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Abstract 

Background: Basement membrane is a special component of extracellular matrix of epithelial and 
endothelial tissues, which can maintain their normal morphologies and functions. It can also participate in 
tumor progression and affect tumor treatment. However, the roles of basement membrane-related 
genes (BMGs) in acute myeloid leukemia (AML) remain unknown. 
Material and methods: We downloaded the data of AML and normal samples from TCGA, GTEx, and 
GEO. Then, we performed bioinformatics analysis to identify differential BMGs. We calculated the risk 
score of the training cohort and divided it into two risk groups. In addition, we also introduced external 
cohorts, serving as validation cohorts, to estimate the accuracy of risk score. A nomogram was 
established based on the risk score and clinicopathological characteristics to predict the prognosis. Based 
on BMGs, AML patients of TCGA were clustered into 2 subtypes. To investigate the biological features 
and the association between immune cells and TME, we utilized GSVA to assess pathway enrichment and 
ssGSEA to quantify the levels of immune cell infiltration across samples. 
Results: We obtained 3 differential BMGs between AML and normal samples. The training cohort was 
divided into high- and low-risk groups based on the risk score. The Kaplan-Meier survival analysis 
indicated that the two groups had significant differences. The nomogram could be used to predict the 
survival outcomes of AML patients. Based on the clustering result, we found significant differences 
between the two gene clusters. Sankey’s diagram suggested that cluster B was associated with the 
high-risk group and poor prognosis. GSVA analysis showed that cluster B was also related to the 
upregulation of intercellular and intracellular signal transduction pathways. In TME, resting mast cells, 
follicular helper T cells, and plasma cells decreased while monocytes increased in the high-risk group. In 
addition, the high-risk group was more sensitive to BTK and AKT inhibitors. 
Conclusion: Our study indicated that the nomogram model of BMGs could predict the prognosis of 
AML patients. Meanwhile, BMGs were correlated with immune TME in AML. A correct and 
comprehensive assessment of the mechanisms of BMGs in individuals will help guide more effective 
treatment. 

 

Introduction 
Acute myeloid leukemia (AML) is a 

hematological malignancy characterized by the 
abnormal proliferation of immature myeloblasts. It 
can infiltrate bone marrow and impair hematopoiesis 
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[1]. It can be subdivided into several types by blast 
elements and proportion. Chemotherapy, such as 
anthracycline and cytarabine, is a classical therapy for 
AML and can prolong the survival time. Moreover, 
the emergence of many novel therapies, such as 
chimeric antigen receptor (CAR) T cell therapy and 
molecular targeted therapy also brings benefits to 
AML patients [2]. Despite advancements in 
therapeutic strategies, AML continues to present 
significant challenges due to its heterogeneous nature, 
high relapse rates, and resistance to conventional 
treatments, necessitating ongoing research to develop 
more effective and targeted therapies. 

Basement membrane (BM) is an important 
component of cell-adherent extracellular matrices 
(ECM), which covers the basal surface of epithelial 
tissues and surrounds the deep tissues [3]. It protected 
tissues against disruptive physical stresses and 
provided an interactive interface between the 
extracellular environment and cells [4]. Matrix 
metalloproteinases participation in the metastatic 
process and their diagnostic and therapeutic 
applications in cancer. It is also able to control cell 
polarity, adhesion, and migration [5]. Previous 
research has shown that BM is involved in tumor 
invasion in many aspects. Proteases are the enzymes 
that selectively degrade peptide bonds between 
amino acids of BM [6]. Cancer cells can secret 
proteases, especially matrix metalloproteinases 
(MMP), to degrade collagens and increase metastasis 
[7, 8]. In addition, some emerging studies reveal that 
physical mechanisms may also be involved in tumor 
invasion of BM [9]. Early studies have indicated that 
tumor cells will adopt a non-proteolytic migration 
mode when proteases are inhibited [10]. Proteases 
have been linked with immune cells since immune 
cells frequently used them to form gaps to cross 
vascular BM and enter into blood circulation during 
the inflammation process [11]. Then, the migration of 
immune cells led to remodeling and enlargement of 
these BM gaps. The restored gaps become slightly 
larger than their original size after a crossing immune 
cell crossed, which is beneficial for other cells to pass 
through. This mechanism is convenient for tumor 
metastasis [12]. It has been indicated that, in the 
protease-independent BM invasion model, tumor 
cells can cross BM via the activities of immune cells. 
Therefore, it is suggested that BM could be disrupted 
by immune cells, which may facilitate the migration of 
tumor cells. 

