
Journal of Cancer 2025, Vol. 16 
 

 
https://www.jcancer.org 

1040 

Journal of Cancer 
2025; 16(4): 1040-1050. doi: 10.7150/jca.103297 

Research Paper 

Characteristics and function of the gut microbiota in 
patients with rectal neuroendocrine tumors 
Yue Gao*, Hongxia Zheng*, Mujie Ye*, Guozhi Zhou, Jinhao Chen, Xinyun Qiang, Jianan Bai, Xintong Lu, 
Qiyun Tang 

Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou 
Road, Nanjing 210029, Jiangsu Province, China.  

* These authors contributed equally. 

 Corresponding author: Qiyun Tang, Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, The First Affiliated Hospital of Nanjing 
Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, NO.300 Guangzhou Road, Nanjing, China. Email: qytang@njmu.edu.cn.  

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). 
See https://ivyspring.com/terms for full terms and conditions. 

Received: 2024.08.01; Accepted: 2024.12.01; Published: 2025.01.01 

Abstract 

The gut microbiota plays a significant role in the initiation and progression of tumors, but its role in rectal 
neuroendocrine tumors (rNETs) remains unclear. Fecal samples were collected from 19 healthy 
individuals and 21 rNET patients,with the rNET cohort further divided into metastatic (rNETs-M) and 
non-metastatic (rNETs-nM) groups. Using metagenomic high-throughput sequencing, we analyzed the 
diversity, species composition, and functional characteristics of the gut microbiota. We applied a random 
forest model to identify potential microbial biomarkers for predicting rNET and specifically distinguishing 
rNETs-M cases. Alpha diversity analysis revealed that species diversity was lower in the rNETs group 
than in the control group. In contrast, the rNETs-M group exhibited higher species diversity than the 
rNETs-nM group. Beta diversity analysis demonstrated significant differences in community structure 
between the rNETs and control groups between the rNET-M and rNETs-nM groups. Notably, in the 
rNETs group, the abundance of potential pathogens such as Escherichia coli and Shigella was 
elevated.Furthermore, the rNETs-M group exhibited an increased abundance of potential pathogens such 
as Alistipes. KEGG enrichment analysis indicated that these distinct microbiota play a significant role in 
environmental information processing, genetic information processing, and metabolic pathways. Random 
forest analysis and ROC curve results identified Lachnospira pectinoschiza (AUC=0.885), Parasutterella 
muris (AUC=0.862), Sodaliphilus pleomorphus(AUC=0.956), Methylobacterium iners (AUC=0.971) as 
biomarkers with significant discriminatory value. 
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Introduction 
Neuroendocrine neoplasms (NENs) are highly 

heterogeneous tumors originating from 
neuroendocrine cells and peptidergic neurons that 
produce polypeptide hormones and bioactive amines 
[1]. NENs can occur in any part of the body, with 
gastroenteropancreatic neuroendocrine tumors 
(GEP-NENs) being the most common, accounting for 
55%-70% of all NENs [2]. In recent years, the incidence 
of GEP-NENs has continued to rise, increasing from 
1.09 per 100,000 in 1973 to 6.98 per 100,000 in 2012, 
making it the second most common digestive system 
cancer [3]. The rectum is a frequent site for NENs, and 

because patients with rectal neuroendocrine tumors 
(rNETs) often lack obvious clinical symptoms, timely 
diagnosis and treatment can be challenging [4]. 
Although the prognosis of rNETs is generally better 
compared to most tumors, over 20% of patients 
typically present with distant metastasis at diagnosis, 
with liver metastasis being the most common site [5]. 
Studies have shown that patients with liver metastasis 
have a significantly lower five-year survival rate 
compared to those without liver metastasis [6]. 

In recent years, increasing research has shown 
that microbes play an important role in human health 
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and disease, with the gut microbiota producing many 
essential metabolites to maintain host and gut 
homeostasis [7]. With the advancement of 
metagenomic sequencing technology, studies have 
found that the gut microbiota can promote tumor 
initiation and progression through DNA mutations, 
activation of oncogenic pathways, promotion of 
chronic inflammation, supplementation of systemic 
pathways, and initiation of metastasis [8]-[10]. Research 
on gut microbiota in NENs is increasing, with 
metagenomic sequencing of fecal samples from 
patients with midgut NENs and healthy controls 
showing differences in gut microbiota composition 
and function, indicating a potential link between the 
gut microbiota and midgut NENs [11]. A study found 
that rNETs patients exhibited abnormal depletion of 
microbial species and weakened connectivity, as well 
as abnormal accumulation of lipids and lipid-like 
molecules, suggesting that the occurrence of rNETs 
may be related to a weakened gut microbiota activity 
in energy metabolism, vitamin biosynthesis, and 
transport [12]. 

