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Abstract 

Purpose: Exploring the value of predicting the WHO/ISUP grade of clear cell renal cell carcinoma (ccRCC) 
using computed tomography urography (CTU) images, providing valuable recommendations for the treatment 
of ccRCC. 
Method: CTU images from the Renmin Hospital of Wuhan University (RHWU) cohort, including 328 patients 
with ccRCC, were retrospectively collected. The corticomedullary (CMP) phase features of ccRCC were 
extracted from the CTU images using the Pyradiomics package, and key features were selected through the 
Least Absolute Shrinkage and Selection Operator (LASSO) regression. The 328 patients were split into training 
and testing sets in a 7:3 ratio. 175 patients from the The Cancer Genome Atlas (TCGA) cohort were used for 
the external validation set. Various models, including Logistic Regression (LR), Multilayer Perceptron (MLP), 
Support Vector Machine (SVM), and eXtreme Gradient Boosting (XGBoost), were employed to predict the 
ISUP grade. SHAP analysis was then used to visualize the performance of the best model. 
Results: A total of 1,218 features were extracted using the Pyradiomics package, with 20 features selected for 
model training through LASSO analysis. In the training set, the AUC for the LR model was 0.88 (95% confidence 
interval [CI] 0.84–0.91), for MLP it was 0.89 (95% CI 0.86–0.93), for SVM it was 0.86 (95% CI 0.83–0.90), and 
for XGBoost it was 0.96 (95% CI 0.92–0.99). In the testing set, the AUC for LR was 0.79 (95% CI 0.73–0.85), 
for MLP it was 0.78 (95% CI 0.72–0.83), for SVM it was 0.78 (95% CI 0.73–0.82), and for XGBoost it was 0.80 
(95% CI 0.75–0.85). In the validation set, the AUC for LR was 0.74 (95% CI 0.68–0.79), for MLP it was 0.68 (95% 
CI 0.63–0.73), for SVM it was 0.67 (95% CI 0.64–0.71), and for XGBoost it was 0.78 (95% CI 0.74–0.83). 
XGBoost demonstrated superior performance, with a sensitivity of 0.99 (95% CI 0.96–1.00) in the training set, 
0.92 (95% CI 0.88–0.97) in the testing set and 0.91 (95% CI 0.86,0.95) in validation set. SHAP analysis revealed 
that the wavelet-LHL_glcm_Idn and wavelet-LHL_glrlm_LongRunEmphasis features played pivotal roles in the 
classification task. 
Conclusion: In this study, we employ an artificial intelligence model to conduct non-invasive ISUP grade 
prediction on preoperative CTU images of ccRCC, thereby aiding clinical decision-making. Additionally, we 
uncover that the radiomics features extracted from the CMP phase of CTU images hold promise as potential 
biomarkers for grading ccRCC. 
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Introduction 
Renal cell carcinoma is a common tumor 

originating from renal tubular epithelial cells[1]. In 
2020, approximately 431,000 new cases of renal cancer 

were reported globally, with 271,000 occurring in 
men[2]. Studies indicate that the global incidence of 
renal cancer continues to rise[3]. Clear cell renal cell 
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carcinoma (ccRCC) is the most prevalent type, 
accounting for around 70% of all renal cancers[4]. The 
diagnosis of ccRCC primarily relies on traditional 
histopathological examination. Evidence suggests that 
morphological changes in the nucleolus can be 
observed in cancerous tissues, indicating a diagnosis, 
and the relationship between nucleolar hypertrophy 
and poor prognosis has drawn increasing attention 
from pathologists[5]. Numerous studies have 
identified nucleolar hypertrophy as a prognostic 
indicator of poor outcomes in cancer patients[6]. 
Additionally, nuclear morphological characteristics 
can help distinguish low-grade from high-grade 
tumors, with nuclear atypia often linked to 
malignancy[7]. 

