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Abstract 

Gamma-delta (γδ) T cells are a crucial component of the tumor immune microenvironment which are 
considered a promising potential therapeutic strategy and target. Increasing evidence suggests that these 
unique immune cells play significant roles across various cancers. However, γδ T cells are often regarded 
as having dual roles in tumors, and their influence on lung adenocarcinoma (LUAD) remains 
controversial. In this research, we employed a wild-ranging approach using multi-omics data to investigate 
the function of γδ T cells in LUAD. The abundance of γδ T cell infiltration is linked to a positive prognosis 
in lung adenocarcinoma. The tumor-inhibiting role of γδ T cells was played through intrinsic lineage 
evolution, acquiring cytotoxic functions and engaging in signal transduction with antigen-presenting cells. 
Furthermore, patients with higher γδ T cells infiltration abundance might be more favorable for 
immunotherapy. Lastly, we established a predictive model using CT images based on radiomics, providing 
a non-invasive strategy to assess γδ T cells infiltration in LUAD patients. These findings offer new insights 
and perspectives the personalized therapies of γδ T cells. 
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Introduction 
γδ T cells represent an emerging field in tumor 

immunology, and their effects on the tumor 
microenvironment and therapeutic applications 
remain unclear compared to CD8+ and CD4+ T cells. 
In recent years, research related to γδ T cells has 
attracted more and more attention in the academic 
community. γδ T cells represent a distinct subset of 

infiltrating lymphocytes in the tumor 
microenvironment, possessing important and distinct 
functions and characteristics. Compared to the typical 
αβ T cells, γδ T cells possess a unique T cell receptor 
on their surface, which is constituted of both a γ chain 
and a δ chain[1]. Meanwhile, γδ T cells have the 
ability to detect the early changes when normal cells 
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transform into tumor cells and they can sense tumors 
even in the presence of low mutational burden, 
exhibiting a certain degree of sensitivity and a rapid 
response[1]. Notably, γδ T cells possess multifaceted 
immune characteristics, as they not only directly kill 
tumor cells but also regulate immune function 
indirectly through the secretion of cytokines, such as 
IFN-α and TNF-γ thereby activating other immune 
cells[2]. Currently, conventional immunotherapies 
primarily rely on alpha-beta T cells, which are strictly 
dependent on MHC molecules, substantially reducing 
the therapeutic effectiveness and usability in different 
situations[3]. In contrast, one of the key advantages of 
γδ T cells is the MHC independence, allowing for 
allogeneic transplantation and they have been 
reported to be correlated with survival rates in 
multiple cancers, showing promising antitumor 
potential and application prospects[4]. The γδ T cells 
possess unique clinical translational value and hold 
significant promise in cancer therapy. Nevertheless, 
there is still evidence indicating that γδ T cells may 
promote tumorigenesis across various cancers. To 
give an example, Reis BS et al. discovered that γδ T 
cells could exhibit effects of promoting tumor in 
colorectal cancers (CRCs)[5]. Similarly, there were 
reports that γδ T cells may make a positive 
contribution in tumor growth in ovarian cancer[6]. 
Consequently, it is crucial to perform a detailed 
investigation of the function of γδ T cells in particular 
cancer types. 

Lung cancer has consistently ranked among the 
most prevalent and fatal malignancies worldwide[7]. 
Characterized by high incidence and mortality rates, 
lung cancer imposes a substantial burden on global 
healthcare systems[8, 9]. More than 80% of all lung 
cancers are classified under the NSCLC, of which lung 
adenocarcinoma (LUAD) consists of the majority 
subtype[10, 11]. The molecular heterogeneity within 
and between tumors has long posed a major obstacle 
in treating patients with lung adenocarcinoma[12, 13]. 
Furthermore, issues such as drug resistance and 
metastasis have led to unsatisfactory prognoses for 
lung adenocarcinoma[14]. Thus, it is essential to 
discover new therapeutic targets and risk 
stratification strategies with clinical translational 
significance in lung adenocarcinoma against these 
challenges, ultimately benefiting a greater number of 
patients.  

Single-cell RNA sequencing technology has 
made significant progress in recent years, providing a 
novel research perspective for further exploration of 
the tumor microenvironment[15]. The sc-RNA 
technology offers unique advantages in revealing the 
intra-tumoral heterogeneity and interactions among 
different cellular components[16]. Radiomics presents 

a clinical application method for disease assessment 
that is characterized by non-invasiveness, 
reproducibility and cost-effectiveness[17]. The 
integrated application of various technologies could 
better assist researchers in analyzing the properties of 
the TME. 