In this study, we used metagenomic sequencing 
to analyze the species-level composition of gut 
microbiota and their potential functions and 
metabolic characteristics in patients with rNETs, as 
well as in those with liver metastasis. The results may 
help identify biomarkers and potential therapeutic 
targets for rNETs with liver metastasis. 

Materials and methods 
Research subjects 

Stool samples were obtained from 21 patients at 
the Neuroendocrine Tumor Center, the First Affiliated 
Hospital of Nanjing Medical University, and 19 
healthy individuals at the physical examination 
center. 

The inclusion criteria for the control group were 
as follows: (1) age >18 years old and <80 years old; (2) 
negative results on OC-qFIT ultra-sensitive 
quantitative fecal occult blood tests. The inclusion 
criteria for the rNETs group were as follows: (1) 
Pathologically diagnosed with rNETs; (2) Imaging 
diagnosis of liver space-occupying lesions. 

Exclusion criteria are as follows: (1) Patients who 
had taken antibiotics, corticosteroids, or probiotics 
within 3 months before sample collection; (2) Patients 
who have undergone abdominal surgery or other 
invasive treatments within 3 months before sample 
collection; (3) Patients who had taken cathartic agents 
or underwent enema treatment before sample 
collection; (4) Personal history of cancer, family 
history or personal history of inflammatory bowel 
disease; (5) lactation or pregnancy; (6) preoperative 

radiotherapy or neoadjuvant chemotherapy; (7) 
Patients who have undergone fecal bacteria 
transplantation in the past; (8) Individuals with 
mental illness; (9) incomplete information or lack of 
informed consent; (10)Established or suspected 
history of alcohol or drug abuse. 

Fecal sample collection 
In accordance with the predefined inclusion and 

exclusion criteria, a total of 40 fecal samples meeting 
the specified standards were collected and promptly 
preserved in a -80 ℃ refrigerator for future analysis. 
Before sample collection, all participating patients 
provided informed consent. This study has received 
approval from the Ethics Review Committee of the 
First Affiliated Hospital of Nanjing Medical 
University. 

Experimental methods 

DNA extraction 

Genomic DNA from the sample was extracted 
using the HiPure Bacterial DNA Kit (Guangzhou, 
China) following the manufacturer's protocol. The 
quality of the DNA was assessed using Qubi (Thermo 
Fisher Scientific, Waltham, MA) and Nanodrop 
(Thermo Fisher Scientific, Waltham, MA). 

Illumina sequencing 

The qualified genomic DNA was initially 
fragmented to 350 bp through acoustic shearing, 
followed by terminal repair, A-tailing, and ligation of 
Illumina sequencing adapters using the NEBNext® 
Ultra™DNA Library Prep Kit (NEB, USA). 
Subsequently, 300-400bp DNA fragments were 
amplified and enriched via PCR. The resulting PCR 
products were purified using the AMPure XP system 
(Beckman Coulter, Brea CA., USA). Sequencing 
libraries were evaluated with an Agilent 2100 
bioanalyzer (Agilent Santa Clara CA.) and quantified 
using real-time PCR before sequencing on an Illumina 
Novaseq 6000 sequencer employing a PE 150 
sequencing strategy. 

Statistical method 

Quality assessment of intestinal flora sequencing 

The raw data obtained after sequencing were 
filtered based on the following criteria: (1) removal of 
reads containing adapters; (2) elimination of reads 
with an N ratio exceeding 10%; (3) exclusion of 
low-quality reads, defined as those where the number 
of bases with a quality score Q≤20 accounted for more 
than 50% of the entire read. All samples' Q20 and Q30 
values exceeded 95%, indicating high data quality 
suitable for subsequent sequencing. 
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Analysis of species composition 

In the R language, the VennDiagram package is 
utilized to construct Venn diagrams illustrating 
common endemic species among species in different 
groups and to distinguish between species unique to 
each group, disregarding abundance and focusing 
solely on presence or absence. Visualizations were 
created for two species groups at both phylum and 
genus levels, while circus plots were employed to 
demonstrate abundance correlations between samples 
and species. 