Previous studies have clarified that BM is closely 
related to a variety of human epithelial cancers and is 
a pivotal prognostic factor promoting the invasion of 
tumors. Once the tumor cells break the BM barrier, 
invade the surrounding stromal tissues, and spread 

through blood and lymphatic vessels, the overall 
survival time will rapidly decrease [13]. Siegel et al. 
indicated that if breast carcinoma cells remained 
localized, the 5-year survival rate of patients could 
reach 99%. However, once cancer cells invaded the 
BM and the surrounding deep tissues, the 5-year 
survival rate decreased to 85%. Moreover, the 5-year 
survival rate of breast cancer dropped to 27% when 
there was distant metastasis [14]. Similarly, the 
disruption of BM integrity is an indispensable factor 
in prostate, skin, gastric and colorectal cancers [15-18].  

In hematology, the bone marrow 
microenvironment regulates the proliferation, 
differentiation, and migration of hematopoietic stem 
cells (HSCs) [19]. ECM membrane allows the stem cell 
to interact with stromal cells and promotes HSCs 
migration and differentiation [20]. Besides solid 
tumors, hematopoietic cells in the marrow 
microenvironment can also secrete proteases that play 
various roles in the hematological system. Previous 
studies have confirmed that proteases also play 
important roles in hematopoietic differentiation and 
progression of hematological diseases [21]. The 
specific functions were involved in tumor’s invasion 
and angiogenesis [22]. As the main gelatinases of 
proteases, MMP-9 and MMP-2 were detected in 
normal bone marrow cells and megakaryocytes 
(MKs). Meanwhile, MMP-2 is detected in 
erythroblasts. They can release growth factors and 
cytokines from the ECM membrane, leading to stem 
cell-stromal cell interactions that promote HSCs 
migration and differentiation [20]. In addition, MMPs 
are potential markers for diagnosis of hematological 
diseases. MMP-9 could be used to predict survival 
outcomes in patients with early-stage chronic 
lymphocytic leukemia (CLL) in hematological 
malignancies [23]. The serum levels of MMP-2 and 
MMP-9 are reported to be abnormal in both 
myelodysplastic syndrome and AML [24].  

In this study, we explored the expression pattern 
of BM-related genes (BMGs) in AML, understanding 
the role of BM in the prognosis of AML. First, we 
collected clinical information and transcriptome data 
of AML and normal samples from public databases. 
Then, we obtained BMGs by using bioinformatics and 
constructed a nomogram model to predict the 
prognosis of AML patients. Moreover, we also 
attempted to clarify the relationship between BMGs 
and TME of AML. Finally, we investigated the drug 
sensitivity in two risk groups, which may provide 
new therapeutic options. 
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Methodology 
Data acquisition and arrangement 

The transcriptome data of AML were 
downloaded from The Cancer Genome Atlas (TCGA) 
and The Gene Expression Omnibus (GEO). To ensure 
the reliability and accuracy of survival results, we 
excluded samples with incomplete clinical data and 
without survival data. We obtained 142 AML samples 
from TCGA as the training cohort and 564 AML 
samples from GEO (ID: GSE12417, GSE37642) as the 
validation cohort. In addition, we selected 337 normal 
blood samples from The Genotype-Tissue Expression 
(GTEx) as the control group. Raw RNA-seq data were 
normalized to TPM values using the “edgeR” package 
to adjust for sequencing depth and gene length. Batch 
effects between datasets were corrected using the 
ComBat function from the “sva” package, with batch 
labels corresponding to the dataset sources. PCA 
analysis confirmed effective normalization and batch 
effect removal, as samples grouped according to 
biological characteristics post-correction. 

