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Abstract 

Anoikis resistance and improper activation of epithelial‒mesenchymal transition (EMT) are critical 
factors in tumor metastasis and progression. Despite their interaction, the combined impact of anoikis 
and EMT on prognosis and immunotherapy in gastric cancer remains underexplored. In this study, we 
identified 354 anoikis- and EMT-related genes (AERGs) through Venn analysis and performed 
unsupervised clustering to classify gastric cancer patients into two molecular clusters: A and B. Molecular 
cluster A showed poor prognosis and an immunosuppressive tumor microenvironment, suggesting a 
"cold tumor" phenotype. Then, a novel AERG-related prognostic model comprising CD24, CRYAB, 
MMP11, MUC4, PRKAA2, SERPINE1, SKP2, and TP53 was constructed and validated, accurately 
predicting the 1-, 3-, and 5-year survival rates of gastric cancer patients. Multivariate analysis revealed that 
the AERG-related risk score was an independent prognostic factor (hazard ratio = 1.651, 95% confidence 
interval = 1.429-1.907, P<0.001). Further studies demonstrated that, compared to the high-risk group, 
the low-risk group exhibited higher CD8+ T cell infiltration, tumor mutational burden, 
immunophenoscores, and lower tumor immune dysfunction and exclusion scores, indicating potential 
sensitivity to immunotherapy. RT‒qPCR and immunohistochemical staining validated the expression 
levels of the model’s molecular markers. Overall, our AERG-related model shows promise for predicting 
outcomes and guiding the selection of tailored and precise therapies for gastric cancer patients. 

Keywords: Anoikis, Epithelial‒mesenchymal transition, Tumor microenvironment, Molecular pattern, Immunotherapy, Gastric 
cancer 

Introduction 
Gastric cancer is a highly heterogeneous 

malignant tumor with the fifth highest incidence and 
the third highest mortality rate worldwide[1]. Some 
individuals have already reached the progressive 
stage by the time they are diagnosed, and the 
prognosis is poor for patients with advanced stomach 

cancer[2]. Traditional chemotherapeutic drugs have 
entered a bottleneck, and the targeted drug 
trastuzumab has improved the survival rate of 
advanced gastric cancer patients with human 
epidermal growth factor receptor 2 (HER2) positivity. 
However, the proportion of HER-2-positive patients is 
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only approximately 5%[3, 4]. Owing to their modest 
side effects and outstanding effectiveness, immune 
checkpoint inhibitors (ICIs) have provided hope for 
patients with advanced gastric cancer in recent years. 
Nonetheless, the response rate to ICIs is less than 30%, 
significantly limiting their widespread clinical use[5]. 
The tumor microenvironment (TME) is the internal 
environment of the tumor and is largely composed of 
tumor cells, stromal cells such as cancer-associated 
fibroblasts (CAFs), immune cells, cytokines, and the 
extracellular matrix (ECM)[6]. Inhibitory alteration of 
the TME is an essential factor affecting the efficacy of 
immunotherapy. Therefore, understanding TME 
characteristics can help screen the population for 
potential benefits of immunotherapy. Recently, 
several researchers have constructed prognostic 
models through transcriptomic analysis and screened 
people with high response rates to immunotherapy on 
the basis of molecular features or risk scores[7-9]. 

Anoikis is a form of programmed cell death 
caused by the detachment of cells from the 
extracellular matrix, commonly seen when normal 
epithelial cells remain suspended for an extended 
period[10]. Anoikis is triggered mainly through both 
the intrinsic and extrinsic pathways. The intrinsic 
pathway promotes anoikis by upregulating 
proapoptotic molecules (Bad, Puma, Bik, Noxa, and 
Hrk) and downregulating antiapoptotic proteins of 
the Bcl-2 family, which leads to proteolytic hydrolysis 
of caspase-specific targets. The extrinsic pathway is 
triggered by the upregulation of Fas receptor 
expression[10]. Anoikis resistance (AR) is a 
characteristic of tumor metastasis that facilitates the 
movement of tumor cells through the circulatory 
system and into distant organs[11]. In gastric cancer, 
resistance to anoikis can promote angiogenesis and 
peritoneal metastasis through C/EBPβ-mediated 
PDGFB autocrine and paracrine signaling[12]. 
Increased AR is associated with poor prognosis in 
gastric cancer patients, as it enables tumor cells to 
evade apoptosis and contribute to metastatic 
spread[13]. Several researchers constructed 
anoikis-related risk model to predict the prognosis of 
gastric cancer patients and immunotherapy 
response[14, 15]. 

Epithelial‒mesenchymal transition (EMT) is a 
biological process in which epithelial cells undergo 
transformation and acquire a mesenchymal 
phenotype. This transformation is characterized by a 
decrease in E-cadherin expression and an increase in 
N-cadherin, vimentin, and fibronectin expression[16]. 
In gastric cancer, abnormal activation of EMT leads to 
tumor migration and invasion, enhances the presence 
of tumor stem cells, increases resistance to 
chemotherapy, and induces an immunosuppressive 

TME[17-19]. Conversely, an immunosuppressive 
TME can induce EMT in tumor cells, creating a 
feedback loop between EMT and immunosuppressive 
conditions that promotes tumor development[20]. 
Several researchers have constructed EMT-related 
risk models to predict the prognosis of gastric cancer 
patients and the level of immune cell infiltration[21, 
22]. 

Recent studies suggest that there is a reciprocal 
relationship between AR and EMT, with EMT 
promoting AR and vice versa, thereby creating a 
feedback loop that promotes tumor progression[10, 
23-25]. EMT contributes to AR by enabling cancer cells 
to adapt to detachment through changes in cell 
adhesion, cytoskeletal dynamics, microenvironmental 
interactions, apoptosis regulation, and metabolic 
adaptations[26-28]. AR enables cancer cells to evade 
apoptosis during detachment, facilitating their 
transition to a more invasive, metastatic 
phenotype[10]. Recent studies have utilized gene 
signatures related to EMT or anoikis to evaluate the 
outcomes of patients with tumors and predict 
immunotherapy response[29, 30]. However, their 
combined impact on prognosis and response to 
immunotherapy in gastric cancer has not been 
thoroughly investigated. Therefore, it is necessary to 
analyze anoikis-related and EMT-related genes 
(AERGs) collectively to more accurately identify the 
molecular subtypes of patients with gastric cancer, 
predict patient outcomes, and guide treatment 
decisions. 

This study comprehensively analyzed bulk 
mRNA data from multiple datasets. Initially, we 
screened 354 AERGs and conducted prognostic and 
gene mutation analyses. We subsequently utilized the 
expression levels of AERGs to classify individuals 
with gastric cancer into clusters A and B. Next, we 
developed and validated an AERG-related model 
capable of predicting the outcomes of gastric cancer 
patients, distinguishing their TME, and predicting the 
effectiveness of immunotherapy and sensitivity to 
anticancer drugs. Finally, we further confirmed the 
expression of the 8 key genes in the AERG-related 
model through reverse transcription quantitative 
real-time polymerase chain reaction (RT‒qPCR) and 
immunohistochemical (IHC) staining analysis. 