In the UK project TRACERx of lung cancer, the 
researchers evaluated lung tumor tissues and adjacent 
cancerous samples from 25 individuals with NSCLC 
and found that γδ T cells were indeed infiltrated in the 
tumor[18]. Nevertheless, the biological function of γδ 
T cells in lung adenocarcinoma still remains 
controversial, and their specific function within this 
cancer type have seldom been explored through 
multi-omics profiling methods. Based on this fact, we 
employed multi-omics data, including sc-RNA 
sequencing data, bulk transcriptomic data, somatic 
mutation data, immune response data, and CT 
imaging radiomics data, to investigate the potential 
duty of γδ T cells in the TME of LUAD. 

We discovered that γδ T cells in the TME of 
LUAD were associated with both favorable prognosis 
and downregulation of malignant pathways, and they 
might possess an intrinsic developmental trend that 
further enhances their direct cytotoxic function and 
immune regulatory roles. Notably, somatic mutations 
in genes such as Lipoprotein-A (LPA), Dynein 
Axonemal Heavy Chain 8 (DNAH8), and Tenascin N 
(TNN) may serve as driver genes that induce these 
differences. Furthermore, γδ T cells were 
demonstrated to have closely connection with 
immune therapy. Additionally, we established a 
clinical application model to assess the infiltration 
levels of γδ T cells through CT imaging. Overall, the 
further research to investigate the prognostic value of 
γδ T cells in tumors and their potential as a key 
therapeutic strategy were crucial for patients with 
lung adenocarcinoma. 

Materials and Methods 
Data collection and preliminary processing 

The sc-RNA profile GSE223923 containing four 
samples from different lung adenocarcinoma patients 
utilized in the research was obtained from the Gene 
Expression Omnibus Series[19]. Bulk RNA 
transcriptome data, clinical data, and single 
nucleotide variant (SNV) data were gathered from the 
LUAD cohort of The Cancer Genome Atlas (TCGA, 
https://portal.gdc.cancer.gov/) via the 
‘TCGAbiolinks’ package[20]. CT image data for 
radiomics were collected from The Cancer Imaging 
Archive (TCIA, https://dev.cancerimagingarchive 
.net/)[21]. Single-cell RNA profiles were analyzed 
applying the Seurat (version 4.3.0) R package. Regular 
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quality control (The QC standards can be found in 
detail in Supplementary Figure 1) was conducted on 
each scRNA sequencing data required and the 
software package DoubletFinder (version 2.0.3)[22] 
was employed to detect and filter potential cell 
doublets. Harmony (version 1.2.0)[23] was employed 
to eliminate batch effects and integrate information 
across different samples which could be found in 
Supplementary Figure 2. Sctransform (version 
0.3.5)[24] was used for data normalization and 
removal of confounding sources of variation, such as 
mitochondrial interference percentage. Clustree 
(version 0.5.1)[25] was used to visualize the resolution 
for further selection. 

Downstream analysis of single-cell RNA 
transcriptome data 

The annotated biological markers for different 
cell populations were derived from the online 
database CellMarker 2.0[26] and previously published 
studies. Intrinsic spectral evolution and 
developmental trend of γδ T were analyzed using 
monocle (version 2.26.0)[27] with ‘DDRTree’ being the 
default dimensionality reduction method and the max 
component was set to 2. Cell-to-cell communication 
analysis was performed with CellChat (version 
1.6.1)[28] and call CellChatDB.human database for 
analysis. To estimate the infiltration abundance of γδ 
T cells, we employed the CIBERSORTx platform[29] 
which is an analytical tool designed to deconvolute 
immune cell composition based on RNA-seq data. 
CIBERSORTx deconvolution algorithm could utilize a 
reference expression profile to calculate the relative 
fraction of γδ T cells in absolute mode based on bulk 
sequence data. 

Gene enrichment analysis 
We utilized the limma package (version 

3.58.1)[30] to identify the differential expression genes 
between the different γδ T cell infiltration abundance 
groups, defining genes with a p < 0.05 as statistically 
significant and ranking them based on the log fold 
change (logFC) of their expression levels. Gene sets 
data were obtained from the Gene Set Enrichment 
Analysis (GSEA, https://www.gsea-msigdb.org/ 
gsea/index.jsp) database[31]. The enrichment analysis 
results were visualized with the ‘clusterProfiler’ 
package (version 4.12.2)[32] and the ‘GseaVis’ 
package (version 0.0.5). 