We obtained the somatic mutation information 
and copy number variation (CNV) data of AML 
patients from UCSC Xena. We used the “maftools” 
package to analyze the mutation frequencies and the 
results were plotted with the oncoplot waterfall plot. 
All analyses in this study were performed by R 
(version 4.4) with R Bioconductor packages and Perl 
software. 

Identification of differential BMGs 
We obtained 222 BM-related genes (Table S1) 

from the published articles [4]. And we compared the 
samples expression of TCGA AML with normal 
samples and determined 20 differentially-expressed 
BM genes by the “edgeR” package [25]. Then, we 
merged the survival data (survival time and status) 
and the gene expression data to operate the univariate 
Cox regression analysis and the Least absolute 
shrinkage and selection operator (LASSO) regression 
by “survival” [26]. We further obtained 6 
survival-related BMGs. After the multivariate Cox 
regression analysis, we finally reserved 3 significantly 
differential BMGs that were strongly linked with the 
prognosis and survival of AML samples. 

Risk score calculation and nomogram 
construction  

The risk score was calculated based on the 
expression levels and relevant coefficient of the 3 
BMGs, and the formula was as follows: the risk score 
= Coef1*Exp1 + Coef2*Exp2 + Coef3*Exp3. Then, we 
divided the training cohort into high- and low-risk 
groups based on median value. To assess survival of 

high- and low-risk groups, we performed 
Kaplan-Meier (K-M) analysis by using the 
“survminer” package. To test its accuracy, we plotted 
1-, 3-, and 5-year Receiver Operating Characteristic 
(ROC) curves by using “timeROC” package [27]. To 
examine the ability of risk score to distinguish 
different samples, we plotted ranked dot and scatter 
plots using the “ConsensusClusterPlus” package [28]. 
Meanwhile, we also used testing cohort (GSE12417 
and GSE37642) to validate the predictive efficiency of 
risk score. We also performed K-M analysis, and 
plotted the ranked dot and scatter plots and ROC 
curve, respectively. 

Based on the risk score and clinicopathological 
features, we constructed the nomogram model and 
calibration curve and calculated the area under curve 
(AUC) and the 1-, 3-, and 5- year survival rate to 
predict the prognosis by using the “survival” 
packages. 

The clustering analysis of BMGs 
We used the “ConsensusClusterPlus” package to 

divide the training cohort into two clusters (cluster A 
and B) based on BMGs. Then, we used "survival" 
package to analyze the K-M survival difference 
between the two clusters. To test whether the samples 
of BMGs can effectively distinguish the clustering 
results, we used the “ConsensusClusterPlus” 
packages to draw PCA plots. In addition, we plotted 
the Sankey's diagram by using the “ggalluvial” and 
“dplyr” packages [29] to show the relationship among 
clusters, risk groups, and survival status. 

To determine the relationship between biological 
behaviors and different gene clusters, we downloaded 
“c2.cp.kegg.v7.4.symbols.gmt” from MSigDB. The 
heatmap for displaying the differential pathways was 
plotted by using “GSEABaes” and “GSVA” packages 
[30, 31]. To investigate the association of gene clusters 
with the tumor microenvironment (TME) and to 
evaluate the levels of immune cell infiltration, we 
performed single-sample gene set enrichment 
analysis (ssGSEA) using “GSEAbase” and “GSVA” 
packages.  

We used the “limma” packages to screen the 
differential genes of the training cohort based on gene 
clusters. The screening criteria were the adjusted p 
<0.05 and log|Fc|>1. In addition, to analyze the 
potential biological functions and signaling pathways 
that may be involved, Gene Ontology (GO) and Kyoto 
Encyclopedia of Gene and Genomes (KEGG) 
enrichment analyses were performed by using 
“clusterProfiler” packages [31]. 
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Immune evaluation of TME between the high- 
and low-risk groups 

To study the related immune cells of BMGs, the 
proportion of immune cells was quantified based on 
risk score by using the CIBERSORT algorithm. The 
relative scatters diagram and heatmap were plotted 
by using “ConsensusClusterPlus” package [32]. The 
AML samples in the fraction of 23 immune subsets 
were calculated with the CIBERSORT algorithm [33]. 
To explore the tumor purity in the TME, the score was 
estimated by the “ESTIMATE” package [34].  

