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Abstract 

Background: This study aimed to investigate glycogen metabolism in gastric cancer (GC) and develop a 
glycogen-based riskScore model for predicting GC prognosis. 
Methods: Patients’ expression profiles for 33 tumor types were retrieved from TCGA. Four GC bulk and one 
single-cell sequencing datasets were obtained from GEO database. This study also enrolled a bladder urothelial 
carcinoma immunotherapeutic IMvigor210 cohort. The ssGSEA method was conducted to assess glycogen 
biosynthesis and degradation level. Consensus clustering analysis was conducted to identify different clusters. A 
glycogen riskScore signature was developed to evaluate prognostic value across different cohorts. Besides, in 
vitro experiments were conducted to further evaluate the role of glycogen metabolism related genes in GC. 
Results: Both glycogen biosynthesis and degradation were significantly associated with worse overall survival 
and were also related with malignant phenotype in GC at both bulk and single-cell levels. Differential outcomes 
and immune functions were verified in the three identified clusters. The constructed glycogen riskScore model 
accurately classified GC patients with different outcomes, genomic and immune landscape, and performed well 
in predicting prognosis through external validation, immunotherapy and pan-cancer cohorts. Furthermore, the 
riskScore could predict response to chemotherapy and immunotherapy. Functional analyses revealed the 
signature’s connection to pro-tumor and immunosuppression related pathways across pan-cancer. 
Additionally, glycogen metabolism related genes were found to regulate the malignant phenotypes of GC cells. 
Conclusion: This study revealed important roles of glycogen metabolism in promoting progression of GC and 
presented a glycogen riskScore model as a novel tool for predicting prognosis and treatment response. 
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Introduction 
Gastric cancer (GC) is a fatal malignancy that 

ranks second in cancer-associated mortality 
worldwide [1]. Many GC patients are diagnosed with 
advanced stages due to lack of apparent symptoms, 
resulting in a low 5-year survival rate [2]. Nowadays, 

immunotherapy has emerged as a recent 
breakthrough for cancer treatment and has been 
found to be an effective strategy. However, it has 
shown limited effectiveness in treating GC patients 
[3]. Hence, identifying reliable prognostic biomarkers 
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is crucial for risk stratification and improving clinical 
outcomes in GC patients.  

Recently, many studies have investigated the 
role of glucose metabolism in cancer development, 
notably the Warburg effect which drives glycolysis for 
tumor cell energy [4-6]. As a large and branched 
polymer of glucose, glycogen acts as a glucose store 
within the cell. Although in the 1980s, it was observed 
that glycogen was abundant in several cancer cell 
lines [7], few studies have explored the impact of 
glycogen metabolism in cancer. However, recent 
studies have highlighted glycogen's significance in 
aiding cell survival in nutrient-deprived and hypoxic 
tumor microenvironments (TME) [8-12]. In GC, 
increased glycogen degradation could promote 
survival and inhibit apoptosis [13], while mobilization 
aid metastasis [14]. These findings underscore the 
crucial role of glycogen metabolism and its potential 
as a therapeutic target in cancer, although deeper 
insights into its interactions during carcinogenesis are 
still needed.  

Using diverse data sources (genomics, 
transcriptomics, single-cell sequencing, and in vitro 
experiments), this study unveiled the crucial role of 
glycogen metabolism in pan-cancer, with a particular 
focus on GC. A glycogen riskScore model was built 
via consensus clustering and least absolute shrinkage 
and selection operator (LASSO) Cox regression. This 
model could predict chemotherapy and 
immunotherapy responses, and serve as an 
independent indicator for GC prognosis. Functional 
analyses additionally highlighted the close 
interactions of the model with TME as well as 
immune reaction. Moreover, the credibility and 
functional roles of the glycogen riskScore signature 
were further confirmed in pan-cancer. Besides, in vitro 
experiments revealed the crucial roles of glycogen 
metabolism related genes in the progression of GC. 

Methods 
Data collection 

Transcriptome profiles with clinical data were 
downloaded from the The Cancer Genome Atlas 
(TCGA; https://portal.gdc.cancer.gov/) and GEO 
(http://www.ncbi.nlm.nih.gov/geo/). For GC, three 
mRNA microarray datasets (GSE57303, GSE62254 and 
GSE84437) and TCGA- stomach adenocarcinoma 
(STAD) data were merged into a meta-cohort. An 
independent validation cohort (GES15459) was 
sourced for assessing the model. The batch effects of 
TCGA and GEO datasets were removed by the 
‘combat’ function of the R package ‘sva’. The 
immunotherapeutic IMvigor210 cohort data were 
downloaded using the “IMvigor210CoreBiology” R 

package (http://research-pub.gene.com/ 
IMvigor210CoreBiologies/) [15]. Additionally, 
single-cell transcriptome data (GSE163558) from GC 
patients' samples (three primary tumor (PT), one 
adjacent non-tumor (NT), and six metastatic samples 
(M)) were obtained from GEO [16]. 

Single-cell RNA sequencing data and analysis 
The Seurat package (version 4.1.3) was applied 

to perform single-cell RNA sequencing (scRNA-seq) 
analysis [17]. Transcriptomes were filtered with 
parameters as min. cells = 3 and min. features = 250, 
the proportion of mitochondrial genes < 35% of 
counts, and the number of cell genes ranged from 500 
to 6,000. After normalization and centralization of the 
data, we identified hypervariable genes and applied 
principal component analysis (PCA) followed by 
t-distributed stochastic neighbor embedding (tSNE) 
dimensionality reduction for unsupervised clustering 
and unbiasedly visualizing cell populations on a 
two-dimensional map. Cell subsets were reannotated 
by SingleR package via verification of the expression 
of established markers specific to diverse cell clusters. 
The marker genes for each cell subset clusters were 
conducted by "FindAllMarkers" function to identify 
differentially expressed genes (DEGs) of each cell 
type. “FeaturePlot” and “VlnPlot” were applied to 
visualize the levels of glycogen metabolism or gene 
expression in different subsets of cells. 