Alpha diversity analysis 

Chao1, ACE, Shannon, Simpson index were 
calculated using Python scikit-bio package [13](version 
0.5.6). Alpha index comparison between groups was 
calculated by Welch's t-test and Wilcoxon rank test in 
R project Vegan package[13]. Alpha index comparison 
among groups was computed by Tukey’s HSD test 
and Kruskal-Wallis H test in R project Vegan 
package[13]. 

Beta diversity analysis 

Bray-curtis distance matrix based on 
gene/taxon/function abundance was generated by R 
Vegan package [13]. Multivariate statistical techniques 
including PCA (principal component analysis), PCoA 
(principal coordinates analysis) and NMDS 
(non-metric multidimensional scaling) of Bray- curtis 
distances were calculated using R vegan package [13] 
and plotted using R ggplot2 package [14]. Adonis (also 
called Permanova) and Anosim test was calculated 
using R project Vegan package [13]. Heatmap graph 
were plotted using R Pheatmap package[15]. 

Difference analysis  

Basic analysis  

Between groups Venn analysis was performed in 
R project VennDiagram package [16] and upset plot 
was performed in R project UpSetR package [17]to 
identify unique and common species or functions. 
Species/functions comparison between groups was 
calculated by welch's t-test and wilcoxon rank test in 
R project Vegan package[13]. Species/functions 
comparison among groups was computed by 
ANOVA (analysis of variance) in R project Vegan 
package[13].  

Personalized analysis  

Species comparison between groups was 
calculated by Metastats (version 20090414) [18]. 
Differentially enriched KEGG pathways were 

identified according to their reporter score from the 
Zscores of individual Kos (KEGG Orthologs). An 
absolute value of reporter score = 1.96 or higher (95% 
confidence according to a normal distribution) was 
used as a detection threshold for pathways that 
differed significantly in abundance [19]. Biomarker 
features of species and functions in each group were 
screened by LEfSe software (version 1.0) [20]. Ternary 
plot of species was plotted using R ggtern package [21] 
based on tukey HSD test using R Vegan package[13]. 

Results 
Library sequencing data and gene prediction 

The sequencing yielded a total of 3,743,818,196 
original reads. Following pre-processing, the dataset 
retained 3,700,381,650 clean reads available for 
analysis, averaging 92,509,541 reads per sample 
(Figure S1A). The average number of bases per 
sample before quality control was 14,039,318,235 bp; 
after quality control, it was reduced to an average of 
13,829739561 bp. 345743489 high-quality reads were 
obtained following host sequence screening (Figure 
S1B). Subsequently, the giant hit software was utilized 
for assembling the effective readbeing 2724.575, with 
an average continuous length of each sample being 
2724.575 and 2724.575 bp without significant 
inter-group differences (Figure S1C). 

Diversity of the intestinal microbiota 
Alpha diversity illustrates the box chart and 

P-values for comparing indicators: (A) Chao1 index, 
(B) ACE index, (C) Shannon index, and (D) Simpson 
index. The Chao1 and ACE indices exclusively assess 
species richness, with higher values indicating greater 
diversity. In contrast, The Shannon index and 
Simpson index provide a comprehensive reflection of 
species richness and evenness. A higher value 
indicates a greater sample balance. Comparisons were 
conducted between the rNETs group and the control 
group, the rNETs-M group and the rNETs-nM group, 
and among the rNET group, the rNETs-M group, and 
the control group. Statistically significant differences 
in the four indexes were observed between the rNETs 
and control groups (Fig. S2). When comparing the 
stool samples of patients in the rNETs-M group and 
rNETs-nM group, a statistically significant difference 
was observed in the ACE index and Chao1 index. 
However, no significant difference was found in the 
Shannon index and Simpson index (Fig. S3). 
Statistically significant differences were observed 
among the three groups for all four indexes (Fig. 1).  
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Figure 1. (A-D) Illustrates the alpha diversity indexes, including the Chao1 index (A), ACE index (B), Shannon index (C), and Simpson index (D) of the rNETs group, rNETs-M 
group, and control group. 