The grading system was introduced by the 
International Society of Urological Pathology (ISUP) 
at the Vancouver meeting in 2012 and is 
recommended for use by the World Health 
Organization (WHO). The degree of nucleolar 
prominence is assessed to determine grades 1 to 3, 
while the presence of highly atypical pleomorphic 
cells and/or sarcomatoid or rhabdomyomatous 
morphology indicates grade 4[8]. In comparison to the 
Fuhrman system, the ISUP grading system may place 
greater emphasis on evaluating tumor necrosis and 
sarcomatoid and rhabdomyomatous features, which 
are not adequately represented in the Fuhrman 
system[9]. The ISUP grading system is easier to apply 
and demonstrates greater reproducibility and clinical 
relevance[10]. Percutaneous pathological biopsy is a 

common method for preoperative grading of ccRCC 
but often results in bleeding. Furthermore, due to the 
heterogeneity of ccRCC, inconsistencies can occur 
between biopsy and resection samples within the 
ISUP grading system. Thus, there is an urgent need to 
develop a new, non-invasive, and effective method 
for determining the histological grade of ccRCC.  

In recent years, numerous studies have explored 
the intersection of artificial intelligence technology 
and ccRCC. Yeh, F.C. et al. achieved segmentation and 
classification of nuclei in pathological images[11]. 
Pan, L. et al. utilized multimodal MRI radiomics to 
predict the Fuhrman grading of ccRCC[12]. Zhang, Y. 
et al. developed a multi-information fusion model that 
integrates tumor CT features and biochemical 
indicators to predict the Fuhrman grading of 
ccRCC[13]. 

However, there have been no large-scale cohort 
studies investigating the ISUP grading of ccRCC. In 
this study, we aimed to utilize radiomics and machine 
learning techniques to predict the ISUP grading of 
ccRCC, providing a non-invasive method for 
determining the ISUP grade. This approach might 
facilitate improved clinical management and enhance 
patient prognosis. 

Methods 
The design process of the entire study is 

illustrated in Figure 1. 

 

 
Figure 1. The entire workflow of the study. (A) Collect images of ccRCC; (B) ROI was determined and image omics feature extraction was performed; (C) Radiomics features 
screening; (D) Train the model and demonstrate its interpretability. 
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Figure 2. Recruitment process of RHWU cohort. 

 

Study population 
This study adhered to the Helsinki Declaration 

and received approval from the Clinical Research 
Ethics Committee of Renmin Hospital of Wuhan 
University (RHWU), with approval number 
WDRY2022-K077. We recruited 700 patients who 
underwent surgery for ccRCC at RHWU between 
2020 and 2024, all of whom were confirmed to have 
ccRCC through postoperative pathological diagnosis. 
Among these, 85 cases had poor image quality, 64 
cases had missing CTU images, and 223 cases had 
incomplete clinical information, leading to their 
exclusion from the study. 175 patients from the The 
Cancer Genome Atlas (TCGA) cohort were used for 
the external validation set. Only patients with a 
confirmed pathological diagnosis of ccRCC, known 
ISUP grading status, no prior targeted therapy or 
chemotherapy, no other tumors, and complete data on 
age, gender, and TNM staging were included. The 
entire patient recruitment process is illustrated in 
Figure 2. 

Image analysis 
Thin-slice CTU images with a slice thickness of 

0.625 mm were collected from patients with a 
confirmed diagnosis of ccRCC. Two radiologists, each 
with seven years of experience, were recruited to 
independently and systematically analyze the CTU 
images, without access to the clinical information. In 
cases where discrepancies or doubts arose, a third 
radiologist with 12 years of experience would review 
the images and make the final determination. All CTU 
images were then saved in DICOM format. 

ISUP assessment 
We carefully reviewed the clinical information of 

the patients included in the study, and their ISUP 
grading results were obtained from pathological 

diagnosis reports. We defined ISUP grades 1 and 2 as 
low-grade and ISUP grades 3 and 4 as high-grade for 
subsequent analyses[14]. 