Functional enrichment analysis 
Single-sample gene set enrichment analysis 

(ssGSEA) algorithms were applied to quantify the 
enrichment score of each sample or single-cell in 
glycogen biosynthesis and degradation pathways 
(gene sets from Rosario’s study), fourteen 
programmed cell death (PCD) patterns (intrinsic 
apoptosis, extrinsic apoptosis, necroptosis, 
pyroptosis, ferroptosis, cuproptosis, entotic cell death, 
netotic cell death, parthanatos, lysosome-dependent 
cell death, autophagy-dependent cell death, 
alkaliptosis, oxeiptosis, and immunogenic cell death 
(ICD)), and immune cell infiltration [18-21]. Gene set 
variation analysis (GSVA) was performed to find the 
most significant pathways between different groups, 
according to the gene sets “c2.cp.kegg.v2022.1. 
Hs.symbols.gmt” and “h.all.v2022.1.Hs.symbols.gmt” 
downloaded from the MsigDB database 
(https://www.gsea-msigdb.org/gsea/msigdb/) [22]. 
GSEA was conducted with with R package 
“org.Hs.eg.db” “clusterProfiler” “enrichplot” and 
“DOSE/limma” to investigate the enrichment of Gene 
Ontology (GO) and Kyoto Encyclopedia of Gene and 
Genome (KEGG) pathways between high and 
low-risk group. Gene sets with p < 0.05 were regarded 
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as significant enrichment. GO and KEGG functional 
enrichment analyses of the list genes were performed 
with “clusterProfiler” and “org.Hs.eg.db” packages 
and visualized with “enrichplot” and “ggplot2” 
packages.  

Consensus clustering and principal component 
analysis 

R package “ConsensusClusterPlus” was adopted 
for consensus clustering analysis to classify GC 
patients from meta-cohort into distinct subgroups. 
The k-means algorithm was applied to choose the 
optimal number of groups. PCA was carried out with 
“ggplot2” and “Rtsne” packages to evaluate the 
distribution of patients in different clusters. 

Construction of glycogen riskScore model 
The DEGs between each two of the three clusters 

(identified from the above consensus clustering 
analysis) were obtained using the Wilcoxon rank-sum 
test by setting a threshold of adjusted P < 1E-8. The 
intersection genes of the three comparisons were 
identified for further analyses. Univariate Cox 
regression was performed with “survival” package to 
acquire significant genes correlated with OS in the 
meta-cohort from the intersection genes. LASSO Cox 
regression analysis was additionally conducted to 
avoid overfitting between signatures with “glmnet” 
package. With the expression levels of the identified 
genes and regression coefficients, the risk score for 
each patient could be calculated by the formula: 
riskScorei=∑ 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 ∗ 𝛽𝛽𝑖𝑖𝑛𝑛

𝑖𝑖=1 , where n was the number of 
the identified genes, 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 was the expression level of 
the gene, and 𝛽𝛽𝑖𝑖 was the corresponding regression 
coefficient. According to the median risk score, GC 
patients in meta-cohort were separate into low- or 
high-risk groups.  

Prognosis analysis  
Kaplan-Meier (K-M) curves with log-rank test 

and the forest plots assessed by the univariate or 
multivariate Cox proportional hazards were 
performed to compare the significance of differences 
in survival time between GC patients with different 
features, using ‘survival’ and ‘survminer’ packages. 
The package “timeROC” was applied to generate 
time-dependent receiver operating characteristic 
(ROC) curves and calculate area under the curve 
(AUC) values to evaluate the specificity and 
sensitivity of the risk score. The correlations of the risk 
score and different clinical parameters including age, 
gender and stage were explored by the chi-square test 
or Fisher’s exact test. And all the heatmaps were 
presented by “pheatmap” package. A predictive 
nomogram was additionally constructed by 

integrating different clinical characteristics with the 
risk score using the “rms” package. The association 
between different glycogen metabolism levels, 
glycogen clusters, risk score, stage and OS status was 
evaluated and visualized by the “GGalluvial” and 
“ggplot2” packages. 

Comparison of prognostic value with other 
reported signatures 

To further estimate the prognostic value of the 
glycogen riskScore model, ten other GC signatures 
derived from the 10 latest published studies were 
identified, including Liu’s glycolysis signature [23], 
Jiang’s early-stage signature [24], Han’s cuprotosis 
signature [25], Sang’s TME signature [26], Zhou’s 
oxidative stress related gene (OSRG) signature [27], 
Xu’s apoptosis signature [28], Zhang’s chromobox 
(CBX) signature [29], He’s chemokine and chemokine 
receptor (CCR) signature [30], Mak’s 
cancer-associated fibroblast (CAF) signature [31], and 
Li’s necroptosis-related gene (NRG) signature [32]. To 
ensure consistency and comparability, the risk score 
for each patient was calculated using the same Cox 
regression analysis method as employed for the 
glycogen riskScore model. This approach allowed us 
to directly compare the predictive capabilities of these 
various models on a uniform scale. The prognostic 
value of each model was firstly evaluated using K-M 
curves complemented by log-rank tests. This step was 
designed to compare survival outcomes between low- 
and high-risk groups defined by each signature, 
providing insights into the prognostic capability of 
each model. Further, we employed time-dependent 
ROC analysis, using median risk score as cutoff 
values, to assess the predictive accuracy of each 
signature model over time. This analysis is crucial for 
understanding how well each model distinguishes 
between different risk groups at various time points. 
Additionally, the concordance index (C-index) for 
each model was calculated using the R package 
“survcomp”. The C-index could provide a 
quantitative assessment of each model’s prediction 
accuracy and reliability, measuring the concordance 
between predicted and observed survival outcomes. 
Restricted mean survival (RMS) time curve was 
analyzed and plotted with “survival” and “ggplot2” 
packages. RMS could offer an estimate of the average 
survival time within a specified time frame, aiding in 
understanding the OS benefit associated with each 
signature. 

Gene correlation analysis and protein-protein 
interaction network 

Pearson’s correlation analysis was performed to 
explore the associations among the genes included in 
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the glycogen riskScore model. The correlation 
network was visualized among genes with |r| > 0.4 
by using “reshape2” and “igraph” packages. A 
protein-protein interaction (PPI) network of the genes 
in the glycogen riskScore model was built with a 
confidence level of 0.15 via the STRING database 
(version 11.5, https://string-db.org/) [33]. Cytoscape 
software (version 3.6.1) was used to visualize the 
network [34].  

Prediction of chemotherapy and 
immunotherapy response  

To explore the predictive value of the glycogen 
riskScore model for chemotherapy in GC patients, we 
performed a ridge regression based on the gene 
expression profiles of meta-cohort and Genomics of 
Drug Sensitivity in Cancer cell lines. The 
half-maximal inhibitory concentration (IC50) of eight 
common chemotherapy related agents including 
axitinib, cisplatin, docetaxel, doxorubicin, 
gemcitabine, metformin, paclitaxel, rapamycin, and 
sorafenib were calculated with “pRRophetic” package 
[35]. Using the CellMiner database, the relationship 
between the glycogen riskScore and sensitivity of 216 
antitumor drugs was also explored in the National 
Cancer Institute (NCI) 60 cancer cell lines from nine 
different malignancies [36].  