 
The structural similarity was explored using 

PCoA analysis of beta diversity. Factor 1 explained 
65.23% of the total variance in both the rNETs group 
and control group (Fig. 2A). In comparison, Factor 2 
accounted for 31.53% of the total variance. In contrast, 
Factor 1 explained 32.55% of the total variance in the 
rNETs-M group and rNETs-nM (Fig. 2B), with Factor 
2 accounting for 66.08% of the total variation. The 
rNETs, rNETs-M, and control groups (Fig. 2C) 
exhibited two primary axes (factors). Specifically, 
Factor 1 contributed 65.62% of the total variation, 
whereas Factor 2 accounted for 31.47%. Subsequently, 
NMDS analysis was conducted based on Bray-Curtis 
matrix obtained from PCoA analysis. The stress 
values for all three NMDS analysis groups, rNETs 
group and control group (Fig. 2D), rNETs-M group 
and rNETs-nM (Fig. 2E), as well as rNETs group, 
rNETs-M group and control group (Fig. 2F) were all 
below <0.2 indicating reliable results from variance 
analysis. 

Characteristics of the composition of intestinal 
microbial species 

Welch's t-test was employed to compare the 
differences between the rNETs group and the control 

group. At the phylum level (Fig. 3A), 
Pseudomonadota exhibited enrichment in the tumor 
group. At the same time, Bacteroidota was more 
prevalent in the control group. At the genus level (Fig. 
3B), bacteria enriched in the control group included 
Eubacterium, Dorea, Phocaeicola, Alistipes, and 
Lachnospira. Conversely, Escherichia and Shigella 
were present in higher abundance in the tumor group. 
Finally, at the species level (Fig. 3C), Alistipes 
putredinis, Bacteroides uniformis, and Dorea 
longicatena were found to be enriched in the control 
group. In contrast, Escherichia coli, Shigella sonnei, 
and Eggerthella lenta were identified as predominant 
strains within the tumor group. 

Welch's t-test revealed distinct differences in 
flora between the rNETs-M and rNETs-nM groups. 
No statistically significant species were identified at 
the phylum level. At the genus level (Fig. 3D), 
Clostridium was found to be abundant in the 
rNETs-nM group, while Alistipes exhibited higher 
abundance in the rNETs-M group. At the species level 
(Fig. 3E), bacteria enriched in the rNETs-nM group 
included Adlercreutzia equolifaciens, Blautia 
faecicola, and Clostridium porci, whereas these were 
more prevalent in the rNETs-M group. 
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Figure 2. (A-C) Principal coordinates analysis (PCoA) plot depicting (A) N vs rNETs, (B) rNETs-M vs rNETs-nM, and (C) N vs rNETs-M vs rNETs-nM. (D-E) Presents the 
Nonmetric Multidimensional Scaling (NMDS) plot, with (D) N vs. rNETs, (E) rNETs-M vs. rNETs-nM, and (F) N vs. rNETs-M vs. rNETs-nM. 

 
Table 1. Abundance and corresponding p-values of bacteria 
genera across incremental levels 

Genus N rNETs-nM rNETs-M p-value q-value 
Renibacterium 0 1.00E-06 6.00E-06 0.036225282 0.360552309 
Gordonia 1.20E-05 3.70E-05 7.00E-05 0.010743804 0.235198286 
Oenococcus 1.10E-05 0.000105 0.000477 0.044365664 0.406185644 
Agathobacter 0.0964947 0.287 0.4364 0.022394941 0.288912813 
Eisenbergiella 0.003993 0.015599 0.04345 0.038245884 0.36733829 
Paraprevotella 0.027287 0.05427 0.234523 0.004934687 0.235198286 
Parabacteroides 0.577711 0.700713 1.615925 0.02339924 0.289841212 

 
In the case of multiple groups, to elucidate 

species differences among different groups, we 
constructed the Wayne diagram (Fig. S4) based on 
species abundance information from the samples, 
depicting taxonomic distribution at phylum, genus, 
and species levels to illustrate shared endemic 
information across samples. At the phylum level (Fig. 
S4A), 62 phyla were common to all three groups, with 
13 unique to the healthy group and 4 bacteria genera 
unique to the primary group; no specific bacteria were 
found in the liver metastasis group. At the genus level 
(Fig. S4B), 714 bacteria genera were common across all 
three groups, with 102 unique to the healthy group 
and 73 unique to the primary group. Five bacteria 
genera were endemic in the liver metastasis group. At 
the species level (Fig. S4C), there were 2773 common 
bacterial species; among these, 472 were endemic in 

the healthy group and 392 in primary tumors, while 
only 33 bacterial genera showed endemism in liver 
metastases. Trend analysis revealed no gradual 
increase at the phylum level but demonstrated a 
gradual increase at the genus level (Table 1) and 
species level (Table 2); these differences were 
statistically significant. 