Somatic mutation landscape and survival 
analysis 

The ‘TCGAbiolinks’ package was employed to 
retrieve the required single nucleotide variant (SNV) 
mutation data from the Cancer Genome Atlas (TCGA) 

database as mentioned above. Comprehensive 
analysis and visualization of masked somatic 
mutation profiles were conducted with the 
‘maftools’[33] package (version 2.20.0). Fisher's exact 
test was employed to recognize significant gene pairs 
between different groups. Survival prognostic 
analyses were achieved with the ‘survminer’ package 
(version 0.4.9) and p < 0.05 was defined as statistical 
significance. 

Computerized estimation of treatment 
response to ICIs 

The potential response of immune checkpoint 
inhibitors (ICIs) was assessed by TIDE algorithm. 
TIDE[34] was a tool based on tumor immune escape 
mechanism that integrates immune dysfunction and 
immune rejection features. To make the results as 
reliable as possible, the response scores of the 
different γδ T cell infiltration abundance groups to 
immunotherapy were predicted using the EaSIeR 
package (version 1.10.0)[35] in combination with the 
responder data obtained from TIDE and the tumor 
mutation burden (TMB) data. The cell signature of the 
γδ T cells population was calculated via the ssGSEA 
algorithm of the ‘GSVA’ package (version 1.50.5)[36] 
by top30-markers. The relationships between 
immunotherapeutic targets and signature score were 
investigated with Pearson correlation analysis. 

Image segmentation, feature extraction and 
modelling for radiomics 

The CT image data of 29 lung adenocarcinoma 
patients from The Cancer Imaging Archive (TCIA) 
with corresponding bulk transcriptome data was 
selected. The workflow was based on 3D Slicer 
software (version 5.6.2)[37] and its plugins. The 
process of region of interest (ROI) delineation and 
feature extraction adhered to the guidelines of The 
Image Biomarker Standardization Initiative[38]. 
Tumor regions were segmented by radiologists with 
over five years of experience, followed by review and 
confirmation by a senior clinician with over 20 years 
of experience. In cases of disagreement, an additional 
senior clinician was consulted for review. The 
Radiomics plugin was used to extract 851 radiomic 
features after the tumor regions were segmented layer 
by layer and reconstructed into three-dimensional 
images. To ensure uniform spacing resolution, all CT 
images were resampled into the same value during 
preprocessing. All extracted radiomic features 
underwent Z-score normalization. The correlation 
between the radiomics score and γδ T cell infiltration 
abundance was conducted with Pearson correlation 
analysis. The ‘glmnet’ package (version 4.1-8)[39] was 
used with cross-validation to determine the best λ 
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value, and a least absolute shrinkage and selection 
operator (LASSO) regression model was developed to 
predict the infiltration abundance scores of γδ T cells. 
Finally, the cohort was split into training and 
validation cohorts in a 2:1 ratio, and Pearson 
correlation was used to assess the model's 
performance. 

Statistics 
Relevant methods of statistical analyses are 

described above, and all statistical methods were 
analyzed by R (v 4.3.3). 

Results 
Identification of γδ T cells in sc-RNA profile 

As illustrated in Figure 1, this study intended to 
probe the existence of γδT cells in the TME of LUAD 
and their potential value in clinical application. The 
sc-RNA sequencing data from GSE223923 of 
LUAD-infiltrating immune cells isolated using 
PE-Cy7-conjugated CD45 antibody fluorescent dye 
from lung adenocarcinoma patients was selected for 
analysis to more precisely identify γδ T cells. We then 
conducted an initial screening of the single-cell RNA 
profiles of the selected γδT cells. After removing 
potential doublets, the data quality and cell purity 
were deemed satisfactory. Following sequential batch 
effect removal and normalization processes, the cells 
were preliminarily classified into myeloid cells, 
endothelial cells, B cells, NK cells, plasma cells, 
epithelial cells and T cells. Further analysis divided 
the myeloid cells into neutrophils, monocytes, 

macrophages, pDCs, and mast cells. T cells were then 
subdivided into various subtypes, with a total of 1,818 
γδ T cells identified for subsequent analyses. UMAP 
and t-SNE methods were employed for 
dimensionality reduction and visualization (Figure 
2A). Specifically, the annotation of γδ T cells was 
further defined based on the expression levels of 
biological markers like TRDC, TRGC1, and TRGC2, 
with cell type annotation markers presented in Figure 
2B. 