The immunophenoscore (IPS), scored as z scores 
by integration of four immunogenicity-related cell 
types (effector cells, immunosuppressive cells, MHC 
molecules, and immunomodulators), is significantly 
related with response to immunotherapy regimens 
[37]. Tumor Immune Dysfunction and Exclusion 
(TIDE, http://tide.dfci.harvard.edu) is an advanced 
bioinformatics method to predict immune checkpoint 
inhibitor (ICI) responses based on transcriptome 
profile [38]. IPS and TIDE were utilized to evaluate 
the association of glycogen riskScore model and 
immunotherapy responses. And the results were 
presented by “ggpubr” package. 

Assessment of tumor mutation burden, TME, 
and immune checkpoint correlation 

The mutation landscape of glycogen metabolism 
genes and the top altered genes in low- and high-risk 
groups was displayed by waterfall plots. Difference of 
mutation rate of the top altered genes in low- and 
high-risk groups were analyzed using Wilcoxon test. 
TMB (tumor mutation burden) score, refers to 
mutations (Mut) per one million coding bases (Mb), 
was calculated for each sample from TCGA cohort 
with “maftools” package [39]. Cytolytic activity (CYT) 
score and predicted neoantigen data for GC patients 
were retrieved from Rooney's study to evaluate 
intergroup difference [40]. The immune infiltration of 

GC patients was estimated with XCELL, TIMER, 
QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT 
and CIBERSORT-ABS algorithms. These diverse 
algorithms allowed for a comprehensive assessment 
of the immune landscape in the TME. R package 
“estimate” was applied to calculate the stromal and 
immune score of each patient, providing a measure of 
the immune and stromal components of the tumor. 
The stemness indexes of DNA methylation-based 
stemness scores (DNAss) and mRNA 
expression-based stemness scores (RNAss) were 
obtained from the previous study, which helped in 
understanding the stem-like characteristics of the 
tumor [41]. The correlation of above factors and 
glycogen riskScore model was performed with 
spearman’s correlation test and visualized with 
“ggplot2” package. In addition, the relationship of 
common immune checkpoint genes, m6A regulators 
and cuproptosis genes with glycogen riskScore was 
also explored with spearman’s correlation test. 

Validation of riskScore model in pan-cancer 
The risk score of each patient with 33 types of 

cancers from TCGA datasets was calculated with the 
same method as that in GC. The K-M method with 
log-rank test was applied to generate and compare the 
difference of survival curves for patients with each 
type of cancer in low- and high-risk groups with 
median as cutoff value. R packages “survival” and 
“forestplot” were used to present the results of 
univariate analysis of riskScore in pan-cancer using 
the Cox proportional hazards regression model. 
Microsatellite instability (MSI) status and neoantigen 
data of pan-cancer were retrieved from The Cancer 
Immunome Atlas (TCIA, https://tcia.at/home). The 
correlation of riskScore with TMB, MSI and 
neoantigen was analyzed with spearman’s correlation 
test and displayed as radar map with “fmsb” package. 
The relationship of riskScore with common 
checkpoint genes was also evaluated by pearson’s 
correlation analysis and showed with “Reshape2” and 
“RColorBrewer” packages. 

Cell culture and siRNA transfection 
The human GC cell line HGC-27 used in our 

study was obtained from the National Institute of 
Cells (Shanghai, China). The cancer cells were 
cultivated in RPMI‑1640 medium with 10% fetal calf 
serum (Gibco; USA) and maintained at 37˚C in 5% 
carbon dioxide. The siRNAs targeting CDS1, LARP6 
and TUBB6 with si-NC were synthesized by Generay 
(Shanghai, China). The sequences were: si-CDS1#1: 
5′-AAU AUC UGU UUC UUU GUC GCU-3′, 
si-CDS1#2: 5′-AUA GAU GAU CAG GAA AAA 
CAA-3′; si-LARP6#1: 5′-UCC AAC UCG UCC ACG 
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UCC U-3′, si-LARP6#2: 5′-ACA AGC UGG GAU 
AUG UGA GCG UUA A-3′; si-TUBB6#1: 5′-UCU 
AUU CCG ACU AUC CAU CGA-3′, si-TUBB6#2: 
5′-UGA CUA AUU ACA UGA CUU GGC-3′; si-NC: 
5'-UUC UCC GAA CGU GUC ACG UTT-3'. 
Lipofectamine 2000 (Thermo Fisher Scientific, USA) 
was used to transfect the siRNAs and si-NC into 
HGC-27 cells. 

Quantitative Real-time Polymerase Chain 
Reaction (qRT-PCR) 

Total RNA of HGC-27 cells was extracted with 
Trizol (Invitrogen, Carlsbad, CA, USA) in accordance 
with the manufacturer’s protocol and further assessed 
using the ultraviolet spectrophotometer. Reverse 
transcription and qRT-PCR reactions were conducted 
with PrimeScript™ RT reagent Kit (Takara, Kyoto, 
Japan) and SYBR® Premix Ex Taq II (Tli RNaseH 
Plus) (Takara, Kyoto, Japan) according to the 
instructions, respectively. Amplification and 
detection of mRNAs were performed on 
LightCycler® 480 Real-Time PCR System (Roche 
Diagnostics, Mannheim, Germany). The 2-ΔΔCT 
method with GAPDH as an internal control was 
applied to evaluate the quantification of mRNAs. The 
gene primer sequences were synthesized by Generay 
(Shanghai, China): CDS1: 5′-AAA CCG AGA GCA 
CCA GCG ACA A-3′ (forward) and 5′-GGG TTC TAT 
CTG AGG ATG GTG G-3′ (reverse); LARP6: 5′-TGA 
AAA CCT GGA GAA GGA CGC C-3′ (forward) and 
5′-ATG TGC TGT GGT TCT CCA GTC C-3′ (reverse); 
TUBB6: 5′-TGG ACT TAG AGC CAG GCA CCA T-3′ 
(forward) and 5′-TTT CGC CCA GTT GTT CCC TGC 
A-3′ (reverse); GAPDH: 5′-GTC TCC TCT GAC TTC 
AAC AGC G-3′ (forward) and 5′-ACC ACC CTG TTG 
CTG TAG CCA A-3′ (reverse).  

Cell viability assay 
Proliferation rate of HGC-27 cells after 

transfection was assessed using CCK-8 assay kit 
(Abcam, Shanghai, China). A density of 2×103 
cells/well were grown in 96-well plates. After 1, 2, 3, 
4, and 5 days of culture, 10 μl CCK-8 reagent was 
added per well. After incubation for 2 h at 37°C, 
absorbance value of each well at 450 nm was 
evaluated on a microplate spectrophotometer 
(Thermo Fisher, USA). 

Cell apoptosis assay 
Apoptosis status of HGC-27 cells after 

transfection was measured using Annexin V-FITC/PI 
Apoptosis Detection Kit (Keygen Biotech, Nanjing, 
China) on a CytoFLEX Flow Cytometer (Becton 
Dickinson) according to the manufacturer’s 
instructions. All results were then analyzed by Flowjo 

software (version 10.8.1). 