ROI segmentation and radiomic feature 
extraction 

We manually segmented the lesions of clear cell 
carcinoma and delineated the regions of interest (ROI) 
using ITK-SNAP (version 3.8.0). The ROI were 
defined during the corticomedullary phase (CMP), 
and this work was carried out by two radiologists 
with seven years of experience. A third radiologist 
with 12 years of experience reviewed their work and 
corrected any errors. The DICOM format data was 
then saved as NIfTI (.nii) format. We employed 
Pydiomics (version 3.1.0) in Python to extract 
radiomic features from the aforementioned data; this 
package is available on GitHub[15]. The extracted 
radiomic features included First Order Features, 
Shape Features (2D), Shape Features (3D), Gray Level 
Co-occurrence Matrix (GLCM) Features, Gray Level 
Size Zone Matrix (GLSZM) Features, Gray Level Run 
Length Matrix (GLRLM) Features, and Gray Level 
Dependence Matrix (GLDM) Features. The extracted 
features were saved in .csv format.  

Feature selection 
We employed the Least Absolute Shrinkage and 

Selection Operator (LASSO) regression to perform 
dimensionality reduction on the extracted radiomic 
features, selecting important features for model 
construction and data analysis. 

Model development 
The participants included in the study were 

randomly divided into training and testing sets in a 
7:3 ratio. TCGA cohort were employed for the 
external validation set. The features selected by 
LASSO were standardized using the StandardScaler 
function. Four models—Logistic Regression (LR), 
Multilayer Perceptron (MLP), Support Vector 
Machine (SVM), and eXtreme Gradient Boosting 
(XGBoost)—were trained to predict the ISUP grading 
of ccRCC patients based on their CTU image CMP. 
The receiver operating characteristic (ROC) curve was 
plotted to assess model performance. Additionally, 
SHapley Additive exPlanations (SHAP) were 
employed to explain the importance of the 
classification features, and an interactive force plot 
was created to illustrate the model's decision-making 
process. 

Statistical analysis 
The statistical analysis of this study was 

performed using Python (version 3.1.0), and all 
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statistical tests were two-tailed, with p < 0.05 
considered statistically significant.  

Results 
Patient characteristics 

The baseline information of the study population 
is shown in Table 1. 

 

Table 1. Clinical and pathological characteristics of ccRCC 
patients included in the RHWU and TCGA cohort. 

Characteristics RHWU (N = 328) TCGA (N = 175) 
Age (years) 59 (25,84) 59 (26,88) 
Gender   
Female  124 (37.8%) 64 (36.5%) 
 Male 204 (62.2%) 111 (63.5%) 
pT stage   
 pT1 224 (68.3%) 92 (52.5%) 
 pT2 40 (12.1%) 19 (10.9%) 
 pT3 51 (15.6%) 61 (34.9%) 
 pT4 13 (4.0%) 3 (1.7%) 
pN stage   
pN0 326 (99.4%) 74 (42.3%) 
pN1 2 (0.6%) 3 (1.7%) 
pNx 0 (0%) 98 (56.0%) 
pM stage   
 pM0 326 (99.4%) 144 (82.3%) 
 pM1 2 (0.6%) 25 (14.3%) 
pMx 0 (0%) 6 (3.4%) 
pTNM stage    
Stage I 225 (68.6%) 89 (50.9%) 
Stage II 39 (11.9%) 15 (8.6%) 
Stage III 51 (15.5%) 44 (25.1%) 
Stage IV 13 (4.0%) 27 (15.4%) 
ISUP   
Low 242 (73.8%) 71 (40.1%) 
High 86 (26.2%) 104 (59.9%) 

  

Radiomic feature extraction 
A total of 1,218 radiomic features were extracted 

using the Pyradiomics package. We organized the 
names of the extracted radiomic features into a table, 
and detailed names of the radiomic features can be 
found in Table S1. 