The analysis of mutation and drug sensitivity in 
AML 

We summarized the frequency and somatic 
mutation of CNV and plotted the landscape of genetic 
alternation and expression variation. Next, we 
explored the drug sensitivity between the high- and 
low-risk groups by “pRRophetic” packages [35]. 

Results 
The genetic landscape of BMGs in AML 

We performed preliminary processing of the 
data from public database and summarized all 
samples’ clinical features in Table 1. The main process 
of this study is shown in Figure 1A. Figure 1B shows 
the genetic landscape of BMGs in AML and the 
genetic mutation frequency of 222 genes. Among 134 
samples, mutations were detected in 29 (21.64%) AML 
samples. Among mutation genes, SMC3 was the gene 
with the highest mutation rate (3%). Expected SMC3, 
the other 53 genes all had 1% mutation rate. Figure 1C 
displays the chromosome location of CNV alteration 
of BM-related genes. Meanwhile, in the CNV analysis, 
we found frequent alternations in BMGs (Figure 1D 
and Figure S1). The CNV amplifications are shown in 
red spots and the deletions are shown in green spots. 
LAD1, FMOD, OPTC, LAMB3, USH2A, TFGB2, NID1, 
ADAMTS8, ADAMTS15, ROBO3, ITGB2, COL18A1, 
COL6A1, and, COL6A2 were the most amplified 
BMGs, while ITGA9, RPSA, COL7A1, LAMB2, DAG1, 
SEMA3B, ADAMTS9, FBN2, ADAMTS19, TGFBI, 
SPOCK1, SPARC, PTN, ADAMTS18, SERPINF1, 
MATN4, SDC4, and CTSA had the most deletion 
mutations.  

Identification of the differential BMGs and 
division of the high- and low-risk groups 

488 AML and normal samples were obtained 
from TCGA. According to the criteria of log|Fc|>2 
and P value < 0.05, we identified 20 differential BMGs 
from 222 BMGs. By univariate Cox regression analysis 
and LASSO, 6 differential genes with the optimal λ 
value were obtained (Figure 2A and 2B). Three 

differential genes (ITGA4, ROBO4, and MMP7) were 
eventually identified as the prognostic BMGs after 
multivariate Cox regression analysis (Figure 2C). It 
showed that ITGA4 was downregulated and other 2 
genes were upregulated in AML. In addition, we 
preserved the coefficients of 3 prognostic BMGs to 
calculate the risk score (Table S2). 

 

Table 1. The clinical characteristics of studied datasets. 

 GSE37642 TCGA AML GSE12417 
Sample counts 402 142 162 
Age, years mean 
(SD) 

54.57(14.90) 54.39(16.34) 55.63(14.88) 

Gender 
Male 

 
- 

 
78 

 
- 

Female - 64 - 
FAB subtypes 
 M0 

 
14 

 
- 

 
5 

 M1 84 - 45 
 M2 117 - 45 
 M3 19 - 0 
 M4 104 - 42 
 M5 47 - 19 
 M6 15 - 6 
 M7 2 - 0 
Overall survival 
 Time, years mean 
(SD) 

 
2.84(3.74) 

 
1.57(1.64) 

 
1.25(1.16) 

Survival status 
 Dead 

 
295 

 
89 

 
103 

 Alive 107 53 59 

 
We divided the training cohort into high- and 

low-risk groups based on the median risk score 
calculated from the expression levels of the 3 BMGs, 
which reflects the stratification solely by risk score 
without considering transcriptional patterns (Figure 
2D). The patients with low scores had a distinctly 
favorable overall survival compared to those with 
high scores. In addition, the AUC of 1-, 3-, and 5-year 
ROC curves was 0.804, 0.731, and 0.785, respectively 
(Figure 2E). Moreover, the distribution plot of the risk 
score displayed that the survival time decreased with 
the increase of the risk score (Figure 2F and 2G). 

