important role in 
screening potential cancer gene methylation sites and 
in the targeted assessment of gene methylation levels. 

Clinical studies in EC have reported that detecting 
single or combined gene methylation markers is 
comparable to the diagnostic accuracy of 
endometrium biopsy. It is more acceptable to patients 
due to its convenience, speed, and painless sampling. 
However, there are many inconsistencies regarding 
the results of DNA methylation abnormalities of these 
tumor suppressor genes in EC. This is due to 
environment, lifestyle, and individual differences. 
Additionally, aside from the currently popular cancer 
gene methylation markers, most gene methylation 
studies are in the controversial stage. Large numbers 
of clinical samples are needed to validate and resolve 
controversies. In conclusion, research on DNA 
methylation could provide rich and complex 
information on epigenetic gene regulation in EC and 
its precursors and offer technical support for better 
and faster methylation assays in EC screening and 
diagnosis. 
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