LASSO regression 
A total of 1,218 radiomic features were filtered 

using LASSO regression, resulting in 20 features 
selected for model training (Figure 3). The radiomic 
features related to the ISUP grading of ccRCC 
identified by LASSO regression can be found in Table 
2. 

The performance of machine learning models 
The comparison of clinical parameters between 

the training set and the testing set is shown in Table 3, 
and there is no significant statistical difference 

between them. (p>0.05) In the training set, AUC for 
the LR model was 0.88 (95% confidence interval [CI] 
0.84, 0.91), the AUC for the MLP was 0.89 (95% CI 
0.86, 0.93), the AUC for the SVM was 0.86 (95% CI 
0.83, 0.90), and the AUC for XGBoost was 0.96 (95% CI 
0.92, 0.99) (Figure 4A). In the testing set, the AUC for 
LR was 0.79 (95% CI 0.73, 0.85), the AUC for MLP was 
0.78 (95% CI 0.72, 0.83), the AUC for SVM was 0.78 
(95% CI 0.73, 0.82), and the AUC for XGBoost was 0.80 
(95% CI 0.75, 0.85) (Figure 4B). In the validation set, 
the AUC for LR was 0.74 (95% CI 0.68–0.79), for MLP 
it was 0.68 (95% CI 0.63–0.73), for SVM it was 0.67 
(95% CI 0.64–0.71), and for XGBoost it was 0.78 (95% 
CI 0.74–0.83) (Figure 4C). XGBoost demonstrated 
superior performance, achieving a sensitivity of 0.99 
(95% CI 0.96, 1.00) in the training set, 0.92 (95% CI 
0.88–0.97) in the testing set and 0.91 (95% CI 0.86,0.95) 
in validation set. The performance of the four models 
in both the training and testing sets is summarized in 
Table 4. We employed the Delong test to statistically 
evaluate the AUC values obtained from the ROC 
curves of various models. Within the training dataset, 
it was observed that the XGBoost model 
demonstrated superior performance compared to the 
LR, SVM, and MLP models (p<0.001). 

 

Table 2. Radiomics features associated with ISUP grading 
selected by LASSO regression. 

Signature Coefficients 
original_shape_Maximum2DDiameterColumn 0.00222852737199394 
original_glcm_Idn 10.1546499325103 
original_glrlm_ShortRunEmphasis -0.132918290548955 
original_glszm_GrayLevelNonUniformity  0.00041115698177766

3 
log-sigma-3-0-mm-3D_firstorder_Skewness  -0.0017814597289615

4 
log-sigma-3-0-mm-3D_glszm_GrayLevelNonUniformity 0.00087943504123789

4 
log-sigma-5-0-mm-3D_gldm_GrayLevelNonUniformity 8.17007542499914e-07 
wavelet-LLH_firstorder_Maximum 0.00113570868341896 
wavelet-LLH_glcm_JointAverage 0.0060224563563358 
wavelet-LLH_glszm_SmallAreaEmphasis  1.434207623494 
wavelet-LHL_glcm_Idn 2.08239378405782 
wavelet-LHL_glrlm_LongRunEmphasis 0.171694741441655 
wavelet-LHL_glszm_LargeAreaLowGrayLevelEmphasis 4.61024679022084e-07 
wavelet-LHH_glszm_SizeZoneNonUniformityNormalized 0.87375601873421 
wavelet-HLL_glszm_LargeAreaLowGrayLevelEmphasis 6.48325519507287e-07 
wavelet-HLH_glcm_JointAverage  0.0665272864500797 
wavelet-HLH_glrlm_ShortRunHighGrayLevelEmphasis  0.0167593670054085 
wavelet-HHL_glrlm_LongRunHighGrayLevelEmphasis -0.0001621387018760

53 
wavelet-HHL_glrlm_LongRunLowGrayLevelEmphasis 0.10348165095976 
wavelet-LLL_gldm_LargeDependenceLowGrayLevelEmph
asis 

0.0486078683527515 

 
We plotted a data-class forest plot for the testing 

set, which visually demonstrated that XGBoost 
exhibited strong performance, with a narrower 
confidence interval compared to the other models, 
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indicating that this model performed stably on the 
testing set data (Figure 5). 