Transwell migration and invasion assay 
Migration and invasion ability of HGC-27 cells 

after transfection were evaluated with a transwell 
chamber system (12µm pore size, Millipore, Bedford, 
MA, USA). For migration assay, twenty-four hours 
after transfection of siRNAs or si-NC, 1×105 cells were 
seeded onto the upper chambers. For invasion assay, 
1×105 cells were plated pre-coated with 250 µg/mL 
Matrigel (BD, Bioscience, Pharmingen) on the upper 
layer of the chambers. In both assays, the cells were 
grown in culture medium supplemented with 2% 
serum and the chambers were fixed into 24-well 
plates with a complete medium. After incubation for 
48h, invaded cells on the lower chamber were fixed 
with 4% methanol and stained with 0.1% crystalline 
violet. Three random fields for stained cells were 
captured and analyzed under a microscope. 

Statistical analysis 
R platform v4.1.0 was used for statistics analyses. 

Wilcoxon test was conducted to compare factors in 
different groups. Chi square test or Fisher’s exact test 
was applied to assess the difference of clinical 
phenotypes in different groups. Pearson’s or 
spearman’s correlation test was performed to evaluate 
the relationship of glycogen riskScore with different 
features. K-M curves with log-rank test were used to 
compare the survival differences. Univariate and 
multivariate Cox regression analyses were adopted to 
identify the independent prognostic factors for 
patients. All tests were two-tailed and a P < 0.05 or 
specifically indicated was considered as statistically 
significant. 

Results 
Glycogen metabolism: potential prognostic 
biomarker and immune regulator in GC 

As the flowchart (Figure 1) shows, we firstly 
evaluated the role of glycogen metabolism including 
glycogen biosynthesis and degradation in GC 
meta-cohort. K-M curves showed that higher levels of 
both glycogen biosynthesis (P = 0.011) and 
degradation (P = 0.004) were significantly related with 
worse OS in GC patients (Figure 2A & B). Univariate 
Cox regression analyses showed that higher level of 
glycogen degradation (P = 0.001) was significantly 
associated with poorer OS, while glycogen 
biosynthesis (P = 0.11) with borderline significance. 
Additional multivariate Cox regression revealed that 
glycogen degradation (P = 0.01) could act as an 
independent indicator for predicting OS in GC 
(Figure 2C & D). Glycogen metabolism's connection to 
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clinical traits among GC patients revealed no 
distinctions in normal vs. tumor tissue or by age, 
gender, or TNM stage, except for glycogen 
degradation, which was higher in stage III-IV patients 
(P = 0.027, Figure S1).  

To establish glycogen metabolism's role in GC's 
TME cells, we analyzed scRNA-seq data from 10 
samples of 6 GC patients, including 3 primary tumor, 
1 adjacent non-tumoral, and 6 metastatic samples. 
tSNE maps showed widespread enrichment of 
glycogen biosynthesis and degradation across diverse 
cell types (Figure 2E). Violin plots distinctly showed 
the lowest levels of glycogen metabolism in 
non-tumoral samples, while the highest levels were 
observed in metastatic samples, suggesting an 
association between increased glycogen metabolism 
and the progression of GC. Immune cell type specific 
analysis confirmed consistent glycogen patterns 
across various immune cell subsets (Figure 2F-I), 
highlighting its potential role in modulating immune 
responses in the context of GC. 

Dysregulation and prognostic roles of glycogen 
metabolism genes in GC  

Expression levels of 31 glycogen metabolism 
genes (7 in biosynthesis, 13 in degradation, and 11 in 
both) were evaluated in normal and tumor tissues 
from the TCGA cohort. Around 58% (18 of 31) of 
genes showed significant upregulation, while 4 (GCK, 
PPP1R3C, G6PC, and PYGM) were downregulated in 
tumors (Figure S2A). Copy number variation (CNV) 
frequency analysis indicated PPP1CA had the highest 
increase, and PPP1R3C had the highest deletion 
frequency, aligning with their expression trends 
(Figure S2B). The locations of CNV alterations on the 
chromosome are shown in Figure S2C. Genetic 
mutations of glycogen metabolism genes were found 
in about a quarter of GC samples (24.94%). PPP1R3A 

had the highest mutation rate (6%), mainly as 
missense mutations (Figure S2D).  

Among 29 identified glycogen metabolism genes 
in the meta-cohort, higher expression levels of 
CALM1, GYG1, GBE1, PYGM, PYGL, PYGB, PHKG1, 
PPP1R3C, PPP1R3B, PPP1R3A, PPP1CB, PPP1CA, 
and PGM1 were correlated with worse overall 
survival OS in STAD patients. Conversely, AGL, 
GYS1, GSK3B, PHKG2, PPP1CC, PGM3, and PGM2 
were linked to favorable OS (P < 0.05, Figure S3). 
Univariate Cox regression analysis indicated that 
elevated GYG1, GYS2, PGM1, PPP1CB, PPP1R3C, 
CALM1, PHKG1, PYGM, and PYGL were 
unfavorable OS predictors, while higher GYS1, 
PGM2, PPP1CC, and AGL levels were associated with 
better OS (P < 0.05, Figure 3A). Prognostic network 
maps displayed prevalent positive relationships 
among glycogen metabolism genes, suggesting their 
synergistic effect in GC (Figure 3B). 

Generation and characteristics of GC 
subgroups based on consensus clustering of 
glycogen metabolism genes 

To better understand the potential roles of 
glycogen metabolism in carcinogenesis and 
progression of GC, we performed consensus 
clustering analysis on 1150 GC patients from 
meta-cohort using 29 glycogen metabolism genes 
(excluding CALM2 and CALM3, which were not 
identified in the meta-cohort). Based on the 
expression patterns and patients’ distribution, we 
determined that k = 3 clusters yielded the greatest 
differentiation (Cluster A: 658 patients; Cluster B: 340 
patients; Cluster C: 152 patients; Figure 3C). K-M 
curves illustrated that Cluster C exhibited the poorest 
OS, while Cluster B showed the most favorable 
outcome (Figure 3D). Principal component analysis 
(PCA) confirmed distinct patient distribution among 

 

 
Figure 1: The flowchart of our study. 
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the clusters (Figure 3E). Exploration of immune cell 
infiltration and immune functions across the three 
groups revealed significant differences. Cluster C 
exhibited the highest levels, while Cluster B displayed 
the lowest, in immune cells (B cells, CD8 T cells, mast 
cells, neutrophils, natural killer cells, tumor 
infiltrating lymphocytes) and type II interferon (IFN) 
response (Figure 3F & G). Furthermore, GSVA 
enrichment analysis unveiled distinct mechanisms 

among the clusters. Cluster C was associated with 
immune-inhibitory or cancer-promoting pathways 
like TGF beta signaling, adherens junction, mTOR 
signaling, gap junction, and WNT signaling pathway. 
In contrast, Cluster B showed connections with gene 
repair pathways such as nucleotide excision repair, 
mismatch repair, and base excision repair (Figure S4 
& Table S1).  