γδ T cells' cytotoxic and immunoregulatory 
roles via binary lineage evolution in the lung 
adenocarcinoma TME 

To further elucidate the distribution and 
trajectory of γδ T cells within the lung 
adenocarcinoma TME, pseudo-time analysis was 
conducted on the γδ T cells and we discovered an 
inherent lineage evolution process. These cells 
exhibited a unique developmental and evolutionary 
trend (Figure 3A-B). Based on their temporal 
progression, we found that γδT cells could be divided 
into two distinct bioactive states. After correcting for 
batch effects, the cells could be artificially classified 
into GZMK- and GZMK+ γδT cells, representing 
different developmental maturity and activity states, 
based on the changes in the expression of the 
cytotoxic marker gene GZMK (Figure 3C). Along the 
trajectory of cellular evolution in pseudo-time, the 
cells dynamically transitioned from GZMK- to 
GZMK+, with the expression of the lymphocyte 
chemokine-encoding genes XCL1 (lymphotactin-1) 
and XCL2 (lymphotactin-2) progressively increasing 

 

 
Figure 1. Schematic flowchart of the study.    
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over time (Figure 3D). Thus, γδ T cells demonstrated 
an inherent lineage development process that 
enhanced the immune functions within the lung 
adenocarcinoma TME. These cells exerted direct 
cytotoxic effects through the granzyme pathway and 
recruited additional immune cells via the 
lymphotactin pathway, thereby amplifying the 
anti-tumor immune response and modulating 
immune functions. 

Intercellular communication between γδ T 
cells and other cellular components in the 
TME of lung adenocarcinoma 

Given the cell functions of γδT cells as a unique 
subtype of T cells, we had sufficient reasons to 
hypothesize that they might engage in potential 
intercellular communication with other cellular 
components in the tumor microenvironment, and that 
such interactions could be crucial for shaping the 
TME. Therefore, we conducted an in-depth 
investigation of the interaction network between γδ T 
cells and other cells. We observed IFN-γ signaling 
transmission between γδ T cells and macrophages as 
well as monocytes, which suggested their active role 

in antigen presentation. Similarly, CD8+ 
tissue-resident memory T cells exhibited comparable 
signaling towards macrophages and monocytes, 
indicating a potential synergistic effect between CD8+ 
Trm cells and γδ T cells in simultaneously activating 
these two cell types (Figure 3E). Furthermore, 
researchers found that γδ T cells extensively 
transmitted signals to CD8+ T cells through human 
leukocyte antigen class I molecule pathways, thereby 
triggering cytotoxic responses as illustrated in Figure 
3F. γδ T cells also transmitted signals through HLA 
class II molecules to professional antigen-presenting 
cells (e.g., pDCs, monocytes, and macrophages) via 
pathways such as HLA-DRB1-CD4. This suggested 
that γδT cells may enhance tumor antigen 
presentation through these interactions, indirectly 
boosting the anti-tumor ability of CD4+ T cells. 
Notably, the CCL5-ACKR1 pathway was significantly 
enriched in interactions from γδT cells to endothelial 
cells. These findings indicated that in addition to their 
direct cytotoxic effects, the indirect immuno-
regulatory functions of γδT cells were also an 
essential component. 

 

 
Figure 2. Tracking and annotating γδ T cells from single-cell transcriptome data of lung adenocarcinoma. (A) Uniform Manifold Approximation and Projection 
(UMAP)based (left) and t-Distributed Stochastic Neighbor Embedding (t-SNE)-based (right) dimensionality reduction map. The cell cluster annotations are marked with different 
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colors. (B) The expression levels of cell marker genes in different cell cluster annotations are demonstrated by dotplot. The Y-axis represents the identity of cell cluster, the 
X-axis indicates the names of marker genes. The color of the dots represents the average expression level of the gene in the cell clusters. The size of the dots represents the 
proportion of gene expression in the corresponding cell clusters. Tem, effector memory T cells; Trm, tissue-resident memory T cells; Texh, exhausted T cells; Prolif, proliferating 
markers; Treg, regulatory T cells; pDC, plasmacytoid dendritic cell; NK, natural killer cell; Endothelial, endothelial cells; Epithelial, epithelial cells. 

 
Figure 3. Dynamic developmental transition of γδ T cells and their interactions with other cells components in the tumor microenvironment of lung 
adenocarcinoma. (A-B) Pseudotime trajectory analysis showing the dynamic developmental transition of γδ T cells. Cells are colored by clusters (A) and pseudotime (B), 
illustrating distinct cellular states and transitions along the developmental trajectory. (C) The UMAP plot illustrates the manually defined dichotomous states of γδ T cells. (D) 
Dynamic gene expression of the genes of interest along the cellular trajectory developmental timeline. (E) Circular plot displaying the communication of the INF-γ signaling 
pathway between different cell components. (F) Dot plot illustrating the interactions of γδ T cells to other cells. 
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Figure 4. Increased infiltration of γδ T cells is associated with better survival, somatic mutations, and decreased malignant tumor phenotypes. (A) 
Kaplan-Meier curves describing overall survival (OS) in lung adenocarcinoma patients with different infiltration levels of γδ T cell infiltration. (B) Forest plot showing statistically 
significant differences in somatic single nucleotide variants (SNVs) between patients with high and low γδ T cell infiltration. OR > 1 indicates a higher frequency of SNVs in the 
high γδ T cell infiltration group, OR < 1 indicates a higher frequency in the low infiltration group, and OR = 1 indicates similar SNV frequencies between the two groups. (C) Bar 
chart displaying the mutation frequencies in two groups. (D-I) Significant enrichment of representative tumor malignancy pathways in patients with low γδ T cell infiltration based 
on hallmark gene set (D, KRAS signaling; E, E2F targets; F, G2M checkpoint; G, NOTCH signaling; H, TGF-β signaling; I, angiogenesis). 