 

 
Figure 3. (A) LASSO Regression Coefficient Path Plot. (B) LASSO Regression 
Cross-Validation Curve. 

 

Table 3. Comparison of clinical parameters between training set 
and testing set. 

Variable Overall, N = 
3281 

Training set, N = 2301 Testing set, N = 981 p-value2 

Gender    0.084 
Female 124 (38%) 80 (35%) 44 (45%)  
Male 204 (62%) 150 (65%) 54 (55%)  
Age 59 (52, 66) 58 (51, 66) 62 (55, 66) 0.051 
pTNM stage    0.081 
I 225 (69%) 166 (72%) 59 (60%)  
II 39 (12%) 22 (9.6%) 17 (17%)  
III 51 (16%) 35 (15%) 16 (16%)  
IV 13 (4.0%) 7 (3.0%) 6 (6.1%)  
ISUP Grade    0.15 
Low-grade 242 (74%) 175 (76%) 67 (68%)  
High-grade 86 (26%) 55 (24%) 31 (32%)  
1Median (IQR) or Frequency (%) 

2Pearson's Chi-squared test; Wilcoxon rank sum test; Fisher's exact test 
 

Table 4. Model performance summary. 

Data Set Model AUC (95%CI) Sensitivity (95%CI) Accuracy (95%CI) 
Training LR 0.88 (0.84,0.91) 0.95 (0.92,0.98) 0.87 (0.81,0.92) 

MLP 0.89 (0.86,0.93) 0.95 (0.91,0.98) 0.86 (0.83,0.90) 
SVM 0.86 (0.83,0.90) 0.98 (0.94,1.00) 0.87 (0.82,0.91) 
XGBoost 0.96 (0.92,0.99) 0.99 (0.96,1.00) 0.93 (0.88,0.97) 

Testing LR 0.79 (0.73,0.85) 0.89 (0.83,0.94) 0.77 (0.72,0.81) 
MLP 0.78 (0.72,0.83) 0.89 (0.85,0.92) 0.79 (0.75,0.82) 
SVM 0.78 (0.73,0.82) 0.96 (0.93,0,98) 0.77 (0.73,0.81) 
XGBoost 0.80 (0.75,0.85) 0.92 (0.88,0.97) 0.80 (0.74,0.87) 

Validation LR 0.74 (0.68,0.79) 0.85 (0.81,0.88) 0.80 (0.75,0.84) 
MLP 0.68 (0.63,0.73) 0.73 (0.68,0.79) 0.78 (0.72,0.84) 
SVM 0.67 (0.64,0.71) 0.79 (0.76,0,83) 0.74 (0.69,0.78) 
XGBoost 0.78 (0.74,0.83) 0.91 (0.86,0.95) 0.86 (0.82,0.89) 

 

SHAP analysis 
We utilized the `shap_values_Explanation` 

function to generate a feature importance bar chart for 
the 20 radiomic features of the trained XGBoost 
model, combining the least important features for a 
clearer representation of each feature's importance 
ranking (Figure 6). 

Discussion 
The study pioneers a non-invasive approach to 

predict the ISUP grade of ccRCC by harnessing the 
power of artificial intelligence, with a particular 
emphasis on the XGBoost algorithm. It integrates 
radiomics feature extraction and advanced machine 
learning techniques to analyze CTU images. From 
these images, a comprehensive set of 1,218 features 
was extracted, and through the precision of LASSO 
regression, 20 key features were identified for model 
training. The XGBoost model's performance was 
rigorously evaluated across training, testing, and 
external validation sets, showcasing remarkable 
predictive capabilities, particularly with an 
impressive sensitivity of 0.99 in the training set. 
Furthermore, SHAP analysis illuminated the critical 
contributions of specific radiomics features to the 
classification process, opening new avenues for the 
exploration of potential biomarkers in ccRCC. This 
innovative method offers not only a valuable aid in 
clinical decision-making but also establishes a solid 
groundwork for the advancement of image-based 
cancer grading and the development of tailored 
treatment strategies in the future. 