The evaluation of risk score in validation 
cohorts 

To validate the BMGs predictive performance, 
we introduced two external datasets (GSE12417 and 
GSE37642) as the validation cohort. First, we merged 
the samples from two datasets and obtained 585 
samples. The patients were also divided into high- 
and low-risk groups according to the same methods 
of the training cohort. Then, we performed survival 
analysis and plotted the ROC curve, and risk score 
distributed plots, respectively (Figure 3A-3D). In 
Figure 3A, K-M analysis showed that the two groups 
had great survival difference (P<0.001). Moreover, we 
mapped the ROC to evaluate the prognostic values 
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(Figure 3B). In addition, Figure 3C-3D reveals that the 
risk curve and survival status curve of four cohorts 
suggested that the high-risk sample can be easily 
separated from other samples. Combined with Figure 

2E, the validation cohort AUCs of 1-, 3- and 5 years 
were 0.704, 0.722, and 0.689, respectively. Above all, 
we found that the risk score could be perfectly used to 
predict the clinical outcome of AML patients. 

 

 
Figure 1. Genetic mutation of BMGs in AML. (A) The flow chart of this study. (B) Tumor mutation burden frequencies of 222 BMGs in 134 AML patients. (C) Locations of the 
CNV alteration on chromosomes in BMGs. (D) Frequencies of CNV amplification and deletion among major BMGs.  
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Figure 2. Identification of the differential BMGs and division of two risk groups. (A-B) LASSO analysis for 6 genes. (C) Hazard ratio of multivariate Cox model to identify 3 BMGs. 
(D) K-M analysis of survival in high- and low-risk groups. (E) ROC with AUC at 1-, 3-, and 5-years. (F-G) Risk curve and survival status curve showing risk score distribution.  
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Figure 3. The evaluation of risk score in the validation cohort. (A) K-M analysis of survival in external validation cohort. (B) ROC curves to predict the sensitivity and specificity 
of 1-, 3-, and 5-year survival of validation cohort. (C-D) risk curve and survival status curve showing risk score distribution in validation cohort.  

 

Construction of a nomogram model to predict 
prognosis 

We constructed a nomogram model based on 
risk score and clinicopathological features (Age). We 
finally identified age and risk score as independent 
prognostic factors to establish a nomogram after 
univariate and multivariant Cox regression analysis 
(Figure 4A-4B). This model could predict the 1-, 3- and 
5-year survival rates of AML patients (Figure 4C). 
Meanwhile, the calibration curve is shown in Figure 
4D. The integrated AUC (Figure 4E) in predicting the 
matched degrees between high-risk patients and 
death outcome was 0.733, which was significantly 
higher than age (AUC=0.688) and risk score 
(AUC=0.659). In Figure 4F, DCA analysis also shown 
this exciting result. The results suggest that the 
nomogram model may have stronger efficiency to 
predict the prognosis of AML patients and that 
high-risk AML patients usually accompanied with 
poor survival outcomes. 

Identification of gene clusters based on 3 
BMGs 

Using the transcriptional profiles of the 3 BMGs, 
we applied a consensus clustering algorithm to 
stratify the training cohort into two clusters, 

designated as cluster A and cluster B (Figure 5A). 
These clusters exhibited distinct transcriptional 
patterns, and cluster B was associated with a higher 
risk score and poorer prognosis (Figure 5B). The PCA 
analysis of the two clusters showed that the two 
clusters could greatly distinguish two subtypes 
(Figure 5C). The relationship between two gene 
clusters with clinical characteristics was shown in 
Figure 5D. There was a distinct difference in risk score 
between two gene clusters. The risk score of cluster B 
was higher than cluster A (p=6.4e-08) (Figure 5E). In 
addition, Sankey's diagram was used to visualize the 
relationship among clusters, risk groups, and survival 
status (Figure 5F). Therefore, cluster B was associated 
with high-risk group and poor outcome. 

We screen the differential genes of the training 
cohort based on distinct gene subtypes. We identified 
285 differential genes between two subtypes and then 
analyzed the biological functions and pathways of 
these genes by using GO and KEGG enrichment 
analysis. GO enrichment analysis showed that these 
genes were significantly enriched in cellular functions 
such as cellular adhesion and regulation (Figure 5G). 
The KEGG pathway enrichment analysis of 
differential genes displayed that they mainly 
participated in cellular activities and regulative 
pathways (Figure 5H). 
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Figure 4. Construction of nomogram to predict the survival of AML patients. (A-B) Univariant and multivariant Cox analysis of clinicopathological and risk score of AML samples. 
(C) The nomogram integrates age and risk score for AML patients. (D) 1-, 3- and 5-years calibration curves of nomogram. (E) AUC of nomogram, risk score and age. (F) The DCA 
curves of the nomograms compared for 1-, 3- and 5-years overall survival in AML.  