 

Infiltration of γδ T cells suggests favorable 
clinical prognosis 

The trajectory evolution and immunoregulatory 
potential of γδ T cells in the TME of LUAD had now 
been largely elucidated, prompting researchers to 
investigate whether high infiltration of γδ T cells 
could be regard as a positive prognostic factor for 
patients. Therefore, we utilized the CIBERSORTx 
deconvolution algorithm to quantify the infiltration 
abundance of γδ T cells in each patient and conducted 
survival analysis in the TCGA-LUAD cohort. Using 
the best cut-off value of infiltration abundance, 
patients were categorized into a high-infiltration 
group (N=84) and a low-infiltration group (N=419). 
The findings showed a statistically significant 

association between γδ T cell infiltration and patient 
survival, with the high-infiltration group 
demonstrating better survival outcomes (p=0.011, 
Figure 4A). These findings suggested that the 
infiltration of γδ T cells could be a positive guide for 
the prognostic assessment of LUAD patients. 

Somatic mutation landscape with infiltration 
level of γδ T cell  

Be curious about whether somatic gene 
mutations in tumor cells could influence γδ T cell 
infiltration, the somatic mutation landscape was 
conducted in different infiltration groups using the 
complete SNV data. After integrating the group data 
and excluding invalid entries, the Fisher’s exact test 
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was conducted to analyze significant differences in 
gene mutations between the two groups. Genes such 
as TNN (p<0.01) and DNAH9 (p<0.05) showed higher 
somatic mutation frequencies in the high-infiltration 
group, whereas LPA (p<0.01), DNAH8 (p<0.01), 
TIAM1 (p<0.05), ASPM (p<0.05), and UNC5D (p<0.05) 
exhibited higher mutation frequencies in the 
low-infiltration abundance group (Figure 4B). 
Notably, TNN gene displayed more missense 
mutations in the high-infiltration abundance group, 
while DNAH9 showed both more missense mutations 
and multi-hits in this group (Figure 4C). These results 
suggested significant differences in somatic mutations 
between patients with varying levels of γδ T cell 
infiltration, indicating a nuanced association between 
γδ T cell infiltration and somatic gene mutations. 

High infiltration of γδ T cells is correlated with 
the downregulation of malignant pathways 

Building on the differential analysis of groups 
with different γδ T cell infiltration abundance levels, 
we further investigated the potential mechanisms 
underlying these differences. After obtaining the list 
of differentially expressed genes using bulk 
transcriptome data, we ranked them by fold change 
and performed GSEA functional enrichment analysis 
to identify the molecular pathways potentially 
affected by γδ T cell infiltration. Among the top 25 
pathways in the GSEA analysis, we observed a 
marked downregulation of several tumor-associated 
malignant pathways as γδ T cell infiltration increased. 
Specifically, the high γδ T cell infiltration abundance 
group showed a downregulation of the KRAS 
signaling (NES = -1.47, adjusted p = 0.04), E2F targets 
(NES = -1.48, adjusted p = 0.01), G2M checkpoint 
(NES = -1.6, adjusted p < 0.001), Notch signaling (NES 
= -2.18, adjusted p < 0.001), TGF-β signaling (NES = 
-2.01, adjusted p < 0.01), and angiogenesis pathways 
(NES = -1.68, adjusted p = 0.03) (Figures 4D-I, 
Supplementary File: Table S1). Since KRAS is a 
well-recognized oncogene in the NSCLC, its 
inhibition could potentially reduce tumor 
progression. These findings indicate that γδ T cells 
may inhibit tumor growth and metastasis by 
modulating various signaling pathways, including 
those involved in proliferation, immune response, 
and angiogenesis, thereby exerting anti-tumor effects. 