The WHO/ISUP grading system has been 
widely adopted for the pathological analysis of 
ccRCC. Its repeatability and strong correlation with 
clinical outcomes make it preferable to the Fuhrman 
grading system[16, 17].  
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Figure 4. (A) The ROC curves for the four models—LR, MLP, SVM, and XGBoost—in the training set. (B) The ROC curves for the four models—LR, MLP, SVM, and 
XGBoost—in the testing set. (C) The ROC curves for the four models—LR, MLP, SVM, and XGBoost—in the validation set. 
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Figure 5. AUC Scores with 95% Confidence intervals for different models. 

 
Figure 6. Feature Importance Bar Chart Generated by SHAP. 

 
Research has shown that the WHO/ISUP 

grading system correlates with outcomes and tumor 
biological behavior in ccRCC patients[18]. Since 
treatment strategies differ between high-grade and 
low-grade renal cancers, early differentiation and 
diagnosis of ccRCC can significantly benefit treatment 
strategy selection and patient prognosis[19]. 
Currently, preoperative diagnosis of ccRCC mainly 
relies on percutaneous renal biopsy; however, this 
method can introduce trauma and may not accurately 

identify the pathological grading of ccRCC[20-22]. 
As a result, numerous researchers have 

undertaken preliminary investigations into predicting 
the ISUP grading of clear ccRCC using medical 
images. For instance, Li, Q. et al. employed a radiomic 
model based on multiparametric MRI to predict the 
ISUP grading in ccRCC patients[14]. Similarly, Chen, 
R. et al. demonstrated favorable outcomes using a 
multi-sequence MRI-based radiomic model for 
preoperative prediction of ISUP grading in 
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ccRCC[23]. Additionally, Chen, Y.F. et al. found that 
ultrasound-based radiomics can effectively predict 
the ISUP grading of ccRCC[24]. 

In this study, we aimed to use CTU-based 
radiomic technology to predict the ISUP grading of 
ccRCC. The machine learning models we trained 
showed strong performance on both the training and 
testing sets, with the XGBoost model demonstrating 
particularly stable results across both datasets. The 
region of interest (ROI) delineation was conducted 
during the CMP phase, effectively minimizing the 
introduction of confounding biases. Using the LASSO 
model, we selected 20 radiomic features for training, 
leveraging L1 regularization[25]. By standardizing the 
data prior to model training, we enhanced both the 
stability and accuracy of our model's performance.  

Machine learning models are often referred to as 
"black boxes," and interpretability has long been a 
challenge. We addressed this issue through SHAP, 
which enabled us to rank the importance of the 
radiomic features contributing to the model.  

Although the four models we trained, 
particularly the XGBoost model, demonstrated strong 
performance in both the training and testing sets, our 
study has several limitations. First, it was conducted 
within a single cohort, and the sample size was 
insufficient, which may restrict the generalizability of 
our trained model. Second, we did not have a separate 
external cohort for validation, which poses challenges 
to the model's robustness and generalizability. We 
aim to conduct large-sample, multicenter, prospective 
clinical studies to enhance the generalizability of our 
model and provide a non-invasive and efficient 
solution for predicting the nuclear grading of ccRCC. 

Conclusion 
This study reported a novel non-invasive 

method for predicting the ISUP nuclear grading 
system of ccRCC from CTU images, providing 
physicians with a new strategy to enhance clinical 
management and improve patient outcomes. 
Supplementary Material 
Supplementary table.  
https://www.jcancer.org/v16p1118s1.xlsx 
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