 

 
Figure 2: Assessment of glycogen metabolism in gastric cancer (GC). Kaplan-Meier (K-M) curve for overall survival (OS) of GC patients with low and high level of glycogen 
biosynthesis (A) and glycogen degradation (B) in meta-cohort. Univariate (C) and multivariate (D) Cox regression analyses evaluated the prognostic value of glycogen biosynthesis 
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and degradation levels. E: Single-cell RNA (scRNA) analyses showing levels of glycogen biosynthesis and degradation in different cell types of tumor microenvironment (TME) with 
t-distributed stochastic neighbor embedding (tSNE) maps. F-I: Violin plots revealed distribution of glycogen biosynthesis (F & G) and degradation (H & I) in cells of TME. NT: 
adjacent non-tumor tissue; PT: primary tumor; M: metastatic samples. 

 
Figure 3: Consensus clustering of gastric cancer (GC) patients based on glycogen metabolism genes. A: Univariate Cox regression analysis of glycogen metabolism genes in GC 
patients of meta-cohort. B: Prognostic network of glycogen metabolism genes. C: Consensus clustering matrix of GC patients in meta-cohort with best cluster number of three. 
D: Kaplan-Meier (K-M) curve for overall survival (OS) of GC patients in the three clusters. E: Principal component analysis (PCA) analysis of GC patients in the three clusters. 
Differences of immune cell infiltration (F) and function (G) in the three clusters. (*P < 0.05; **P < 0.01; ***P < 0.001).  

 

Construction, validation and comparison of 
glycogen riskScore model in GC 

Next, a differential gene expression analysis was 
performed to identify differentially expressed 

glycogen metabolism related genes among three 
different clusters. A total of 508 genes showed 
significant changes in all three comparisons (Figure 
4A). KEGG and GO enrichment analysis linked these 
genes to cancer related pathways like cell cycle, p53 
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signaling, DNA replication, and mismatch repair 
(Figure S5). With univariate Cox regression followed 
by LASSO analysis in meta-cohort, we identified 33 
genes for constructing the glycogen riskScore model 
(Figure 4B-C). Among them, there were 11 risk factors 
and 22 protective molecules (Figure 4D). The 
correlation network of these 33 genes revealed mainly 
positive relationships (Figure 4E). Notably, risk 
factors tended to have negative relationships with 

protective indicators. A protein-protein interaction 
(PPI) network identified 8 hub genes (ANLN, CCNB2, 
BUB3, DHFR, RRM1, MST1R, SRPK1, TUBB6) with 
the highest confidence interaction scores (Figure 4E & 
F). The majority of the genes (except for TUBB6) were 
expressed in epithelial. BUB3, DHFR, RRM1, and 
SRPK1 were also expressed in immune cells of GC's 
tumor microenvironment (Figure 4G). 

 

 
Figure 4: Generation of glycogen riskScore model. A: Venn diagram of the differently expressed genes among the three clusters. B & C: Least absolute shrinkage and selection 
operator (LASSO) regression analysis with minimum lambda value to build the prognostic model. D: Univariate Cox regression analysis of 33 genes enrolled in the glycogen 
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riskScore model. E: Correlation networks of the 33 genes included in the glycogen riskScore model. F: Protein-protein interaction (PPI) networks of the 33 genes in the glycogen 
riskScore model. G: Distribution of the eight hub genes among the 33 genes in tumor microenvironment (TME) cells with t-distributed stochastic neighbor embedding (tSNE) 
feature plots. 

 
Figure 5: Evaluation of glycogen riskScore model in prognosis of gastric cancer (GC). A: Kaplan-Meier (K-M) curve (top 1) with distribution of risk score (top 2), overall survival 
(OS) status (top 3) and heatmap (bottom) of the 33 genes according to median of glycogen riskScore in meta-cohort. B: Principal component analysis (PCA) analysis of GC 
patients in low- and high-risk group. C: Receiver operating characteristic (ROC) curve for glycogen riskScore and clinical features at 5 years. Univariate (D) and multivariate (E) 
Cox regression analyses of glycogen riskScore and clinical characteristics. F: Nomogram combining glycogen riskScore and other clinical parameters. G: Sankey plot for 
distribution of GC patients with different glycogen metabolism levels, glycogen clusters, glycogen riskScore, stage and surviving status.  

 
Then, we calculated the glycogen riskScore for 

each of the 1150 GC patients, categorizing them into 
low- and high-risk groups based on median riskScore. 
High-risk patients showed significantly worse OS (P < 
0.001), visually indicated by K-M curves, ranked dot 
map and scatter plot. The expression levels of the 33 
glycogen metabolism-related genes were also 
displayed as a heatmap (Figure 5A). PCA also 
confirmed the distribution of patients with different 
risks (Figure 5B). The glycogen riskScore model 
outperformed individual clinical factors, predicting 
5-year OS with an AUC of 0.698 (Figure 5C). The 
glycogen riskScore was associated with clinical 
characteristics. Higher scores were observed in 
patients with younger age, advanced T, N, M and 
later stage (Figure S6). Univariate and multivariate 
Cox regression affirmed its independent prognostic 
value (Figure 5D & E). A nomogram integrating 
clinical factors and riskScore predicted 1-, 3-, and 

5-year OS better than single factors (Figure 5F). 
Visualizing GC patients across glycogen metabolism 
levels, clusters, riskScore, stage, and survival status 
showed high metabolism linked to cluster C, high 
riskScore, advanced stage, and elevated death risk 
(Figure 5G). 