 Journal of Cancer 2025, Vol. 16 

 
https://www.jcancer.org 

1236 

 
Figure 5. Identification of BMGs gene clusters. (A) Consensus heatmap of two clusters (k=2). (B) K-M analysis showing the relationship of 3 BMGs with the survival time. (C) 
PCA analysis between two gene clusters. (D) Heatmap of gene clusters and clinicopathological features of AML patients. (E) The relationship of risk score and gene clusters 
(p<0.001). (F) Sankey’s diagram of gene cluster distribution among high- and low-risk groups and clinical outcomes. (G-H) GO and KEGG enrichment analysis between two gene 
clusters. 
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The features of the biological activities and 
TME between two clusters 

To determine different biological behaviors of 
distinct gene clusters, we performed GSVA analysis 
and plotted a heatmap. As shown in Figure 6A, 
Cluster A showed enrichment in protein metabolism 
and protein-relative diseases, such as protein export, 
proteasome, regulation of autophagy, drug 
metabolism and enzymes, pentose phosphate 
pathway, Alzheimer's disease, Parkinson's disease, 
and Huntington's disease. Another main metabolism 
pathway was glycometabolism, including starch and 
sucrose metabolism, and the interconversion of 
pentose and glucuronate. This indicates that cluster A 
may be more likely to be associated with significant 
biochemistry reactivity, especially protein function 
and glycometabolism. Cluster B showed significant 
enrichment of the intercellular and intracellular signal 
transduction and their related pathways, such as 
dorsoventral axis formation, phosphatidylinositol 
signaling system, inositol phosphate metabolism, and 
taste transduction.  

We performed ssGSEA analysis to investigate 
the relationship between immune cells and gene 
clusters and to explore the role of BMGs in the TME of 
AML. The cell infiltration was analyzed and the 
activated immune cells were identified (Figure 6B). 
Cluster A was only associated with higher immune 
infiltration of macrophages. However, cluster B was 
related to the upregulation of activated B cells, and 
type1, 2, 17 Th. Thus, the infiltrated immune cells in 
cluster B may be associated with poor prognosis. 

The immune infiltration in the high- and 
low-risk group 

We also evaluated the relationship between the 
risk score and the abundance of immune cells using 
the ESTIMATE algorithm. In Figure 7A, the 
ESTIMATE score was significantly associated with the 
abundance of resting mast cell (cor=-0.41), monocyte 
cell (cor=0.34), plasma cell (cor=-0.21), and follicular 
helper T cell (cor=-0.26). In addition, we also assessed 
the association between high-/low-risk groups and 
the ESTIMATE scores (Figure 7B), which showed that 
a high- risk score was also related to a higher immune 
score, stromal score, and estimate score. 

The mutation and drug sensitivity analysis in 
AML 

We analyzed the CNV of the somatic mutations 
between high- and low-risk groups in the TCGA 
training cohort. According to our previous risk score 
model, we found the CNV genes and mutation 
classifications of high- and low-risk groups. The 

mutations of DNMT3A, KIT, TP53, and RUNX1 were 
shown in Figure 7C, with the highest mutation rate in 
the high-risk group. The main mutation forms of 
DNMT3A were missense mutation and frameshift 
deletion; those of KIT were missense mutation, 
nonsense mutation and frame hit; those of TP53 were 
missense mutation, multi-hit, and frameshift deletion; 
and, those of RUNX1 were missense mutation, 
multiple hits, and frameshift deletion. In Figure 7D, it 
is shown that NPM1, IDH2, DNMT3A, WT1, and 
IDH1 were the five genes with the highest mutation 
rate in the low-risk group. The mutation forms of 
NPM1 were frameshift insertion; those of IDH1 and 
IDH2 were missense mutation; those of WT1 were 
missense mutation and frameshift insertion; and, 
those of DNMT3A were missense mutation and 
multiple hits.  