Patients with higher γδ T cell infiltration 
abundance derive more advantage from 
immunotherapy 

Immunotherapy, especially immune checkpoint 
inhibitor therapy had revolutionized the treatment 
landscape for lung adenocarcinoma in recent years. 
Given the immunoregulatory function of γδ T cells, 

we intended to analyze whether their infiltration 
could influence the response to immunotherapy. We 
observed that the high γδ T cell infiltration abundance 
group had a greater number of responders to 
immunotherapy according to the TIDE results (p < 
0.001, Figures 5A-B). Furthermore, high-infiltration 
group exhibited lower TIDE scores, suggesting a 
higher probability of receiving benefits from 
immunotherapy (p < 0.0043, Figure 5C). Additionally, 
we observed that patients in the high γδ T cell 
infiltration group had higher EaSIeR algorithm scores 
combining TIDE responder result and TMB data, 
suggesting a more favorable immune 
microenvironment and a stronger response to 
immunotherapy (p < 0.027, Figure 5D). In our analysis 
of immune cells, we found that CD8+ T cells played a 
crucial role in the γδ T cell-mediated response to 
immunotherapy (Figure 5E). Notably, the TRAIL 
pathway showed the strongest positive contribution 
to the immune response, suggesting it may be a 
potential pathway for γδ T cell-mediated 
immunoregulation (Figure 5F). Applying the Seurat 
package, we identified the top 30 marker genes of γδ 
T cells (p < 0.05) and converted them into a cell 
signature gene enrichment score matrix via ssGSEA. 
We discovered a positive correlation between the 
expression of γδ T cell signatures and the immune 
checkpoint genes CTLA4 (R = 0.64, p < 2.2e−16), LAG3 
(R = 0.68, p < 2.2e−16), PDCD1 (R = 0.75, p < 2.2e−16), 
and CD274 (R = 0.48, p < 2.2e−16) (Figures 5G-J) by 
Pearson correlation analysis. Therefore, the results 
mentioned above implied that patients with high γδ T 
cell infiltration abundance might be better candidates 
for immunotherapy strategies. 

γδ T cells infiltration abundance can be 
measured using a radiomics model based on 
CT imaging 

To further enhance the clinical translational 
value of this study, we established a non-invasive 
strategy to assess γδ T cell infiltration levels, as 
illustrated in Figure 6A. We contained 29 LUAD 
patients from the TCIA database, and experienced 
oncologists manually delineated the regions of 
interest (ROIs) using 3D Slicer. These segmentations 
were then reviewed and refined by senior clinicians to 
precisely define the tumor areas and extract relevant 
feature values (Figure 6B). After extracting 851 
features, we used Pearson correlation analysis to 
identify five features associated with γδ T cell 
infiltration abundance. Further dimensionality 
reduction was performed using LASSO regression 
(Figure 6C-D), resulting in four radiomic features that 
were selected for constructing the final radiomics 
linear regression model, detailed in Supplementary 
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File: Table S2. To assess the model's performance, we 
divided the cohort into a training set (n=20) and a 
validation set (n=9) using a 2:1 ratio and conducted 
correlation analysis. We discovered a positive 
correlation between the γδ T cells infiltration and 
radiomics scores in both the training set (Figure 6E, R 
= 0.48, p = 0.034) and the validation set (Figure 6F, R = 
0.72, p = 0.03). In conclusion, this study not only 
explored the function and significance of γδ T cells in 
the TME of LUAD patients but also established an 
innovative and non-invasive method for predicting γδ 
T cell infiltration abundance. 

Discussion 
In accordance with the existing reports, our 

study is the first to comprehensively clarify the role of 
γδ T cells in the lung adenocarcinoma (LUAD) tumor 
microenvironment through the integration of 
multi-omics data. We perform a systematic and 
multi-layered analysis by integrating single-cell 
transcription, RNA-sequencing, radiomics, and 
genomics data. Our research comprehensively 
uncovered the infiltration of γδ T cells within the TME 
of LUAD, including their intrinsic lineage evolution, 
their direct or indirect tumor-killing effects, their 
impact on immunotherapy, their association with 
radiomic features, and their cell-to-cell interactions. 