Materials and methods 
Data gathering and preliminary processing 

In this study, we downloaded the transcriptome 
data, tumor mutation data, and clinicopathological 
characteristics and survival data of gastric cancer 
patients from the Genomic Data Commons (GDC) 
database (https://portal.gdc.cancer.gov/) for The 
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Cancer Genome Atlas of Stomach Adenocarcinoma 
(TCGA-STAD) dataset. The TCGA-STAD dataset 
comprises 32 gastric normal tissue samples and 375 
gastric cancer tissue samples. Transcriptome data and 
corresponding clinical information from the 
GSE84437 and GSE62254 datasets were obtained from 
the Gene Expression Omnibus (GEO) database 
(https://www.ncbi.nlm.nih.gov/geo/). Patients with 
short-term survival may not have received complete 
treatment due to acute conditions or other reasons, 
which could affect the results of survival analysis. 
Samples with missing survival status data and 
survival times less than 30 days were excluded, 
leading to a total of 1104 gastric cancer samples 
included in this study, comprising 371 TCGA-STAD 
samples, 433 GSE84437 samples and 300 GSE62254 
samples. To establish a robust risk model with a larger 
sample size, 804 samples from the TCGA-STAD 
dataset and the GSE84437 dataset were utilized to 
construct the risk model. The GSE62254 dataset 
served as an external validation cohort for evaluating 
the performance of the risk model. To address batch 
effects between different databases, the fragments per 
kilobase million (FPKM) format data from the 
TCGA-STAD dataset were converted to transcripts 
per kilobase million (TPM) format data and merged 
with the GSE84437 dataset. Then, the ComBat 
algorithm from the R package “sva” was employed to 
correct for batch effects using empirical Bayes 
adjustments to remove unwanted variation associated 
with batch labels while preserving biological 
variability[7]. The ComBat method adjusts gene 
expression values using the following transformation:  

𝑌𝑌𝑖𝑖𝑖𝑖∗ = 𝛾𝛾𝑗𝑗 + 𝛿𝛿𝑗𝑗 ∗ �𝑌𝑌𝑖𝑖𝑖𝑖 − 𝜇𝜇𝚤𝚤�� 

𝑌𝑌𝑖𝑖𝑖𝑖∗  is the batch-corrected expression of gene 𝑖𝑖 in 
sample 𝑗𝑗 , 𝛾𝛾𝑗𝑗  and 𝛿𝛿𝑗𝑗  are batch-specific location and 
scale parameters, and 𝜇𝜇𝚤𝚤�  is the estimated overall mean 
of gene 𝑖𝑖 . Post-correction, we performed principal 
component analysis (PCA) on the corrected dataset to 
assess whether the samples from different batches 
clustered together more closely and compared the 
distribution of expression values before and after 
correction using box plots to ensure that batch-related 
discrepancies had been minimized. The 1184 
EMT-related genes were sourced from dbEMT 2.0[31] 
(http://dbemt.bioinfo-minzhao.org/) (Table S1). As 
there is currently no specialized database for anoikis, 
we aimed to gather a comprehensive set of 
anoikis-related genes from multiple reliable sources. 
Specifically, we obtained 137 anoikis-related genes 
from the Harmonizome 3.0 dataset (https:// 
maayanlab.cloud/Harmonizome/), 912 genes from 
the GeneCards database (https://www 
.genecards.org/), and 280 genes from the NCBI gene 

database (https://www.ncbi.nlm.nih.gov/gene). 
After merging and removing duplicates, we identified 
916 anoikis-related genes for our study (Table S2). 

Screening and mutation profiling of 
differentially expressed prognosis-related 
AERGs 

In this study, AERGs were derived from the 
intersection of anoikis-related genes and EMT-related 
genes. Using the TCGA-STAD dataset, a differential 
expression analysis of AERGs was conducted 
between gastric cancer tissues and adjacent normal 
tissues using R package “limma” with the criteria of | 
log2 fold change (FC) | >1 and adjusted P < 0.05[7]. 
The differentially expressed AERGs, together with 
patient survival status and survival time, were 
subjected to univariate Cox regression analysis. 
Additionally, Spearman correlation analysis was 
performed on the basis of the mRNA expression 
levels of these genes. The “maftools” package was 
used to create a mutation-based waterfall plot of the 
AERGs[32]. Finally, the prevalence of copy number 
variations (CNVs) in these genes and their 
chromosomal locations were assessed. 

Consensus unsupervised clustering analysis of 
AERGs 

In this work, 37 AERGs were subjected to 
consensus unsupervised clustering analysis with 
k-values ranging from 2 to 9 using the R package 
“ConsensusClusterPlus”[33]. PCA, uniform manifold 
approximation and projection (UMAP), and 
t-distributed stochastic neighbor embedding (t-SNE) 
were employed as unsupervised dimensionality 
reduction algorithms to uncover structures in the 
high-dimensional data[34-36]. Additionally, the 
differences in the expression of AERGs between the 
two clusters were examined. Kaplan‒Meier survival 
analysis and heatmaps were used to investigate 
variations in clinical characteristics among different 
molecular clusters. The variances in biological 
functions between the two clusters were subsequently 
explored. 

Construction and validation of an 
AERG-related model 

To construct a robust risk model with a larger 
sample size, a total of 804 gastric cancer samples (the 
entire cohort) from the TCGA-STAD dataset and 
GSE84437 dataset were divided into a discovering 
cohort and a testing cohort at a ratio of 7:3[7, 37]. The 
discovering cohort was used for model construction, 
while the testing cohort and the entire cohort were 
considered internal validation cohorts. The GSE62254 
dataset was used as the external validation cohort. In 
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the discovering cohort, 37 prognosis-related AERGs 
were subjected to least absolute shrinkage and 
selection operator (LASSO) Cox regression analysis to 
reduce overfitting among genes. The optimal λ value 
was determined using the R package “glmnet” via 
default parameters: nlambda=100, alpha=1, 
nfolds=10[38]. Multivariate Cox regression analysis 
was subsequently performed to identify the gene 
signature and regression coefficients of the 
AERG-related model. The risk score for each patient 
was calculated based on the gene expression and the 
coefficients obtained from the multivariate Cox 
regression model[7, 8]. The formula for the risk score 
is: 

Risk score = �βi

n

i=1

∗ expression level of genei 

Patients with gastric cancer were divided into 
high-risk and low-risk categories on the basis of the 
median value of the risk score. In the two internal 
validation cohorts and one external validation cohort, 
a risk score was computed for each gastric cancer 
patient using the regression coefficients obtained from 
the discovering cohort. Furthermore, Kaplan‒Meier 
survival analysis was conducted between high- and 
low-risk categories via the R packages “survminer” 
and “survival” alongside patient survival time and 
status[7, 29]. The R package “timeROC” was utilized 
to generate 1-year, 3-year, and 5-year receiver 
operating characteristic (ROC) curves for each cohort 
of gastric cancer patients[7]. 

Survival analysis of subgroups with 
clinicopathologic features 

To further confirm the performance effectiveness 
of the AERG-related model, we initially conducted a 
risk score comparison between age, sex, T stage, and 
N stage. We subsequently conducted survival 
difference analyses among different subgroups on the 
basis of age (≤ 65 years or > 65 years), sex (female or 
male), T stage (T1-2 or T3-4), and N stage (N0 or 
N1-3). 

Prognostic analysis and nomogram 
construction 

This research integrated existing 
clinicopathological characteristic features and risk 
scores and conducted univariate and multivariate Cox 
regression analyses to further investigate the impact 
of the AERG-related model on prognosis. To predict 
the 1-, 3-, and 5-year survival rates of gastric cancer 
patients more accurately, the nomogram was 
developed by combining clinicopathological 
characterization factors and risk scores using the R 

package “rms”[8]. Calibration curves, cumulative risk 
curves and multivariate ROC curves were used to 
validate the accuracy of the nomogram. 