Finally, we estimated the sensitivities of patients 
to current therapeutic drugs in the two risk groups. To 
analyze the drug sensitivity of AML cells to the small 
molecular drugs, we used the IC50 data of drugs from 
"pRRophetic" package. Moreover, we obtained the 15 
differential results of drug sensitivity in two risk 
groups (Figure 7E and Figure S2). We found that the 
high-risk group had a lower IC50 values of 
Roscovitine and Bortezomib; while, the low-risk 
group had a lower IC50 value of Axitinib, Bosutinib, 
Midostaurin, Thapsigargin, and AKT inhibitor VIII. 

Discussion 
In this study, we identified three BMGs through 

bioinformatics analysis and established a risk score 
model to predict the prognosis of AML patients. 
While most previous studies on BMGs have focused 
on their roles in solid tumors, our findings expand 
their significance to hematological malignancies, 
particularly AML. Unlike solid tumors, where the BM 
acts as a barrier that tumor cells must breach for 
metastasis, AML originates and progresses within the 
unique hematopoietic bone marrow microenviron-
ment. This niche provides structural and functional 
support for hematopoietic stem and progenitor cells 
and plays a pivotal role in leukemogenesis. 

ROBO4 and MMP7, two of the key BMGs 
identified in our study, are extensively documented 
for their involvement in angiogenesis and ECM 
remodeling in solid tumors. We propose that their 
dysregulation may contribute to AML 
leukemogenesis through mechanisms specific to the 
bone marrow microenvironment, such as disrupting 
ECM integrity and altering angiogenesis within the 
niche. ROBO4, as a critical regulator of vascular 
stability and angiogenesis, may lead to aberrant 
angiogenesis and increased vascular permeability 
when dysregulated. This could disrupt the bone 
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marrow niche and create a permissive environment 
for leukemic proliferation [36, 37]. Similarly, MMP7’s 
proteolytic activity may facilitate ECM degradation, 
disrupting cellular adhesion and promoting the 
mobilization of leukemic cells [22, 24]. This 
degradation may also disrupt cytokine gradients and 
immune interactions within the bone marrow niche, 

contributing to leukemic expansion. Dysregulated 
ROBO4 expression can lead to aberrant angiogenesis 
and increased vascular permeability, potentially 
disrupting the bone marrow niche and creating a 
permissive environment for leukemic proliferation 
[22]. 

 
 

 
Figure 6. Analysis between two clusters. (A) GSVA analysis of biological enrichment pathways in two gene clusters. (B) ssGSEA analysis of infiltrating immune cell types in two 
clusters. 
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Figure 7. Estimation of the TME, somatic mutation frequencies, and drug sensitivity between high- and low-risk groups. (A) Relationship between risk score and immune cell 
type. (B) Relationship between high- and low-risk groups and TME score. (C-D) Frequencies of CNV between high- and low-risk groups. (E) The relationship between the 
high-risk group and sensitive drugs. 
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We established an effective risk score model 
based on 3 BMGs to predict prognosis. We performed 
analyses on clinicopathological characteristics, 
prognosis, mutation, TME, and drug sensitivity and 
found significant differences between the two risk 
groups. Moreover, based on risk scores and patients' 
age, we conducted a nomogram model and a 
calibration curve. We found that BMGs may predict 
the clinical and therapeutic outcomes of AML. This 
model might be used to classify AML patients and 
provide novel ideas for targeted therapies. 