To validate the reliability of the glycogen 
riskScore model for GC prognosis, an external cohort 
(GSE15459) with 192 GC patients was enrolled. 
Consistent with the results of meta-cohort, the 
high-risk group exhibited significantly worse OS in 
the external cohort (P < 0.001, Figure 6A). 
Furthermore, the prognostic value of the riskScore 
model was examined in the immunotherapeutic 
IMvigor210 cohort. Similarly, higher riskScore 
predicted worse OS in BLCA patients undergoing 
anti-PD-L1 antibody (atezolizumab) therapy (P < 
0.001, Figure 6B). 
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Figure 6: Verification and comparison of glycogen riskScore signature. A: Kaplan-Meier (K-M) curve for overall survival (OS) of gastric cancer (GC) patients in GSE15459 cohort. 
B: K-M curve for OS of bladder urothelial carcinoma (BLCA) patients received atezolizumab therapy in IMvigor210 cohort. C: Comparison of area under the curve (AUC) for 
assessing predictive accuracy of glycogen riskScore signature and the other ten latest published signatures for OS from 1 to 10 years. D: Comparison of C-index of glycogen 
riskScore signature with the other ten latest published signatures for OS. E: Restricted mean survival (RMS) time curve of glycogen riskScore and the other ten latest published 
signatures. Gn: glycogen riskScore; TME: tumor microenvironment; OSRG: oxidative stress related gene; CBX: chromobox; CCR: chemokine and chemokine receptor; CAF: 
cancer-associated fibroblast; NRG: necroptosis-related gene. 



 Journal of Cancer 2025, Vol. 16 

 
https://www.jcancer.org 

1254 

Further, we compared the glycogen riskScore 
signature with ten latest published gene signatures for 
predictive efficacy of prognosis in GC [23-32]. Using 
the same method, we calculated risk scores for each 
signature in the meta-cohort. Notably, all ten 
signatures demonstrated a significant correlation with 
poorer OS, except for He's CCR signature, which 
showed borderline significance (P = 0.052; Figure S7). 
Time-dependent ROC curves provided a temporal 
assessment of each signature's predictive accuracy. 
Impressively, our glycogen riskScore signature 
consistently outperformed the others, achieving the 
highest AUC values at any year (Figure 6C; ROC 
curves at 1, 3, and 5 years were depicted in Figure S7). 
This superiority in AUCs at multiple time points 
underscores the robustness of our signature in 
predicting patient outcomes over a range of time 
horizons. When assessing the C-index, our glycogen 
riskScore model excelled with the highest value of 
0.648 (Figure 6D). This highest C-index value 
reinforces the reliability of our model in correctly 
predicting patient survival, setting it apart from the 
other assessed signatures. Furthermore, the analysis 
of the RMS time curve offered insights into the 
long-term prediction efficacy of our model. Notably, 
the glycogen riskScore signature showed superior 
predictive power beyond 8 years (Figure 6E). This 
extended prediction efficacy indicates the potential 
long-term clinical utility of our model in managing 
GC patients. 

Indicative role of glycogen riskScore model for 
immunotherapy and chemotherapy response 

We then evaluated the potential role of the 
glycogen riskScore model in predicting treatment 
responses, focusing on immunotherapy, 
chemotherapy, and targeted therapy. Low-risk 
patients showed higher sensitivity to immune 
checkpoint inhibitor (ICI) immunotherapy, indicated 
by significantly higher immunophenoscores (IPS) for 
ctla4_neg_pd1_pos, ctla4_pos_pd1_neg, and 
ctla4_pos_pd1_pos signatures (P < 0.05, Figure 7A-D). 
Similarly, Tumor Immune Dysfunction and Exclusion 
(TIDE) analysis revealed higher scores in the high-risk 
group, suggesting increased immune escape and 
resistance to immunotherapy (P < 0.001, Figure 7E). 
And responders to immunotherapy exhibited lower 
glycogen riskScore (P < 0.001, Figure 7F). 

Next, we analyzed chemotherapy response by 
predicting the half-maximal inhibitory concentration 
(IC50) values for 9 common chemotherapeutic and 
targeted agents. The results showed that no difference 
of IC50 values between the two groups for docetaxel, 
doxorubicin and cisplatin. High-risk patients were 
more sensitive to axitinib (lower IC50), while low-risk 

patients were sensitive to metformin, gemcitabine, 
paclitaxel, rapamycin, and sorafenib (Figure 7G-O). 
We also evaluated the glycogen riskScore signature's 
relationship with anti-tumor drug sensitivity in the 
National Cancer Institute (NCI) 60 cell lines. Among 
56 significant drugs (Table S2), the top 15 (Figure 7P) 
revealed tamoxifen, nelarabine, raloxifene, crizotinib, 
ixabepilone, nilotinib, ifosfamide, cyclophosphamide, 
tegafur, dexrazoxane, and carmustine negatively 
correlated with the riskScore, while dasatinib, 
erlotinib, lenvatinib, and simvastatin showed a 
positive correlation. 

Characterizing mutation, immune and 
functional features in patients stratified by 
glycogen riskScore 

To delve into the genomic distinctions between 
the low- and high-risk groups classified by glycogen 
riskScore, the study explored somatic mutation 
landscapes in each group. Utilizing comprehensive 
genomic data from the TCGA cohort, we generated 
the waterfall plot to illustrate the mutation 
frequencies and patterns in each group. The plot 
revealed a striking difference in the mutation rates 
between the low and high-risk groups, with the 
low-risk GC patients exhibiting a higher rate of 
genetic mutations. Notable differences were observed 
in genes like TTN, MUC16, LRP1B, ARID1A, SYNE1, 
FLG, FAT4, and so on (Figure S8A). Furthermore, our 
analysis revealed a significant negative correlation 
between the glycogen riskScore and TMB score 
among the GC patients in the TCGA cohort. 
Specifically, patients in the low-risk group displayed 
higher TMB levels (P < 0.001, Figure 8A). Higher TMB 
was associated with longer OS. Thus, by combining 
TMB and glycogen riskScore, patients with high TMB 
and low riskScore demonstrated the most favorable 
outcome (Figure 8B & C).  

The study further examined immune 
microenvironment differences between low- and 
high-risk groups. Intergroup different analysis 
revealed that low-risk GC patients had higher 
cytolytic activity (CYT) scores and more predicted 
neoantigens (Figure 8D & E). For programmed cell 
death (PCD) patterns, 11 of 14 levels were 
significantly higher in the low-risk group (Figure 
S8B). Considering immune subtypes, the C3 
(inflammatory) subtype had the highest glycogen 
riskScore (Figure 8F). Using ESTIMATE algorithms, 
glycogen riskScore positively correlated with immune 
and stromal scores (Figure S8C & D). Correlation 
analysis of glycogen riskScore and immune cells 
based on 7 algorithms showed that cancer-associated 
fibroblast (CAF), M2 macrophage, myeloid dendritic 
cell, activated mast cell, monocyte, and resting 



 Journal of Cancer 2025, Vol. 16 

 
https://www.jcancer.org 

1255 

memory CD4+ T cell positively correlated with the 
riskScore. Conversely, M1 macrophage, activated 
memory CD4+ T cell, and CD8+ T cell exhibited 
negative correlations (Figure 8H). Tumor stemness, 

measured by DNA methylation-based (DNAss) and 
mRNA expression-based (RNAss) scores, negatively 
correlated with glycogen riskScore (Figure S8E & F). 