Analysis of the tumor immune 
microenvironment 

To explore the role of the risk score in predicting 
the degree of a hot and cold TME in gastric cancer 
patients, we initially analyzed the levels of stromal 
cell and immune cell infiltration in the TME between 
high- and low-risk categories using the ESTIMATE 
algorithm[39]. We subsequently examined the 
Spearman correlation between the risk score and 
immune cell infiltration levels using 7 algorithms 
(XCELL, TIMER, QUANTISEQ, MCPCOUNTER, 
EPIC, CIBERSORT-ABS, and CIBERSORT)[7, 8]. To 
further investigate the correlation between the 
expression levels of the 8 model genes and immune 
cell infiltration levels, we analyzed the Spearman 
correlation among 20 immune cells and the 8 core 
genes based on the CIBERSORT algorithm[40]. 
Additionally, we assessed differences in the level of 
immune cell infiltration in the high- and low-risk 
categories using the CIBERSORT algorithm[40]. The 
gene expression data were input in the TPM format. 
The LM22 signature matrix, which is pre-built in 
CIBERSORT (accessed on August 2023), was used to 
deconvolute 22 immune cell types. We ran the 
analysis with 1000 permutations to ensure robust and 
reliable results. The default settings were used for 
quantile normalization as suggested for RNA-seq 
data. 

Immunotherapy response and antitumor drug 
sensitivity analyses 

The tumor mutational burden (TMB), 
microsatellite instability (MSI), immunophenoscore 
(IPS), and tumor immune dysfunction and exclusion 
(TIDE) score were utilized to predict the efficacy of 
immunotherapy[7, 41]. Initially, we analyzed the 
cascade of gene mutations in the high- and low-risk 
categories. We investigated the correlation between 
the risk score and TMB using Spearman's method and 
explored the differences in TMB between the high- 
and low-risk categories. For survival analysis, we 
integrated the risk status and TMB status of the 
patients. Additionally, we obtained MSI data and the 
IPS of gastric cancer patients from The Cancer 
Immunome Atlas (TCIA) database 
(https://www.tcia.at/) and analyzed the differences 
between the high- and low-risk categories. 
Furthermore, we obtained TIDE scores from the TIDE 
database (http://tide.dfci.harvard.edu/) and 
evaluated the differences between the high- and 
low-risk categories. 
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Next, we performed drug sensitivity analysis for 
gastric cancer samples in high- and low-risk groups 
using gene expression and drug response data from 
the Genomics of Drug Sensitivity in Cancer (GDSC) 
database (https://www.cancerrxgene.org/). The 
gene expression data of gastric cancer samples were 
integrated with the expression profiles from the 
GDSC database, and batch effects were corrected 
using empirical Bayesian methods[42]. Drug 
sensitivity predictions were conducted using the 
calcPhenotype function from the oncoPredict 
package, leveraging GDSC expression data as the 
training dataset[43]. Sensitivity scores for multiple 
drugs were calculated for each gastric cancer sample. 
Finally, differences in drug sensitivity between high- 
and low-risk gastric cancer groups were assessed. 

Validation of gene expression levels and 
protein levels in the AERG-related model 

Differential expression analysis of core genes in 
normal and gastric cancer tissues was conducted 
using the TCGA-STAD dataset and the 
Genotype-Tissue Expression (GTEx) dataset from the 
Gene Expression Profiling Interactive Analysis 
database (GEPIA) (http://gepia.cancer-pku.cn/). The 
analysis employed a cutoff criterion of | log2 FC | > 
0.585 and P < 0.05. The Human Protein Atlas (HPA) 
database (https://www.proteinatlas.org/) provides 
protein and RNA profiles of human tissues and cells. 
We downloaded IHC staining images of the CD24, 
CRYAB, MMP11, MUC4, PRKAA2, SERPINE1, SKP2, 
and TP53 proteins in gastric normal and gastric cancer 
tissue samples from HPA database[44]. 

Cell lines, cell culture, and RT‒qPCR 
The human stomach mucosal epithelial cell line 

GES-1 was acquired from Shanghai Fuheng 
Biologicals, while the gastric cancer cell lines AGS and 
HGC-27 were obtained from the cell bank of the 
Chinese Academy of Sciences. Cells were cultured in a 
humidified incubator at 37 °C with 5% CO2. GES-1 
cells were cultured in Dulbecco’s modified Eagle’s 
medium (DMEM, Sangon Biotech, China) 
supplemented with 10% fetal bovine serum (FBS, 
Gibco, USA) and 1% penicillin-streptomycin 
(Beyotime, China). AGS cells were cultured in Ham's 
F-12 medium (Pricella, China) supplemented with 
10% FBS and 1% penicillin-streptomycin. HGC-27 
cells were cultured in RPMI 1640 medium (Sangon 
Biotech, China) supplemented with 10% FBS and 1% 
penicillin-streptomycin. Additional details regarding 
cell culture can be found in our published work[45]. 

Total RNA was extracted from GES-1, AGS, and 
HGC-27 cells using TRIzol reagent (Invitrogen™, 
USA) following the manufacturer's protocol. 

Complementary DNA (cDNA) was synthesized using 
a reverse transcription kit (Takara Bio, Japan) 
according to the manufacturer’s instructions. 
Approximately 1 µg of total RNA was used for each 
reverse transcription reaction. Random hexamers and 
oligo(dT) primers were included to ensure the 
generation of cDNA. qPCR reactions were performed 
using SYBR Green PCR Mix (Sangon Biotech, China) 
in a 96-well plate format, with a final reaction volume 
of 20 µL. The reactions were run on a QuantStudio 6 
Flex Real-Time PCR System (Thermo Fisher Scientific) 
under the following cycling conditions: 95 °C for 5 
minutes (initial denaturation), 40 cycles of 95 °C for 15 
seconds (denaturation), 60 °C for 30 seconds 
(annealing), and 72 °C for 30 seconds (extension). The 
relative gene expression levels were calculated using 
the 2^(-ΔΔCt) method, normalizing the expression 
levels of the target genes to GAPDH. Additional 
details for RT‒qPCR are described in our published 
paper[45]. The gene primer sequences are provided in 
Table S3. All experiments were performed in 
triplicates to ensure data reliability. 

Statistical Analysis 
Statistical analyses were performed using R 

software (version 4.3.0). To examine differences across 
categories, the Wilcoxon test was employed. OS was 
compared among various categories using Kaplan‒
Meier curves. Univariate and multivariate Cox 
regression analyses were conducted to investigate 
independent prognostic variables. The predictive 
performance of the AERG-related model was assessed 
using ROC curves and nomograms. P < 0.05 was 
considered statistically significant. Statistical 
significance levels are denoted as * P < 0.05, ** P < 
0.01, and *** P < 0.001. 

