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We wish to suggest a cellular mechanism 
expanding to the understanding of the cancer 
selectivity/specificity of taxanes, a group of 
commonly used cancer drugs by the action of 
microtubule stabilization. 

The current frontline treatment of several major 
solid tumors is a taxane-based chemotherapy that was 
formulated nearly forty years ago, though with 
refinement over time. Taxanes work through a 
mechanism of microtubule stabilization [1-4]. 
Currently, several principal taxanes, such as 
Taxol/paclitaxel, Taxotere/docetaxel, and 
Jevtana/cabazitaxel, are used as a frontline regimen in 
combination with other drugs (often platinum 
agents), as well as second line drugs for recurrent 
cancer. Taxanes are highly active in many major solid 
tumors, and especially useful for treating malignant 
and metastatic cancers, including those of breast, 
lung, prostate, ovarian, head and neck, and cervical 
carcinomas, with mostly tolerable side effects [5-9]. 
Nearly all cancer patients with these tumor types will 
likely be treated with taxanes at one point in the 
course of managing their diseases. 

The initial discovery of the activity of 
paclitaxel/taxol (the first taxane) in stabilization of 
cellular microtubules and consequential mitotic arrest 
of cancer cells propelled the enthusiasm for the 
development of paclitaxel as a cancer drug [10,11]. 
Commonly, paclitaxel’s anti-cancer activity (and also 
of all other taxanes) is thought to be conferred by its 
binding to and stabilizing cellular microtubules, 
which interferes with mitosis and leads to cell growth 

arrest [1-3,12] and subsequent mitotic slippage and 
mitotic catastrophe [13,14]. Thus, taxanes are 
considered mitotic inhibitors. The major side effects of 
taxanes, myelosuppression and alopecia, are 
consistent with the idea that taxanes target mitotic 
cells, such as the rapidly renewing hematopoietic cells 
and the continuously proliferating hair matrix cells 
[15,16]. However, the molecular mechanism leading 
to cell death has not been clearly deciphered [17-20]. 

 Overtime, some skepticisms persisted with 
regards to the idea that blocking mitosis is the sole 
mechanism of action for taxanes on cancer cells 
[17,21-24]. For one, taxane cell killing activity does not 
correlate with the rate/index of mitosis or 
proliferation of the treated tumors [25], an 
observation known as the mitotic paradox [26]. The 
lack of clinical activity of other mitotic inhibitors also 
casts doubt on mitotic inhibition as the sole 
mechanism of taxanes [22,27]. 

In laboratory studies using cancer cells, upon 
treatment with taxanes, the nuclei of cancer cells 
fragment into multiple micronuclei, a process known 
as micronucleation [20,28-30]. The taxane-induced 
generation of multiple micronuclei occurs in both 
mitotic [13,29,31] and also in non-mitotic cells [32]. A 
mechanism was proposed that the paclitaxel-induced 
rigid microtubule bundles physically pull the nuclear 
envelope through the LINC (Linker of nucleoskeleton 
and cytoskeleton) bridges and break the nucleus off to 
form micronuclei [33]. Additionally, the generated 
multiple micronuclei have a weakened nuclear 
envelope and membrane, for which the stretching of 
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surface to form multiple spheres of micronuclei from 
a single nucleus is one of the feasible explanations 
[33]. The catastrophic rupture of the micronuclei 
consequently leads to cell death [20,28-30]. 

Here, nuclear envelope malleability/fragility 
refers to softened nuclear membranes and envelope, 
presented as nuclear morphology deformation that is 
a common characteristic of cancer cells. Laboratory 
experiments using cultured cells led to a conclusion 
that nuclear envelope malleability/fragility, which is 
modulated and controlled by overexpression or 
suppression of nuclear envelope lamina Lamin A/C, 
determines sensitivity of cells to paclitaxel-induced 
micronucleation and cell death [32-34]. This new 
mechanistic understanding provides an explanation 
for the non-mitotic action of taxanes, by inducing 
micronucleation as a result of rigid microtubule 
bundles pulling the malleable and fragile nuclear 
envelope of cancer cells [33,34]. 

This new understanding of taxane mechanism 
beyond mitotic inhibition prompted us to reassess the 
reason(s) why taxanes are more successful in clinic 
than expected, and how taxanes are more toxic to 
cancer than to normal host cells in addition to 
inhibiting the cell proliferation rate [35]. Further 
appraisal of the experimental conclusions leads to the 
recognition of the susceptibility of cancer nuclear 
envelopes subjected to fragmentation by the 
drug-induced rigid microtubule bundles as a second 
selectivity/specificity of taxanes (Fig. 1). Nuclear 
envelope malleability/fragility is often determined by 
nuclear envelope lamina proteins [33-36], and 
particularly Lamin A/C level for cancer cells [37,38]. 

Cancer cells generally have a reduced Lamin A/C 
protein level [37-41], which has been also suggested to 
be a cause of aneuploidy through nuclear budding 
[42]. Another consequence of reduced Lamin A/C 
protein in cancer cells and the property of nuclear 
envelope malleability is the morphological 
deformation of the cancer nucleus [37,43], which is the 
basis in diagnosis of malignant cells in the PAP smear 
test [38]. Thus, cancer cells with deformed nuclear 
morphology and massive aneuploidy, which are 
commonly present in malignant and metastatic 
carcinomas, can be predicted to be sensitive and 
responsive to taxane treatment. In contrast, benign 
cells with a sturdy nuclear envelope presenting a 
smooth and oval shaped morphology are more 
resistant to taxane-induced micronucleation and 
rupture (Fig. 1). 

In summary, we suggest that nuclear envelope 
malleability/fragility that is often caused by a 
reduced nuclear envelope structural protein (Lamin 
A/C) which is the second selectivity/specificity of 
cancer cells to taxanes (Fig. 1). These two properties of 
cancer cells, high proliferation rate and malleable 
nuclear envelope, may provide two aspects of 
specificity and selectivity to taxanes and contribute to 
the surprising success of taxanes in cancer treatment 
over the last four decades. The recognition of a second 
selectivity/specificity likely will prompt oncologists 
to revisit the rationale for optimal use of taxanes in 
cancer management. Subsequent new understanding 
may enable additional rational combinations of 
taxanes in oncology, and may inspire new strategies 
to more efficiently counter cancer. 

 

 
Figure 1. Nuclear envelope malleability/fragility is a predictor of taxane sensitivity. Illustration shows a benign cell with sturdy nuclear envelope and exhibiting a 
smooth and oval-shaped morphology. Microtubules extend out from the microtubule organizing center (MTOC). The nuclear envelope is connected to the microtubule 
cytoskeleton through the LINC bridges (short yellow lines). In a malignant cell, the malleable nuclear envelope (depicted by a dotted red line) is disturbed by physical pulling from 
microtubules through the LINC bridges. In the presence of taxanes, cellular microtubules are stabilized and bundled, and the rigid filaments pull apart the fragile nuclear envelope 
to form multiple micronuclei, leading to cell death. Thus, the property of a malleable/fragile nuclear envelope in cancer cells provides a second specificity/selectivity for taxane 
killing though micronucleation and nuclear envelope rupture. Benign cells with a sturdy nuclear envelope are more resistant to taxane-induced micronucleation, and are taxane 
resistant. Abbreviations: mT, microtubules; LINC, linker of nuclear and cytoplasmic skeleton; N, nucleus; MTOC, microtubule organizing center; NE, nuclear envelope. 
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