 

 
Figure 5. High γδ T cell infiltration is associated with greater benefits from immunotherapy. (A-B) Bar chart and stacked plot indicating TIDE data on 
responsiveness to immunotherapy. (C) Violin plot comparing TIDE scores between high- and low- γδ T cells infiltration abundance groups. (D) Scatter plot of EaSIer scores in 
high- and low- γδ T cells infiltration abundance groups. The bar chart and Z-score scatter plot revealing the contribution weights to immunotherapy of different immune cells (E) 
and biological pathways (F). The scatter plot shows a significant positive correlation between the expression levels of the top 30 genes characterizing γδ T cells and the expression 
levels of CTLA4 (G), LAG3 (H), PDCD1 (I), and CD273 (J).  
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Figure 6. A LASSO linear regression model was established based on radiomics analysis of CT images, serving as a non-invasive strategy to estimate γδ T 
cells. (A) Schematic diagram illustrating the radiomics analysis process. (B) Example of the ROIs (Region of Interest) segmentation in 3D Slicer software. (C) Coefficient 
distribution of variables in LASSO regression. Each curve represents radiomic features filtered by Pearson correlation. The y-axis indicates their corresponding coefficients in the 
LASSO regression. The top value represents the number of radiomic features selected through Pearson correlation and included in the LASSO regression model. (D) Parameter 
tuning plot in Least Absolute Shrinkage and Selection Operator (LASSO) regression. The top value has the same meaning as shown in panel C. Correlation between the 
abundance of γδ T cells measured by transcriptomics and the fitted values (predicted γδ T cell abundance) from the linear regression radiomic model in the training set (E) and 
test set (F). The gray area represents the range of 95% confidence intervals (CI). 

 
The part played by γδ T cells in lung 

adenocarcinoma remained controversial in previous 
studies. There were reports suggested that γδ T cells 
not only served as a favorable prognostic marker in 
lung cancer but also exhibited stem cell-like 
characteristics, which might enable them to self-renew 
within the tumor. Furthermore, it was more likely for 
the patients with higher γδ T cell infiltration 
abundance to respond to immunotherapy with 

pembrolizumab[18]. Clinical trials reported that 
immunotherapy with autologous γδ T cells have 
shown to be secure and practicable in NSCLC, and for 
those patients who were resistant to other treatment, 
zoledronate-expanded γδ T cells could represent a 
viable therapeutic option[40, 41]. Moreover, studies 
have shown that immunotherapy of allogeneic γδ T 
cell can extend the survival time of advanced lung 
cancer patients[42]. However, Jin C. et al. found that 
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γδ T cells could also promote the progression of lung 
adenocarcinoma through the mediation of commensal 
microbiota[43]. The potential pro-tumorigenic role of 
γδ T cells is also a subject that warrants further 
investigation[44]. Research has demonstrated that γδ 
T cells in the TME exhibit functional plasticity, 
engaging in dynamic interactions that toggle between 
anti- and pro-tumor activities, particularly γδ T cells 
with the expression of IL-17, which may drive 
malignant phenotypes in tumors[3]. Given these 
findings, it is essential to integrate multi-omics data to 
further clarify the role of γδ T cells in lung 
adenocarcinoma patients. This study employs a 
digital assessment strategy based on sc-RNA and bulk 
transcription data to quantify γδ T cells infiltration 
abundance in the LUAD microenvironment, revealing 
that they play an overall positive role in tumor 
initiation, progression, prognosis, and treatment. 

Even without addressing the factors influencing 
γδ T cell infiltration abundance, our study remains 
exhaustive and compelling. γδ T cells in the TME can 
exhibit a high degree of heterogeneity, with 
significant functional differences among different 
subtypes[45]. Our research identified an intrinsic 
lineage evolution of γδ T cells in lung 
adenocarcinoma TME, where these cells tend to 
develop and mature towards the expression of 
GZMK, XCL1, and XCL2. GZMK (Granzyme K) as a 
serine protease of the granzyme family, is primarily 
expressed by cytotoxic T cells and natural killer (NK) 
cells, which is characterized by its cytotoxic 
properties[46]. Therefore, based on the expression of 
GZMK and its developmental trajectory within the γδ 
T cell population, we artificially defined them into 
two distinct subgroups: GZMK- and GZMK+. The 
GZMK+ subset represents a more mature cell state 
with a tendency towards cytotoxic functionality. 
XCL1 (lymphotactin1) and XCL2 (lymphotactin2) 
both belong to the XC subfamily of chemokines, and 
they have an impact on regulating immune cell 
migration, promoting maturation and activation, thus 
boosting the immune system's response. Notably, NK 
cells are also capable of expressing various 
chemokines, including XCL1[47]. Our study 
discovered that γδ T cells may recruit additional 
immune cells through the secretion of chemokines, 
thereby indirectly modulating immune function. 
Dividing γδ T cells into these two differentiated 
cellular states facilitates a more precise understanding 
of their critical role in LUAD. IFN-γ is a key 
regulatory factor in the tumor microenvironment 
which exerts a broad spectrum of influence and could 
be considered as the "master regulator" of the immune 
microenvironment[48]. We observed that γδ T cells 
transmit signals through the IFN-II (IFN-γ) pathway 