 

 
Figure 7: Correlation of glycogen riskScore with treatment response. A-D: Different immunophenoscore (IPS) score in gastric cancer (GC) patients with low- and high-risk 
groups. E: Difference of Tumor Immune Dysfunction and Exclusion (TIDE) score between low- and high-risk groups. F: Comparison of glycogen riskScore in immunotherapy 
responders and non-responders. G-O: Distribution of half-maximal inhibitory concentration (IC50) value of axitinib (G), docetaxel (H), doxorubicin (I), cisplatin (J), metformin 
(K), gemcitabine (L), paclitaxel (M), rapamycin (N), and sorafenib (O). P: Correlation of glycogen riskScore and sensitivity of the top 15 anti-tumor drugs in the Cell Miner 
database. 
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Figure 8: Genetic and immune correlation of glycogen riskScore in gastric cancer (GC) patients. A: Correlation of tumor mutation burden (TMB) score and glycogen riskScore. 
B: Kaplan-Meier (K-M) curve of GC patients with low and high TMB score in The Cancer Genome Atlas (TCGA) cohort. C: K-M curve of GC patients based on combination of 
TMB score and glycogen riskScore. D: Different levels of cytolytic activity (CYT) in GC patients with low and high glycogen riskScore. E: Different levels of predicted neoantigens 
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in GC patients with low and high glycogen riskScore. F: Distribution of glycogen riskScore in GC patients with different immune subtypes from TCGA cohort. G: Relationship 
of glycogen riskScore model and levels of glycogen biosynthesis and glycogen degradation. H: Correlation between glycogen riskScore and immune cells calculated with 7 
algorithms. I: Correlation of glycogen riskScore with common immune checkpoint genes. J-K: Gene set enrichment analysis (GSEA) concerning Kyoto Encyclopedia of Gene and 
Genome (KEGG; J) and Gene Ontology (GO; K) enrichment analyses based on glycogen riskScore. (*P < 0.05; **P < 0.01; ***P < 0.001).  

 
We then examined the relationship of the 

glycogen riskScore model and glycogen metabolism, 
finding positive correlations with both glycogen 
biosynthesis and degradation levels. Among the 33 
genes for model construction, TUBB6, LARP6, CDS1, 
RBMS1, RBPMS2, and SGCE were simultaneously 
positively related with both glycogen biosynthesis 
and degradation, while GLE1 exhibited negative 
relationship (Figure 8G). The associations of glycogen 
riskScore with common immune checkpoint genes, 
m6A regulators and cuproptosis genes were further 
evaluated. Negative relationships were found 
between the riskScore and immunostimulators CD70, 
CD80, ICOS, ICOSLG, TNFRSF14, TNFRSF25, 
TNFRSF9 and TNFSF9, while positive correlation 
with immunoinhibitor VTCN1 (Figure 8I). 
Meanwhile, glycogen riskScore was also significantly 
related with m6A regulators and cuproptosis genes 
(Figure S8G & H). Functional analysis using GSEA 
demonstrated close relationship of the riskScore with 
cancer and immune system, such as KEGG terms of 
WNT signaling pathway and TGF beta signaling 
pathway, GO terms of cell signaling by WNT and 
surface receptor signaling pathway (Figure 8J & K; 
Table S3). 

Pan-cancer analysis of glycogen riskScore 
model  

To assess the applicability of glycogen riskScore 
in diverse types of tumors, TCGA pan-cancer cohort 
was analyzed. The riskScore of patients in each type 
of cancer was calculated with the same method as that 
in GC (Figure 9A). K-M curves revealed that high 
riskScore could predict worse OS in 20 types of 
cancers including adrenocortical carcinoma (ACC), 
bladder urothelial carcinoma (BLCA), cervical 
squamous cell carcinoma and endocervical 
adenocarcinoma (CESC), glioblastoma multiforme 
(GBM), head and neck squamous cell carcinoma 
(HNSC), kidney chromophobe (KICH), kidney renal 
clear cell carcinoma (KIRC), kidney renal papillary 
cell carcinoma (KIRP), brain lower grade glioma 
(LGG), liver hepatocellular carcinoma (LIHC), lung 
adenocarcinoma (LUAD), lung squamous cell 
carcinoma (LUSC), mesothelioma (MESO), ovarian 
serous cystadenocarcinoma (OV), pancreatic 
adenocarcinoma (PAAD), rectum adenocarcinoma 
(READ), STAD, thyroid carcinoma (THCA), uterine 
corpus endometrial carcinoma (UCEC) and uterine 
carcinosarcoma (UCS), while favorable outcome in 
breast invasive carcinoma (BRCA), 

cholangiocarcinoma (CHOL), sarcoma (SARC) and 
skin cutaneous melanoma (SKCM) (P < 0.05, Figure 
S9). Univariate Cox regression analyses showed that 
high riskScore associated with poorer OS in ACC, 
BLCA, HNSC, KICH, KIRC, KIRP, LGG, LUAD, 
MESO, STAD, and UCEC; and correlated with better 
outcomes in SKCM (P < 0.05, Figure 9B). Distinct 
glycogen riskScore distributions were found in 
relation to age (BLCA, BRCA, esophageal carcinoma 
(ESCA), KIRP, LIHC, LUAD, PAAD, and STAD), 
gender (ESCA, KIRC, LIHC, LUSC, SARC, and 
thymoma (THYM)), and stage (ACC, BLCA, colon 
adenocarcinoma (COAD), KICH, KIRC, KIRP, LIHC, 
LUAD, testicular germ cell tumors (TGCT), and 
THCA). Besides, compared with patients with 
complete response (CR) + partial response (PR) after 
first course of treatment, higher glycogen riskScore 
was assessed in patients with stable disease (SD) + 
progressive disease (PD) in ACC, HNSC, KICH, 
KIRC, LUAD and UCEC (Figure S10). 

Then, the association of glycogen riskScore with 
TMB, MSI and neoantigen were examined across 
pan-cancer. The results showed that the glycogen 
signature was negatively correlated with TMB score 
in STAD, PRAD, ESCA, KIRP, PAAD, COAD and 
KIRC, while positive relationships were showed in 
LUAD, ACC and THYM. For MSI, negative 
correlation with riskScore was shown in acute 
myeloid leukemia (LAML), STAD and LUAD, while 
positive correlation in BRCA, UCEC, TGCT and UCS. 
In addition, glycogen riskScore was negatively related 
to neoantigen in COAD, PRAD and GBM, while 
positively associated in LUAD and KICH (Figure 
9C-E).  