Results 
Prognostic value and genetic mutational 
landscape of AERGs 

The study flowchart is presented in Figure S1. In 
this study, 916 anoikis-related genes and 1,184 
EMT-related genes were initially subjected to Venn 
analysis, resulting in 354 AERGs (Figure 1A). The 
expression of these 354 AERGs was subsequently 
analyzed in the TCGA-STAD dataset, and 131 
differentially expressed genes (DEGs) were identified. 
Among these DEGs, 119 genes were highly expressed 
in gastric cancer tissues, whereas 12 genes were 
expressed at low levels (Figure 1B, and Table S4). To 
examine the prognostic significance of these 
differentially expressed AERGs, a univariate Cox 
regression analysis was performed, resulting in the 
identification of 37 prognostically relevant AERGs. 
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Among these genes, TP53, SKP2, EZH2, DNMT1, 
BRCA1, STAT1, CD274, and HOXA9 presented risk 
ratios less than 1, whereas the remaining 29 genes 
presented risk ratios greater than 1 (Figure 1C, D and 
Table S5). Additionally, protein-protein interaction 
(PPI) analysis revealed strong associations among the 
37 proteins (Figure 1E). The gene mutation landscape 
of these 37 AERGs was explored, and the waterfall 
plot indicated that gene mutations were present in 
63.74% of the gastric cancer patients. The genes with 
the highest mutation frequencies included TP53, 
NOTCH4, MUC4, and AR (Figure S2). Furthermore, 
gene CNV analysis revealed that KRT17, IGF1R, and 
MUC4 presented the greatest increase in copy 
number, whereas EZH2, WNT5A, and CRYAB 
presented the highest frequency of copy number 
deletion (Figure 1F). The distribution of the AERGs on 
the chromosomes is displayed in Figure 1G, where 
red dots represent genes predominantly affected by 
copy number increases, and blue dots represent genes 
predominantly affected by copy number deletions. 

Identification of two different molecular 
clusters based on AERGs 

To comprehensively investigate the influence of 
the expression profiles of AERGs on prognosis and 
potential biological functions, unsupervised 
clustering analysis was performed. The results 
indicated that the best clustering occurred when k=2 
(Figure 2A, Figure S3, and Table S6). The findings of 
three different downscaled clustering analyses, 
including PCA, t-SNE, and UMAP, further confirmed 
the robustness of the clustering results with k=2 
(Figure 2B-D). A differential expression analysis of 
AERGs between clusters A and B revealed that the 
majority of genes exhibited high expression levels in 
cluster A, except for CD36, which was found to be 
expressed at low levels in cluster A (Figure 2E). 
Survival analysis demonstrated that patients 
belonging to cluster A had poorer overall survival 
(OS) than those in cluster B (Figure 2F). Figure 2G 
presents the clinicopathological characteristics of the 
patients and a heatmap depicting the expression 
patterns of the AERGs. 

To further investigate the potential biological 
functional impact between clusters A and B on the 
basis of the AERGs, we first performed differential 
gene expression analysis between clusters A and B 
and obtained 241 DEGs (Table S7). The 241 DEGs 
were then subjected to Gene Ontology (GO) 
functional enrichment and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) signaling pathway 
analyses. GO analysis revealed that these genes were 
associated mostly with ECM-related functions (Figure 

3A), whereas KEGG analysis revealed that they were 
associated primarily with ECM-receptor interactions 
and focal adhesion (Figure 3B). Gene set variation 
analysis (GSVA) analysis revealed that EMT, 
apoptosis, and TGF-β signaling were more active in 
cluster A, whereas oxidative phosphorylation was 
more active in cluster B (Figure 3C). Additionally, we 
examined the infiltration abundance of 23 immune 
cells between clusters A and B, which revealed that 
activated B cells, activated CD4+ T cells, activated 
CD8+ T cells, eosinophil, immature B cells, and 
monocytes had lower infiltration levels in cluster A, 
while CD56 bright natural killer cells, CD56 dim 
natural killer cells, gamma delta T cells, immature 
dendritic cells, macrophages, mast cells, natural killer 
cells, plasmacytoid dendritic cells, regulatory T cells, 
and type 1 T helper cells had lower infiltration levels 
in cluster B, whereas there was no significant 
difference in the infiltration abundance of activated 
dendritic cells, myeloid-derived suppressor cells 
(MDSCs), neutrophils, T follicular helper cells, type 17 
T helper cells, and type 2 T helper cells between 
clusters A and B (Figure 3D). 

Construction and validation of the 
AERG-related model 

To construct an AERG-related prognostic model, 
we first randomized 804 gastric cancer patients (7:3) 
into a discovering cohort (Table S8) and a testing 
cohort (Table S9). In the discovering cohort, we 
conducted LASSO Cox regression analysis on 37 
prognosis-associated genes, resulting in the 
identification of 16 candidate genes (Figure 4A, B and 
Table S10). The 16 candidate genes were then 
subjected to a multivariate Cox regression analysis, 
which yielded 8 core genes for building the prognostic 
AERG-related model (Figure 4C). Each gastric cancer 
patient's risk score was calculated, and patients were 
divided into high- and low-risk categories on the basis 
of the median risk score. The risk score for each 
stomach cancer patient was calculated according to 
the following formula: risk score = (0.1865 × 
expression of CD24) + (0.1524 × expression of 
CRYAB) + (0.1090 × expression of MMP11) + (0.0911 × 
expression of MUC4) + (0.1548 × expression of 
PRKAA2) + (0.1262 × expression of SERPINE1) + 
(-0.2236 × expression of SKP2) + (-0.1465 × expression 
of TP53) (Table S11). Patients were divided into high- 
and low-risk categories on the basis of the median risk 
score. Further analysis revealed that cluster A was 
predominantly a high-risk population, whereas 
cluster B was predominantly a low-risk population 
(Figure 4D-E). 
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Figure 1. Prognostic analysis and genetic mutation characteristics of AERGs in gastric cancer. (A) Venn analysis of anoikis-related genes and EMT-related genes. 
(B) Differential expression analysis of 354 AERGs from the TCGA-STAD dataset. (C) Univariate Cox regression analysis of differentially expressed AERGs. (D) Correlation 
network analysis of 37 prognostic-related AERGs. (E) Protein‒protein interaction network analysis of 37 AERGs in the STRING database. (F) CNV frequency of gain and loss 
in each AERG. (G) CNV localization of AERGs on chromosomes. AERGs, anoikis- and EMT-related genes; EMT, Epithelial‒mesenchymal transition; TCGA-STAD, The Cancer 
Genome Atlas of Stomach Adenocarcinoma; CNV, copy number variation. 
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Figure 2. Unsupervised clustering analysis based on the expression levels of 37 AERGs in gastric cancer. (A) Consensus matrix heatmaps of 37 AERGs (k = 2-5). 
(B-D) PCA, t-SNE, and UMAP analysis of the expression profiles of different patterns. (E) Differences in the expression of 37 AERGs between cluster A and cluster B. (F) 
Kaplan‒Meier survival analysis between cluster A and cluster B. (G) Heatmap of clinicopathologic characteristics and expression levels of 37 AERGs between two different 
clusters. AERGs, anoikis- and EMT-related genes; PCA, principal component analysis; t-SNE, t-distributed stochastic neighbor embedding; UMAP, uniform manifold 
approximation and projection. *, P < 0.05; **, P < 0.01; ***, P < 0.001. 
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Figure 3. Analysis of differences in biological functions between subgroups. (A, B) GO functional enrichment and KEGG signaling pathway analyses of DEGs between 
cluster A and cluster B. (C) GSVA of biological pathways between clusters A and B. (D) Analysis of the difference in the abundance of infiltrating 23 immune cells between the 
two subgroups. GO, gene ontology; BP, biological process; CC, cellular components; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes. *, P < 0.05; **, 
P < 0.01; ***, P < 0.001. 