Differential functional analysis of the gut 
microbiota 

In terms of exploring the functional differences 
of the flora, we annotated the total number of genes in 
all the statistical samples to the pathway database. 
Our analysis revealed that most of the genes were 
associated with metabolic functions (Fig. 4A). was 
depicted as a branching tree graph (Fig. 4B). LEfSe 
was employed to assess and compare functional 
differences across each group. Differential function 
analysis using KEGG database identified significant 
pathways related to Environmental Information 
Processing, Membrane Transport, and ABC 
Transporters (Fig. 4C). Furthermore, within the 
metastasis group, key pathways included 
Biosynthesis_of_type_II_polyketide_products, 
Biosynthesis_of_siderophore_group_nonribosomal_p
eptides, Arginine_and_proline_metabolism, and 
Sulfur_relay_system. Spearman correlation analysis 
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(Fig. 4D) was conducted to examine associations 
between bacterial flora at increasing species levels and 
rNETs-M group bacterial flora. The results indicated a 
positive correlation between Alistipes putredinis and 
the Sulfur_relay_system pathway while Renibac-
terium salmoninarum showed a negative correlation 
with this pathway. Additionally, Bacteroides 
thetaiotaomicron negatively correlated with the 
Biosynthesis_of_siderophore_group_nonribosomal_p
eptides pathway. 

Random forest model for vegetation and 
receiver operating characteristic (ROC) 
analysis 

Random forest model analysis was employed to 
investigate the potential of microbial flora as a 
predictive factor for rNETs and liver metastases. To 
further assess the utility of intestinal microbes as 
biomarkers, the area under the curve (AUC) was 
utilized for analysis. At the species level, random 
forest model analysis revealed that Lachnospira 
pectinoschiza was pivotal in identifying rNETs (Fig. 

5A). Receiver Operating Characteristic (ROC) curve 
analysis was conducted for different species at the 
species level to evaluate the sensitivity of the 
differential flora in diagnosing rNETs, as indicated by 
the area under the curve. Lachnospira pectinoschiza 
exhibited an AUC of 0.885 [95%CI (0.781-0.988)] (Fig. 
5B).Parasutterella muris demonstrated an AUC of 
0.862 [95% CI (0.744-0.981)](Fig. 5C), indicating its 
potential as a significant biomarker for distinguishing 
the rNETs group from the control group. 
Furthermore, the random forest analysis highlighted 
Sodaliphilus pleomorphus as the most influential in 
differentiating rNETs-M (Fig. 5D). Receiver Operating 
Characteristic (ROC) curve analysis was conducted at 
the species level, revealing that Sodaliphilus 
pleomorphus achieved an AUC of 0.956 [95% CI 
(0.865-1)] (Fig. 5E), and Methylobacterium iners 
attained an AUC of 0.971 [95% CI (0.901-1)] (Fig. 5F). 
These findings underscore their significance as crucial 
biomarkers for identifying the rNETs-nM group. 

 

 
Figure 3. (A-E) Displays the Welch t-test results for microbial species in the intestinal microbiota of the groups N vs rNETs at the phylum levels (A), N vs rNETs at the genus 
levels(B), N vs rNETs at the species levels(C), rNETs-nM vs rNETs-M at the genus level (D), rNETs-nM vs rNETs-Mat the species level (E). 
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Table 2. Abundance and corresponding p-values of bacteria species across incremental levels. 