In our study, Sankey's diagram indicated that 
cluster A and B were associated with low- or high-risk 
groups. To further explore whether the specific 
signaling of gene clusters are different in AML, we 
performed GO and KEGG analysis. We found that the 
mainly enriched pathways included cellular or 
intercellular adhesion and the regulation of cytokine 
production. Therefore, we assume that cellular 
adhesion is closely related to the progression of the 
tumor. Next, we investigated the relationship among 
cellular adhesion molecules, cytokine regulation, and 
AML. Cellular adhesion molecules have been widely 
studied in many solid tumors. Focal adhesion kinase 
(FAK) promoted CD8+ T cell depletion and Treg 
recruitment by regulating chemokine or cytokine 
transcription, which suppressed immune reactivities 
and promoted squamous cell carcinoma survival [38]. 
In colon cancer, FAK phosphorylation enhanced the 
activity of the transcription factor NANOG, which 
activated PTK2 to initiate the NK-κB pathway to 
support the progression of carcinoma cells. For 
another, NANOG also promoted the expression of 
FAK in colon carcinoma cells through positive 
feedback [39]. Moreover, the inhibitor of FAK can 
make pancreatic cancer sensitive to checkpoint 
therapy again [40]. In recent study, FAK supported 
the survival of AML cells by regulating the interaction 
between leukemia and stromal [41]. In addition, other 
cell adhesion molecules, such as CD44 and CD56, be 
associated with CXCL12-induced chemoresistance 
and the promotion of AML progression [42, 43]. As 
for cytokine, IL10 inhibits cytokine production of 
activated macrophages and T-helper 1 cells and help 
AML cell to escape [44]. Survivin family expression 
and regulation can be detected and played an 
important role in suppressing apoptosis in AML [45]. 
Finally, other cytokines, such as TNF-α, IL-1β, and 
IL-6 tended to increase the aggressiveness of AML, 
and anti-inflammatory molecules such as TGF-β seem 
to block AML progression. Dysregulation of the 
complicated interactions between proinflammatory 
and anti-inflammatory cytokines in AML may create a 
tumor-promoting microenvironment that influences 
the proliferation, survival, and drug resistance of 

AML cells [46]. 
TME, in which immune cells (such as monocytes, 

neutrophils, lymphocytes, and macrophages) are the 
main components, is importantly involved in AML 
progression. These immune cells can participate in 
various immune reactivities and inflammatory 
responses to assist in tumor survival [47]. The ssGSEA 
analysis showed cluster B with poor prognosis more 
infiltrate Th1 and Th 2 cells whereas Th17 was linked 
with a better prognosis, which revealed the roles of Th 
cells in AML. Th1/Th2 imbalance is involved in the 
autophagy and development of AML. IRF2 - INPP4B 
axis has been shown to inhibit apoptosis by inducing 
autophagy in AML. And IRF2-INPP4B axis mediated 
regulation of Th1/Th2 balance has promoted 
autophagy and inhibited apoptosis in AML [48]. 
However, Th17 cells actively suppressed the immune 
state and may promote infections and probably tumor 
escape [49]. T follicular helper cells can increase the 
expression of chemokine receptor CXCR5, while 
decreasing the expression of CCR7, and migrating to 
B cell zone under the action of chemokine CXCL13 
produced by stromal cells in B cell zone. The 
interaction between T follicular helper cells and B cells 
can promote immune-activated germinal center 
response, which further activates CCL19-21/CCR7 
axis and CXCL13/CXCR5 axis and promotes tumor 
development [50-52]. In AML, these mechanisms may 
explain that poor prognosis is relevant to high 
infiltration of cluster B and unveiled the complex roles 
of immune cells in tumors.  

In addition, our results provide a foundation for 
future investigations into the functional consequences 
of ROBO4 and MMP7 dysregulation in AML. Clinical 
trials targeting angiogenesis and ECM components in 
AML, such as those focusing on VEGF inhibitors and 
matrix metalloproteinase inhibitors, could benefit 
from incorporating BMG profiling to stratify patient 
subgroups and optimize therapeutic outcomes [53]. 

However, there are some limitations in this 
study. Firstly, all analyses were based on data 
downloaded from public databases, and all samples 
used in our study were obtained retrospectively. 
Thus, selective bias is inevitable. More independent 
AML datasets should be used in the future to improve 
the accuracy of prognostic models. Large prospective 
studies and additional in vivo and in vitro studies are 
needed to verify our findings. In addition, other 
clinical data, like gender, and stages, are unavailable, 
which may affect the prediction of prognosis.  

Conclusion 
We identified 3 BMGs by using bioinformatics 

and constructed a prognostic model to predict the 
survival of AML patients. Our study revealed that 
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BMGs played an important role in immune TME. 
Finally, this study confirmed that BMGs were related 
to AML development. Our findings provide new 
ideas for guiding therapy for patients with AML. 
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