 
To validate the performance efficacy of the 

AERG-related risk model, we performed validation in 
the discovering cohort, the two internal validation 
cohorts (the testing cohort and the entire cohort), and 
the external validation cohort (the GSE62254 cohort). 
In the discovering cohort, scatterplot analysis of 
survival status revealed a greater rate of death in 
patients in the high-risk categories than in patients in 
the low-risk categories (Figure 4F). Survival analysis 
indicated that the OS of high-risk patients was 
significantly lower than that of low-risk patients 
(Figure 4G). ROC curve analysis revealed that the 
area under the curve (AUC) values of the risk scores 
at 1-, 3-, and 5-year were 0.688, 0.699, and 0.716, 
respectively (Figure 4H). Furthermore, the same 
analyses were performed in two internal validation 

cohorts (Figure 4I-N) and the external validation 
cohort (Figure 4O-Q), which demonstrated shorter 
OS for gastric cancer patients in the high-risk 
categories. 

Subgroup expression power of the 
AERG-related model 

To further explore the expressive power of the 
AERG-related model in different clinical subgroups, 
we first analyzed the differences in risk scores. The 
findings revealed that the risk scores were higher in 
the T3-4 and N1-3 categories, whereas the differences 
in risk scores were not statistically significant 
according to age or sex (Figure 5A-D). We 
subsequently subdivided the clinicopathologic 
features into the following subgroups: ≤ 65 years of 
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age, > 65 years of age, female, male, T1-2, T3-4, N0, 
and N1-3. Survival analysis revealed that, across all 

subgroups, high-risk patients had worse outcomes 
(Figure 5E-L). 

 

 
Figure 4. Construction and validation of the AERG-related risk model. (A) Dynamic process diagram for LASSO regression analysis of filtered variables. (B) LASSO 
regression analysis of cross-validated data to determine the point of minimum error. (C) The gene signature and regression coefficients of the AERG-related risk model were 
determined based on multivariate Cox regression analysis. (D) Sankey diagram analysis of the molecular cluster, risk level, and survival status. (E) Differential analysis of risk 
scores for molecular clusters A and B. (F) Patient risk score ranking chart, scatterplot of patient risk scores and survival status, (G) Kaplan‒Meier survival analysis between high- 
and low-risk categories, and (H) 1-, 3-, and 5-year ROC curve analysis of the discovering cohort. (I-K) The testing cohort, (L-N) entire cohort, and (O-Q) GSE62254 cohort 
were subjected to the same analysis. The testing cohort and entire cohort were internal validation cohorts, and the GSE62254 cohort was an external validation cohort. AERGs, 
anoikis- and EMT-related genes; ROC, receiver operating characteristic; AUC, area under the curve. ***, P < 0.001. 
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Figure 5. Survival analysis between high- and low-risk categories based on clinicopathological characteristics. (A-D) Analysis of differences in risk scores among 
age, sex, N stage, and T stage subgroups. (E-L) Survival analysis for patients aged ≤ 65 years, > 65 years, female, male, T1-2, T3-4, N0, and N1-3 between the high- and low-risk 
categories. 

 

Prognostic analysis of the AERG-related model 
To further investigate the predictive value of the 

AERG-related model for patient prognosis, we 
conducted univariate and multivariate Cox regression 
analyses combining the risk score and 
clinicopathological characteristics of the patients. 
Univariate Cox regression analysis revealed that age 
(hazard ratio (HR) = 1.026, 95% confidence interval 
(CI) = 1.016–1.036, P < 0.001), T stage (HR = 1.255, 95% 

CI = 1.093–1.442, P < 0.001), N stage (HR = 1.549, 95% 
CI = 1.383–1.735, P < 0.001), and risk score (HR = 
1.811, 95% CI = 1.574–2.082, P < 0.001) were correlated 
with prognosis (Figure 6A), and multivariate Cox 
regression analysis revealed that age (HR = 1.027, 95% 
CI = 1.017–1.037, P < 0.001), T stage (HR = 1.163, 95% 
CI = 1.002–1.351, P < 0.001), N stage (HR = 1.446, 95% 
CI = 1.287–1.626, P < 0.001), and risk score (HR = 
1.651, 95% CI = 1.429–1.907, P < 0.001) were 
independent prognostic factors for gastric cancer 
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patients (Figure 6B). In multivariate Cox regression 
analysis, the risk score had the highest HR value. For 
a more precise prediction of the 1-, 3-, and 5-year 
survival rates of gastric cancer patients, we 
constructed a nomogram by integrating 
clinicopathologic parameters and risk scores (Figure 
6C), and the calibration plot illustrated that the 
nomogram's OS prediction results closely aligned 

with the actual OS outcomes (Figure 6D). The 
cumulative risk was significantly greater in patients 
with a high nomogram score than in those with a low 
nomogram score (Figure 6E). Additionally, the 
analysis of the 1-year, 3-year, and 5-year multivariate 
ROC curves indicated that the nomogram score had 
the largest AUC value (Figure 6F-H). 

 

 
Figure 6. Prognostic analysis combining the risk score and clinicopathological characteristics of patients with gastric cancer. (A, B) Univariate and 
multivariate Cox regression analyses of risk scores and clinicopathological characteristics in the discovering cohort. (C) A nomogram was constructed based on the risk score 
and clinicopathological characteristics for predicting the survival rate of patients with gastric cancer at 1-, 3-, and 5-years. (D) Calibration plot showing the differences between 
the nomogram-predicted survival rates and actual survival rates. (E) Cumulative risk analysis of the nomogram score. (F-H) ROC curve analysis integrated with the nomogram 
score, risk score, age, sex, T stage, and N stage for patients with gastric cancer at 1-, 3-, and 5-years. AUC, area under the curve. 
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Analysis of the tumor immune 
microenvironment 

To explore the potential of the risk score in 
assessing the degree of hot and cold TME in gastric 
cancer patients, we initially analyzed the overall 
stromal cell and immune cell infiltration levels of 
patients in the high- and low-risk categories using the 
ESTIMATE algorithm. The results indicated that the 
overall stromal cell and immune cell infiltration 
abundances in high-risk gastric cancer patients were 
greater than those in low-risk gastric cancer patients 
(Figure 7A). We subsequently analyzed the 
correlation between the risk score and infiltration of 
various immune cells via seven algorithms. The 
results revealed positive correlations between the risk 
score and the levels of cancer-associated fibroblast, 
monocyte, macrophage M2, myeloid dendritic cell, 
and mast cell activated infiltration and negative 
correlations with the levels of B cell, mast cell, T-cell 
CD4+ Th1, and T-cell CD4+ Th2 infiltration (Figure 
7B). Correlation analysis of the 8 core genes associated 
with the abundance of infiltrating immune cells 
revealed that SKP2, CRYAB, MMP11, and SERPINE1 
were associated with the vast majority of immune 
cells, whereas TP53, CD24, MUC4, and PRKAA2 were 
associated with fewer immune cells (Figure 7C). 
These results suggest a correlation between the risk 
score and immune cell infiltration, prompting further 
exploration of the differences between the high- and 
low-risk categories. CIBERSORT analysis revealed 
that resting CD4+ memory T cells, monocytes, M2 
macrophages, activated dendritic cells, and resting 
mast cells had greater infiltration in the high-risk 
category, whereas plasma cells, CD8+ T cells, 
activated memory CD4+ T cells, and follicular helper T 
cells were greater in the low-risk category (Figure 
7D). These findings suggest that patients in the 
high-risk category defined by the AREG-related risk 
model present a more active immunosuppressive 
microenvironment. 