Species N rNETs-nM rNETs-M p-value q-value 
Renibacterium salmoninarum 0 1.00E-06 6.00E-06 0.036225282 0.359924545 
Gordonia amicalis 1.10E-05 3.20E-05 5.20E-05 0.019375022 0.283663272 
Collinsella sp. AF25-2LB 3.80E-05 0.000288 0.00106 0.026768661 0.317168087 
Eggerthella sp. 1_3_56FAA 8.30E-05 0.00018 0.00024 0.011361349 0.205207055 
Enterococcus aquimarinus 0 4.00E-06 2.10E-05 0.039325427 0.377869186 
Clostridium sp. Marseille-P3244 0.000349 0.000534 0.001267 0.037507518 0.369175123 
Agathobacter rectalis 0.0964326 0.286765 0.4363 0.022386961 0.300935721 
Eisenbergiella tayi 0.001754 0.004429 0.031125 0.027771232 0.324154178 
Lachnoclostridium sp. An118 0.000117 0.000296 0.000776 0.010485772 0.202037667 
Bacteroides fragilis 0.407747 0.840575 5.681125 0.005329296 0.202037667 
Bacteroides thetaiotaomicron 0.0386905 0.208833 0.534475 0.015736526 0.258623855 
Bacteroides uniformis 0.0640721 0.20402 0.242825 0.003417602 0.202037667 
Phocaeicola coprocola 0.0178226 0.089142 1.172925 0.007671662 0.202037667 
Alistipes putredinis 0.0668617 0.152854 0.364675 0.012966307 0.223445597 
Fusobacterium varium 0.000929 0.006405 0.02401 0.007214647 0.202037667 

 
 
 

 
Figure 4. (A) Cladogram analysis of functional differences among three groups, (B) Cladogram analysis of functions among three groups, and (C) LDA score analysis of functions 
within the three groups. Additionally, (D) Heatmap showing the correlation between gut microbiota and metabolic functions. 
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Figure 5. Illustrates the random forest model and ROC analysis of flora. Panel A shows the random forest model of the control, rNETs group, and groups, while panel B presents 
the ROC analysis of Lachnospira pectinoschiza. Additionally, panel C displays the Parasutterella ROC analysis of muris, and panel D depicts the random forest model of the 
rNETs-nM group and rNETs-M group. Furthermore, panels E and F showcase the ROC analyses of Sodaliphilus pleomorphic and Methylobacterium liners, respectively. 

 

Discussion 
As increasing evidence suggests a link between 

gut microbiota dysbiosis and tumors, NENs have also 
garnered widespread attention. Compared to 
previous studies based on 16S rRNA gene sequencing, 
our research is the first to use metagenomic 
sequencing analysis to describe the gut microbiota 
composition at the species level in rNETs patients 
with liver metastasis, revealing the gene functions and 
potential metabolic pathways of gut microbes. 

Compared to prior research [12], our study found 
significant differences in both α-diversity and 
β-diversity between the rNETs group and the control 
group, suggesting notable shifts in microbial 
community structure. Compared to healthy 
individuals, the richness and diversity of gut 
microbiota in tumor patients were significantly 
reduced. The rNETs-M group showed higher Chao1 
and ACE indices than the rNETs-nM group, 
indicating increased gut microbiota diversity in 

patients with liver metastasis, which may be related to 
tumor metastasis to the liver. Song W et al. [22] found 
that, compared to primary liver cancer, the relative 
abundance of Fusobacterium nucleatum was 
significantly higher in liver metastases from colorectal 
cancer, and that Fusobacterium nucleatum and other 
symbiotic bacteria such as Bacteroides and Prevotella 
species colonize liver metastases as cancer cells 
spread. This suggests that an increase in 
Fusobacterium nucleatum and symbiotic bacteria may 
promote colorectal cancer growth and liver 
metastasis. 