to macrophages and monocytes. Notably, CD8 Trms 
(tissue-resident memory T cells) also exhibit strong 
signaling interactions with macrophages and 
monocytes via this pathway. We hypothesize that 
there may be a synergistic relationship between CD8 
Trms and γδ T cells. Additionally, it was observed 
that γδ T cells have cell-to-cell signaling with 
professional antigen-presenting cells (APCs, e.g., 
pDCs, monocytes, and macrophages) via MHC-II 
molecules, thereby enhancing their antigen- 
presenting capabilities and regulating immune 
function. CCL5 is a chemokine reported to recruit 
more immune cells[49], while vascular endothelial 
ACKR1 facilitates the translocation of chemokines 
across blood vessels[50]. We found that γδ T cells 
significantly interact with endothelial cells via the 
CCL-ACKR1 signaling pathway. Endothelial cells 
primarily constitute the vascular walls in the TME, 
suggesting that γδ T cells may remodel the tumor 
microenvironment by recruiting immune cells and 
altering the permeability of endothelial cells. Using a 
digital deconvolution algorithm, we predicted that 
patients with higher γδ T cell infiltration abundance 
have better prognoses. Additionally, through GSEA 
functional enrichment analysis, we discovered the 
association between the increasing γδ T cell 
infiltration abundance and the downregulation of 
pathways such as KRAS, E2F, G2M checkpoint, Notch, 
TGF-β, and angiogenesis which are related to 
malignant tumor phenotypes[51, 52]. In conclusion, 
these findings highlight the critical role of γδ T cells in 
the LUAD microenvironment.  

Immunotherapy has gradually become the 
mainstream treatment for LUAD in recent years, 
prompting researchers to further explore the potential 
value of γδ T cells in this context. We found that 
patients in the high infiltration group of γδ T cells 
exhibited better responses to immunotherapy. The 
treatment process was found to be strongly correlated 
with the TRAIL and JAK-STAT pathways, with the 
TRAIL pathway known to induce cell death[53, 54], 
which may represent a potential mechanism of γδ T 
cells to exert biological functions. Interestingly, the 
JAK-STAT pathway has been reported to be activated 
by IFN-γ[55, 56], which aligns with our findings in 
CellChat. Moreover, the infiltration abundance was 
positively correlated with common immunotherapy 
targets such as CTLA4, LAG3, PDCD1, and CD274, 
indicating that these patients are more suitable for 
immunotherapy and have significant clinical value. 
Through somatic mutation analysis, we discovered 
that a high abundance of γδ T cell infiltration in 
LUAD is associated with the TNN and DNAH8 genes 
mutations, suggesting that these mutations may 
contribute to the increased infiltration of γδ T cells. 
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Reports on the TNN gene primarily focus on 
non-oncological diseases[57], while studies on the 
DNAH8 gene mainly center on male infertility[58]. 
Our research provides new insight into the study of 
these two genes. 

Radiomics provides a convenient, cost-effective, 
reproducible, and non-invasive strategy for the 
clinical assessment of biological characteristics. In our 
research, we aimed to establish an innovative 
non-invasive method for evaluating the infiltration 
abundance of γδ T cells to demonstrate its practical 
value. Despite the limitation of sample number, we 
ensured the accuracy of our data sources as much as 
possible. We employed LASSO to introduce an L1 
regularization term, which helped to avoid 
multicollinearity and improve the model’s predictive 
capability. Our research indicates that a radiomics 
model established based on CT imaging features can 
predict the infiltration abundance of γδ T cells, 
meanwhile its correlation was explored in both the 
training and validation datasets. This represents a 
bold innovative attempt, and we hope it will lay the 
groundwork for further research.  

It bears mentioning that this research is an 
exploratory investigation based on multi-omics data 
which has certain limitations. Even though we 
employed a comprehensive approach, the sample size 
of sc-RNA data may limit the generalizability of our 
findings. Similarly, the scarcity of imaging data 
presents challenges to the stability of our model. We 
plan to collect more sample to validate the 
universality of our model. Furthermore, the clinical 
significance and translational value of γδ T cells 
require confirmation from multi-center large sample 
cohorts. Owing to the limited abundance of γδ T cells 
and the difficulties of establishing animal models[59], 
we anticipate difficulties and challenges in elucidating 
their molecular mechanisms. However, despite the 
need for further research validation, we are convinced 
that the assessment results of γδ T cells are reliable 
based on our relatively comprehensive research 
process. By investigating the immunomodulatory and 
antitumor effects of γδ T cells in the LUAD 
microenvironment, this study is expected to deepen 
our understanding of the unique mechanisms of γδ T 
cells. 
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