Analysis of immunotherapy response rates 
The TMB is considered one of the indicators of 

the effectiveness of cancer immunotherapy. To 
explore the differences in response rates to 
immunotherapy between the high- and low-risk 
categories, we first analyzed the TMB in the high- and 
low-risk categories based on somatic mutation 
profiles. The waterfall plots revealed that the 
proportion of somatic mutations in the low-risk 
category (92.09%) was greater than that in the 
high-risk category (84.32%) (Figure 8A, B). Spearman 
correlation analysis revealed a negative correlation 
between the TMB and the risk score (R= -0.27, P < 

0.001) (Figure 8C). Consistent with the findings of the 
waterfall plot, the risk score difference analysis 
revealed that the TMB in the low-risk category was 
lower than that in the high-risk category (Figure 8D). 
In addition, we conducted a survival analysis 
combining the risk score and TMB, and the findings 
indicated that gastric cancer patients with low TMB 
and high-risk scores had the worst prognosis, 
whereas those with high TMB and low-risk scores had 
the best prognosis (Figure 8E). Studies have shown 
that immunotherapy is more effective in patients with 
high microsatellite instability (MSI-H) tumors 
compared to patients with low microsatellite 
instability (MSI-L) and microsatellite stability (MSS) 
tumors[46]. In our investigation, a greater prevalence 
of MSI-H was found in individuals at low risk (Figure 
8F). The IPS indicates tumor tissue immunogenicity, 
with a higher IPS providing greater benefit to 
immunotherapy. Our results revealed that the IPS 
was greater in low-risk gastric cancer patients than in 
high-risk gastric cancer patients (Figure 8G-J). The 
TIDE score is a unique biomarker for the rate of tumor 
immunotherapy response; the higher the TIDE score 
is, the greater the risk of tumor immune escape. The 
TIDE score of patients in the low-risk category was 
lower than that of patients in the high-risk category 
(Figure 8K-M), indicating that patients in the low-risk 
category were less likely to experience immune 
escape and had a higher response rate to 
immunotherapy. These results suggest that patients in 
the low-risk category may benefit more from 
immunotherapy. 

Antitumor drug sensitivity analysis 
To further investigate the possible importance of 

the AERG-related model in guiding the selection of 
anticancer medications for patients, we compared the 
IC50 values of drugs in high- and low-risk categories. 
The results indicated that 5-fluorouracil, afatinib, 
axitinib, camptothecin, cisplatin, docetaxel, 
epirubicin, erlotinib, gefitinib, irinotecan, KRAS 
(G12C) inhibitor-12, lapatinib, oxaliplatin, paclitaxel, 
and sorafenib were more sensitive in low-risk 
category than in the high-risk category, whereas 
dasatinib was less sensitive in low-risk category than 
in the high-risk category (Figure 9). These findings 
could guide the personalized treatment of gastric 
cancer patients. 

Validation of model gene expression levels 
To increase the number of normal gastric tissue 

samples, we performed joint analysis of the 
TCGA-STAD dataset and GTEx dataset in the GEPIA 
database. The findings indicated that CD24, MMP11, 
MUC4, SERPINE1, SKP2, and TP53 exhibited higher 
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levels of mRNA expression in gastric cancer tissues 
than in normal gastric tissues, whereas CRYAB and 
PRKAA2 presented lower mRNA expression levels in 

gastric cancer tissues than in normal gastric tissues 
(Figure 10).  

 

 
Figure 7. Analysis of the tumor immune microenvironment. (A) Analysis of differences in TME scores between high- and low-risk categories based on the ESTIMATE 
algorithm. (B) Spearman correlation analysis of risk score and abundance of immune cell infiltration using the XCELL, TIMER, QUANTISEQ, MCPCOUNTER, EPIC, 
CIBERSORT-ABS, and CIBERSORT algorithms. (C) Spearman correlation analysis of immune cell infiltration abundance and gene expression in the AERG-related model. (D) 
Analysis of differences in the abundance of 22 immune cells between high- and low-risk categories using the CIBERSORT algorithm. TME, tumor microenvironment; NS, no 
significance; *, P < 0.05; **, P < 0.01; ***, P < 0.001. 
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Figure 8. Analysis of the immunotherapy response rate. (A, B) Waterfall plot of tumor somatic mutations in low- and high-risk categories. (C) Spearman correlation 
analysis of the risk score and TMB. (D) Differential analysis of the abundance of TMB between high- and low-risk categories. (E) Kaplan‒Meier survival analysis among four 
subgroups divided by the risk score and the TMB. (F) Relationships between the risk score and MSI. (G-J) IPS score analysis between the high- and low-risk categories. (K-M) 
TIDE score analysis between the high- and low-risk categories. TMB, tumor mutation burden; MSS, microsatellite stability; MSS-L, microsatellite instability-low; MSS-H, 
microsatellite instability-high; IPS, immunophenoscore; TIDE, tumor immune dysfunction and exclusion. NS, no significance; *, P < 0.05; **, P < 0.01; ***, P < 0.001.  
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Figure 9. Sensitivity analysis of antitumor drugs in patients with gastric cancer in the high- and low-risk categories. (A-P) Sensitivity analysis of 5-fluorouracil, 
afatinib, axitinib, camptothecin, cisplatin, dasatinib, docetaxel, epirubicin, erlotinib, gefitinib, irinotecan, KRAS (G12C) inhibitor-12, lapatinib, oxaliplatin, paclitaxel, and sorafenib 
in the high- and low-risk categories. ***, P < 0.001. 

 
We subsequently assessed the expression levels 

of these 8 genes in the human gastric mucosa cell line 
GES-1 and the human gastric adenocarcinoma cell 
lines AGS and HGC-27 via RT‒qPCR. The results 
revealed that CD24, MMP11, SERPINE1, SKP2, and 
TP53 were expressed at higher levels in the AGS and 
HGC-27 cell lines than in the GES-1 cell line. In 
contrast, CRYAB and PRKAA2 were expressed at 
lower expression levels in the AGS and HGC-27 cell 
lines than in the GES-1 cell line, while MUC4 was 
expressed at higher expression levels in the AGS cell 
line than in the GES-1 cell line (Figure 11). 
Additionally, this study further analyzed the protein 
expression levels of model genes expressed in gastric 
cancer tissues and normal gastric tissues. IHC staining 
revealed that the protein expression levels of CD24, 
MMP11, MUC4, SERPINE1, SKP2, and TP53 in gastric 
cancer tissues were greater than those in normal 
gastric tissues, whereas the protein expression levels 
of CRYAB and PRKAA2 were lower in gastric cancer 
tissues than in normal gastric tissues (Figure 12). 