There is a dynamic balance between the 
microbiota and host gastrointestinal system health 
and disease. When microbial homeostasis is 
disrupted, it can lead to disease onset[23]. At the 
phylum level, the dominant bacterial phyla in the gut 
microbiota of the rNETs group and the control group 
are Bacteroidota and Pseudomonadota. In the rNETs 
group, Pseudomonadota is upregulated, while 
Bacteroidota is downregulated. At the genus level, 
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gut microbiota in the rNETs group, including 
Escherichia and Shigella, are upregulated. At the 
species level, Escherichia coli, Shigella sonnei, and 
Eggerthella lenta are upregulated, which may be 
associated with various diseases. Previous research 
data indicate an association between inflammatory 
bowel disease (IBD) and intestinal NENs, with tumor 
risk increasing sevenfold compared to the general 
population [24]. Studies have reported that the onset of 
IBD is related to the depletion of multiple beneficial 
bacteria, particularly the reduction of certain 
symbiotic bacteria, such as an imbalance in Clostridia 
and Firmicutes proportions and decreased 
Bacteroidota abundance [25]. Our results suggest that 
Bacteroidota is downregulated in the rNETs group 
compared to the control group. Therefore, whether 
supplementing beneficial Bacteroidota can reduce the 
incidence of rNETs requires further investigation. 
Previous studies have found that Eggerthella lenta is 
more abundant in high-grade gastroenteropancreatic 
neuroendocrine tumors (GEP-NETs) than in 
low-grade GEP-NETs[26], leading us to speculate that 
Eggerthella lenta may be closely associated with 
tumor development. Clinically, rNETs patients may 
experience non-specific symptoms such as abdominal 
pain and diarrhea[27], which may be related to Shigella 
sonnei invading host cells, mediating multiple 
signaling pathways, recruiting inflammatory factors 
and immune cells, colonizing, and damaging colonic 
epithelial cells[28][29]. The abundance of Alistipes is 
elevated in the liver metastasis group; Lu Y et al. 
found that Alistipes could upregulate downstream 
target genes of β-catenin, activate the Wnt signaling 
pathway, and promote colorectal cancer metastasis[30]. 
Whether it can lead to liver metastasis of rNETs still 
needs further investigation. 

To describe functional changes in the gut 
microbiome, we performed metagenomic functional 
annotation of KEGG pathways, revealing that 
metabolic function is the primary pathway in all three 
groups. LEfSe analysis showed that the 
2_Oxocarboxylic_acid_metabolism pathway is 
upregulated in healthy individuals. Clostridium 
butyricum can promote the production of short-chain 
fatty acids (SCFAs) via the 2_Oxocarboxylic_ 
acid_metabolism pathway, thereby repairing the gut 
barrier in mice with ulcerative colitis[31]. The 
ABC_transporters pathway is upregulated in the 
primary tumor group, with studies indicating that 
multidrug resistance (MDR) in tumor cells to 
chemotherapy drugs is associated with 
overexpression of ABC_transporters[32]. This 
overexpression can promote the efflux of 
chemotherapeutic drugs and reduce their 
accumulation within tumor cells[33]. Additionally, 

ABC_transporters can regulate the tumor immune 
microenvironment (TIME) by transporting various 
cytokines, thereby controlling antitumor immunity 
and sensitivity to anticancer drugs[34]. The 
Arginine_and_proline_metabolism pathway is 
significantly upregulated in the liver metastasis 
group, and changes in gut microbiota structure can 
induce intracellular toxin accumulation, leading to 
amino acid dysbiosis and gut barrier dysfunction by 
interfering with the Arginine_and_proline_ 
metabolism pathway, potentially causing gut 
diseases[35]. Whether this promotes liver metastasis 
requires further validation. 

Several consensus guidelines suggest that 
measuring serum CgA concentration is a reliable 
biomarker for identifying GEP-NENs[36][37]. However, 
elevated CgA levels have also been observed in some 
non-GEP-NENs, including lung cancer, breast cancer, 
and prostate cancer[38]. Previous studies have 
confirmed the heterogeneity of microbiome 
characteristics in aggressive disease groups, and an 
integrated analysis of microbiome markers from 
multiple cohorts has shown improved accuracy in 
early screening and diagnosis[39]. We developed a 
random forest model to confirm the potential of the 
gut microbiota in predicting rNETs. Lachnospira 
pectinoschiza and Parasutterella muris can serve as 
microbiome markers indicative of rNETs, while 
Sodaliphilus pleomorphus and Methylobacterium 
iners can be markers indicative of rNETs-M. From a 
clinical perspective, individuals exhibiting a 
"high-risk" microbiome profile may require additional 
colonoscopy to confirm the diagnosis. 

This study has some limitations. First, all rNETs 
patients were from hospitals in a specific region, 
resulting in a limited sample size. Therefore, further 
validation through large-scale clinical studies across 
multiple regions is needed to confirm these 
preliminary findings. Second, our observations are 
primarily data-driven and only involve changes in the 
gut microbiota, so further in vivo and in vitro 
downstream validation is necessary. 

Conclusion 
Metagenomic sequencing technology in this 

study revealed significant disparitiesin intestinal 
microbiota composition between patients with rNETs 
and the general population. Certain specific 
alterations in the flora maybe closely associatedwith 
the onset and metastasis of rNETs, offering potential 
insights for the diagnosis and treatment of such 
tumors. 
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