Discussion 
China has the highest incidence of gastric cancer 

globally; however, the early diagnosis rate remains 
below 20%, and the prognosis for advanced gastric 
cancer patients is poor[1, 47]. Tumor metastasis is 
associated with the phenomenon of anchorage 
independence known as AR[11]. Anoikis-related 
genes have been utilized by researchers to develop 
prognostic models and assess the TME. For example, 
Sun et al. classified glioblastoma into two categories 
on the basis of anoikis-related genes and 
demonstrated that patients in category 1 had shorter 
survival and a more active immunosuppressive 
TME[29]. Aberrant activation of EMT contributes to 
tumor migration, invasion, and the induction of an 
immunosuppressive TME, leading to immune 
escape[20, 48]. Yang et al. developed a prognostic 
model for colorectal cancer patients using 
EMT-related genes[30]. However, most studies 
typically focus on only one phenotype, disregarding 
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the fact that tumorigenesis and progression are 
influenced by multiple phenotypes. Studies have 
highlighted the interconnectedness between the two 
phenotypes of anoikis and EMT[10, 26]. Hence, it is 
necessary to integrate the analysis of both anoikis and 
EMT phenotypes to explore molecular tumor 
subtypes comprehensively and provide prognostic 
information for patients with gastric cancer, guiding 
individualized antitumor therapies. 

In this study, a total of 354 AERGs were 
identified, and 37 differentially expressed AERGs 
associated with prognosis were discovered. Further 
analysis revealed that among the 37 AERGs, TP53 had 
the highest mutation frequency at 44%, KRT17 had 
the highest frequency of copy number gain, and EZH2 
had the highest frequency of copy number loss. On 
the basis of the expression levels of these 37 AERGs, 
gastric cancer patients were classified into molecular 
cluster A and molecular cluster B using unsupervised 
clustering analysis. GO analysis revealed that the 
DEGs between the two clusters were predominantly 

involved in ECM-related activities. Additionally, 
KEGG analysis indicated that the DEGs were 
associated primarily with ECM-receptor interactions 
and focal adhesion. Similar to how soil components 
are essential for plant growth, the ECM provides a 
supportive environment for cell proliferation and 
survival. The clustering analysis based on the AERGs 
in this study revealed significant differences in the 
ECM between molecular clusters A and B. ECM 
remodeling can affect tumor proliferation, anoikis, 
metastasis, and immune escape[20], further validating 
the reliability of the findings of this study. Further 
analysis demonstrated that molecular cluster A 
exhibited more active EMT signaling and TGF-β 
signaling, whereas molecular cluster B presented 
more active oxidative phosphorylation signaling. 
Moreover, the infiltration of activated B cells, 
activated CD4+ T cells, activated CD8+ T cells, and 
Treg cells in molecular cluster A were lower than 
those in molecular cluster B. Treg cells constitue a 
subset of CD4+ T cells that maintain immune tolerance 

 

 
Figure 10. Validation of the mRNA expression levels of 8 core genes in the AERG-related risk model in normal gastric and gastric cancer tissues. (A-H) 
CD24, CRYAB, MMP11, MUC4, PRKAA2, SERPINE1, SKP2, and TP53 mRNA expression levels in normal gastric tissues and gastric cancer tissues were analyzed using the 
TCGA-STAD dataset and GTEx dataset in the GEPIA database. AERGs, anoikis- and EMT-related genes; TCGA-STAD, The Cancer Genome Atlas of Stomach Adenocarcinoma; 
GTEx, Genotype-Tissue Expression; GEPIA, Gene Expression Profiling Interactive Analysis database. *, P < 0.05. 
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by inhibiting the activity of other immune cells 
against one's own tissues[49, 50]. In tumors, Treg cells 
can suppress the activation and killing abilities of T 
cells by secreting immunosuppressive cytokines and 
regulating immune checkpoint molecules[51]. 
Aberrant activation of EMT has been correlated with 
an increased number of CD4+ Foxp3+ Treg cells[52]. 
The results of this study align with these previous 
reports. The hypothesis is that patients in molecular 
cluster A, characterized by greater Treg cell 
infiltration, active EMT signaling, and TGF-β 
signaling, may have an immunosuppressive tumor 
microenvironment and could be classified as "cold 
tumors" that potentially exhibit a worse prognosis. 

Currently, tumor indicators, staging, and 
pathology types are frequently used to assess the 
prognosis of cancer patients, but the accuracy of these 
methods still needs improvement. Therefore, we 
developed an AERG-related model to more precisely 
evaluate the risk level and prognosis of patients. Cao 
et al. constructed a risk model related to anoikis in 
gastric cancer, incorporating 9 genes. The 1-year, 
3-year, and 5-year AUC values of the nomogram score 
were 0.709, 0.717, and 0.715, respectively[15]. In this 
study, the risk model related to AERGs included 8 
genes, and the 1-year, 3-year, and 5-year AUC values 
of the nomogram score were 0.721, 0.738, and 0.756, 

respectively. Our risk model had higher AUC values 
for the nomogram score while incorporating a smaller 
number of genes, suggesting that the effectiveness of 
the risk model constructed by combining multiple 
phenotypes is better. 

The AERG-related model consists of 8 genes: 
CD24, CRYAB, MMP11, MUC4, PRKAA2, SERPINE1, 
SKP2, and TP53. CD24 is a cell-surface glycosylated 
protein and one of the markers for gastric cancer stem 
cells[53]. Wang et al. demonstrated that CD24 inhibits 
apoptosis and promotes invasion of gastric cancer 
cells by activating STAT3[54]. CRYAB is a small heat 
shock protein that can promote the migration and 
invasion of gastric cancer cells by mediating EMT 
through NF-κB signaling. It is considered a marker of 
a poor prognosis of gastric cancer[55]. MMP11 is 
significantly expressed in gastric cancer cells and has 
been implicated in enhancing tumor growth and 
invasion through the modulation of IGF-1 
signaling[56]. Exosome miR-139 secreted by gastric 
cancer CAFs has been shown to inhibit gastric cancer 
progression and metastasis by reducing MMP11 in 
the TME[57]. MUC4, a transmembrane glycoprotein, 
is highly expressed in various epithelial tumors, 
modulates HER-2 signaling, and is considered a 
crucial factor in the efficacy of trastuzumab[58]. In 
gastric cancer, high expression of MUC4 and MUC1 is 

 

 
Figure 11. Validation of the expression levels of 8 genes in the AERG-related model in gastric mucosal epithelial cells and gastric cancer cell lines. (A-H) 
CD24, CRYAB, MMP11, MUC4, PRKAA2, SERPINE1, SKP2, and TP53 expression levels were detected in the stomach mucosal epithelial cell line GES-1 and the gastric cancer 
cell lines AGS and HGC-27 via RT‒qPCR. AERGs, anoikis- and EMT-related genes. *, P < 0.05; **, P < 0.01; ***, P < 0.001. 
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associated with poor patient prognosis[59]. PRKAA2, 
also known as AMPKα2, can regulate 
autophagy-related genes to mediate autophagy at the 
transcriptional level, thus promoting drug resistance 
in gastric cancer cells[60]. In addition, PRKAA2 can 
also regulate glucose metabolism and fatty acid 
metabolism[61]. SERPINE1, a member of the serine 
protease inhibitor family, plays a key role in gastric 
cancer by regulating cell proliferation, invasion, 
migration, and the EMT process[62]. Studies have 
shown a correlation between the expression level of 
SERPINE1 and immune cell infiltration, making it a 
potential target for immunotherapy[63]. SKP2 is 

regarded as an oncoprotein that is highly expressed in 
a variety of tumors and can regulate tumor cell 
proliferation, invasion and metabolism by promoting 
the ubiquitination of the p27 and p21 proteins[64]. 
TP53 is classified into wild-type and mutant types; 
wild-type TP53 is considered a tumor suppressor 
gene, whereas mutant TP53 is regarded as an 
oncogene[65]. Nie et al. constructed a TP53-associated 
immune prognostic model that predicted the 
outcomes of gastric cancer patients, and TP53 
mutation downregulated the immune response in 
gastric cancer[66]. 

 

 
Figure 12. Validation of the protein expression levels of 8 genes in the AERG-related model in normal gastric tissues and gastric cancer tissues. (A-H) 
CD24, CRYAB, MMP11, MUC4, PRKAA2, SERPINE1, SKP2, and TP53 protein expression levels were analyzed in normal gastric tissues and gastric cancer tissues using the HPA 
database. AERGs, anoikis- and EMT-related genes. HPA, The Human Protein Atlas. 
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The TME refers to the internal environment of 
the tumor and consists mainly of tumor cells, stromal 
cells such as CAFs, immune cells, cytokines, and ECM 
components[6]. In the early stages of tumor 
development, the TME has a tumor-suppressive role; 
however, as the tumor progresses, it undergoes 
changes that lead to immune tolerance and a shift 
toward a tumor-promoting microenvironment[67]. 
Alterations in the inhibitory aspects of the TME are 
crucial in influencing the effectiveness of 
immunotherapy. CAFs, for example, can secrete 
TGF-β to inhibit the maturation of DCs and promote 
the differentiation of Treg cells. They can also release 
IL-6 to promote the differentiation of MDSCs and 
inhibit the activity of cytotoxic T cells[68]. 
Additionally, CAFs can generate excessive collagen, 
which remodels the ECM, creating a barrier that limits 
drug penetration and immune cell infiltration[69, 70]. 
TAMs can aid in immune evasion by producing 
immunosuppressive factors such as IL-10, 
prostaglandin E2, and TGF-β[71]. Moreover, the 
interaction between the CD47 protein on tumor cells 
and signal regulatory protein alpha (SIRPα) on 
macrophages can activate a "don't eat me" signal, 
enabling tumor cells to evade immune surveillance 
and attack[72]. Treg cells contribute to 
immunosuppression by secreting cytokines that 
inhibit the activation and cytotoxicity of T cells, as 
well as by modulating immune checkpoint 
molecules[51]. This study revealed that patients in the 
high-risk category had higher stromal scores and 
immune scores than those in the low-risk category 
did, indicating an active TME in high-risk patients. 
Further analysis revealed a positive correlation 
between the risk score and the infiltration of MDSCs, 
CAFs, and TAMs, suggesting that higher-risk gastric 
cancer patients exhibit greater infiltration of these 
immunosuppressive cells. These findings indicate that 
these cells contribute to an immunosuppressive TME, 
thereby promoting immune evasion and tumor 
progression. Therefore, we postulate that an 
immunosuppressive TME may contribute to the poor 
prognosis observed in individuals with high-risk 
gastric cancer. 

Immunotherapy has brought new hope to cancer 
patients, including those with gastric cancer. Different 
studies have shown varying efficacy rates of ICIs in 
different gastric cancer patients[73]. Currently, 
common markers used to predict an ICI response 
include the TMB, PD-L1 expression, MSI status, and 
circulating tumor DNA[73]. Studies have indicated 
that mutations leading to the production of more 
neoantigens enhance T-cell recognition, and ICIs 
reactivate T cells, making them more effective in 
individuals with high TMB in clinical settings[74]. 

However, some mutations may be ineffective or 
irrelevant to antigen production, so tumors with high 
TMB do not necessarily respond well to ICIs. MSI-H, 
which is caused mostly by MMR gene defects, results 
in the generation of neoantigens from unrepaired 
misreplicated DNA, leading to increased infiltration 
of tumor-infiltrating lymphocytes (TILs). Patients 
with MSI-H tumors typically have greater TMB and 
show a better response to ICIs than patients with MSS 
tumors[46]. However, the overall incidence of MSI-H 
tumors is about 10% in gastric cancer[75]. Therefore, 
as a biomarker, MSI-H has limited applicability to 
certain populations. The IPS is calculated on a scale of 
0-10 based on the expression levels of representative 
genes or genomes in the immunophenogram[76]. A 
higher IPS indicates better immunogenicity and better 
efficacy for immunotherapy. The TIDE score, a unique 
biomarker for the tumor immunotherapy response, 
indicates the likelihood of tumor immune escape. 
Higher TIDE scores are associated with a greater risk 
of immune escape[7, 8]. In this study, a negative 
correlation was observed between the risk score and 
TMB, with low-risk patients exhibiting a higher 
frequency of MSI-H, higher IPS, and lower TIDE 
scores. These findings suggest that patients in the 
low-risk category are more likely to respond to ICIs, 
potentially benefiting from immunotherapy. 
Moreover, survival analysis revealed that patients in 
the high-TMB and low-risk category had the best 
prognosis, whereas those in the low-TMB and 
high-risk category had the worst prognosis. These 
findings indicate that the risk score may serve as a 
new marker for predicting the response rate to ICIs, 
potentially improving the efficacy of response rate 
prediction when used in combination with the TMB. 
Additionally, variations in the IC50 values of 
antitumor medications between high-risk and 
low-risk categories were evaluated, aiming to provide 
guidance for selecting appropriate clinical antitumor 
agents and achieving personalized diagnosis and 
therapy. 

This study has the following strengths. First, this 
study combines genes related to anoikis and EMT. 
Both mechanisms play critical roles in tumor 
metastasis and immune evasion, allowing for a more 
comprehensive understanding of tumor progression. 
Second, our model assesses patient sensitivity to 
anticancer drugs, offering dual functionality. This 
helps guide decisions not only for immunotherapy 
but also for traditional chemotherapy, providing a 
practical advantage over existing models that 
typically focus on prognosis or immunotherapy 
response alone. Third, by integrating the risk score 
with clinicopathological features, we developed a 
nomogram that is easy to apply in clinical settings, 
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making the model more practical for real-world use. 
This is a significant advantage over models lacking 
user-friendly tools for clinical implementation. 

This research has certain limitations. First, the 
selection of anoikis- and EMT-related genes was 
based on predefined gene sets from previous 
literature and public databases. While these genes are 
known to be involved in tumor biology, some 
important genes might have been overlooked, and 
there could be biases associated with the initial 
selection of gene sets. Further exploration and 
validation of other potential AERG candidates would 
improve the model’s comprehensiveness. Second, this 
study relies on publicly available datasets (TCGA and 
GEO), which may not fully represent the diversity of 
gastric cancer patients globally. A larger and more 
diverse cohort, including multi-center data and 
different ethnic groups, would enhance the 
generalizability of our findings. Third, although we 
applied the ComBat algorithm to correct for batch 
effects between the datasets, such corrections may not 
fully account for all sources of technical variation. 
This could lead to subtle biases in gene expression 
data. Future studies could benefit from improved 
harmonization techniques and the inclusion of 
additional datasets to validate the robustness of our 
model. And last but not least, the proposed 
AERG-related risk model is based on bioinformatics 
analysis. Although we conducted preliminary 
validation using RT‒qPCR and IHC for selected 
genes, further functional studies, such as in vitro or in 
vivo assays, are needed to confirm the biological 
relevance of these genes in anoikis resistance and 
EMT. 

Conclusion 
In summary, this research developed an 

AREG-related model that can predict the outcomes of 
patients with gastric cancer, react to the condition of 
the TME, and predict the rate of immunotherapy 
response and antitumor drug sensitivity. 
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