Subsequently, correlations of the glycogen 
riskScore model and glycogen metabolism levels 
across pan-cancer were assessed. Significantly 
positive correlation of glycogen riskScore with 
glycogen biosynthesis could be found in 9 types of 
tumors, with glycogen degradation in 12 types of 
cancers (Figure 9F). To further explore the effect of the 
glycogen riskScore on TME of pan-cancer, 
associations of glycogen riskScore with PCD patterns, 
common checkpoint genes and hallmark pathways in 
pan-cancer were explored. Negative correlation of the 
glycogen riskScore with most PCD patterns was 
identified in SKCM, STAD, THYM, and uveal 
melanoma (UVM). Three PCD patterns (cuproptosis, 
oxeiptosis, and parthanatos) were almost negatively 
associated with the riskScore in pan-cancer (Figure 
9G). And the glycogen riskScore was significantly 
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positively related with immunoinhibitors TGFB1, 
ICAM1 and CD276, and showed significantly 
negative relationship with immunostimulators 
TNFSF14 across pan-cancer (Figure 9H). Moreover, 
the glycogen riskScore signature was significantly 
positively related with IL2-STAT5 signaling, 
coagulation, angiogenesis, inflammatory response, 
epithelial mesenchymal transition, myogenesis, 
NOTCH signaling, TGF beta signaling, WNT beta 
catenin signaling and hypoxia across pan-cancer, 
which are important pathways that occur in TME to 
promote development and progression of cancer. 
Meanwhile, peroxisome and oxidative 
phosphorylation pathways exhibited negative 
relationship with glycogen riskScore in pan-cancer 
(Figure 9I). 

Glycogen metabolism related genes promote 
progression of GC 

To further assess the function of the glycogen 
metabolism related genes included in the riskScore 
model, we performed in vitro experiments. Glycogen 

metabolism related genes actively involving in 
glycogen metabolism were selected for further 
experimental verification, specifically those showed 
consistently positive relation patterns with both 
glycogen biosynthesis and degradation (Figure 8G). 
Among them, LARP6, CDS1 and TUBB6 were 
randomly selected to evaluate their effects on 
proliferation, apoptosis, invasion and metastasis of 
GC cells. Two siRNAs were designed for knock down 
the expression of the three target genes, respectively. 
As indicated by qRT-PCR, the siRNA-2 for each gene 
showed higher silencing efficiency than siRNA-1, and 
was selected for further experiment (Figure 10A). In 
HGC-27 cells, knockdown of LARP6, CDS1, and 
TUBB6 inhibited proliferation (Figure 10B). Apoptosis 
analysis revealed increased late apoptosis upon 
silencing these genes (Figure 10C & D). Moreover, 
CDS1 and LARP6 knockdown significantly reduced 
migration and invasion, while TUBB6 knockdown 
showed a weaker effect on invasion and no significant 
impact on migration in HGC-27 cells (Figure 10E-G). 

 
 

 
Figure 9: Confirmation of glycogen riskScore model in The Cancer Genome Atlas (TCGA) pan-cancer cohort. A-B: Distribution (A) and univariate Cox regression analysis (B) 
of riskScore in pan-cancer (red indicates statistical significance in Cox regression analysis). C-E: Radar maps for association of glycogen riskScore and tumor mutation burden 
(TMB; C), microsatellite instability (MSI; D) and neoantigen (E). F: Correlation of glycogen riskScore and levels of glycogen biosynthesis and glycogen degradation in pan-cancer. 
G: Association of glycogen riskScore with 14 programmed cell death (PCD) patterns in pan-cancer. H: Relationship of glycogen riskScore with common immune checkpoint genes 
in pan-cancer. I: Association of glycogen riskScore with hallmark pathways in pan-cancer. (*P < 0.05; **P < 0.01; ***P < 0.001). 
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Figure 10: In vitro validation of the role of LARP6, CDS1 and TUBB6 in HGC-27 cell line. A: The efficiency of siRNAs for LARP6, CDS1 and TUBB6 was assessed utilizing 
quantitative real-time polymerase chain reaction (qRT-PCR). B: The viability of gastric cancer (GC) cells was evaluated by CCK-8 assay after transfection of siRNA or normal 
control (NC). C-D: Cell apoptosis after transfection of siRNA or NC was tested using flow cytometry. E-G: Transwell assays were applied to detect the invasion and migration 
ability of GC cells after transfection of siRNA or NC. All experiments were repeated three times. (ns: non significance; *P < 0.05; **P < 0.01; ***P < 0.001). 
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Discussion 
Oncogenic metabolic reprogramming is a 

hallmark and central feature of cancer. Up-regulated 
glycogen metabolism levels along with the initiation 
and development of cancer could enable survival of 
tumor cells under adverse conditions and promote 
metastasis [14, 42-44]. It has been suggested that 
glycogen metabolism might be a major energy source 
within TME and responsible for treatment effect of 
cancer patients. However, it is so far uninvestigated 
about glycogen metabolism in cancer including GC. In 
this study, we assessed glycogen metabolism level in 
GC using bulk and single-cell sequencing data, and 
developed a glycogen riskScore signature which 
could predict treatment response and clinical 
outcomes in GC patients. Pan-cancer analysis 
demonstrated its applicability across various tumor 
types. In vitro experiments further validated the 
significance of glycogen metabolism related genes in 
the progression of GC. 

Initially, we utilized gene sets from Rosario's 
study [18] to calculate ssGSEA scores for assessing 
glycogen biosynthesis and degradation levels. K-M 
curves and Cox regression analyses revealed close 
relationship of glycogen metabolism, especially 
glycogen degradation, and clinical outcomes of GC 
patients. These findings demonstrated the importance 
of glycogen degradation, providing energy and 
metabolites, in driving malignant phenotype of GC 
compared to glycogen biosynthesis. This aligns with 
Terashima's study, which showed glycogen 
breakdown's role in GC cell survival [13]. Exploration 
of glycogen metabolism at single-cell level revealed its 
prevalence across various cell types, with higher 
levels in tumor and metastatic cells, particularly in 
immune and stromal cells like T cells, macrophages, 
and endothelial cells. This emphasizes the significance 
of glycogen metabolism in TME of GC. K-M curves 
and univariate Cox regression analysis also revealed 
close link of glycogen metabolism genes with 
prognosis of GC patients. Based on consensus 
clustering of glycogen metabolism genes, GC patients 
in meta-cohort were classified into three clusters. 
Distinct clinical outcomes, biological pathways, TME 
characteristics, and infiltrating immune cells were 
observed among the three clusters.  

Furthermore, univariate Cox regression and 
LASSO analysis of intersection genes from the three 
groups of comparisons across the three clusters were 
used to identify glycogen metabolism related genes to 
construct a glycogen metabolism riskScore model. 
Higher glycogen riskScore could act as an 
independent indicator for poorer OS, and 
outperformed other clinical characteristics, as 

evidenced by the highest AUC. An additional GC 
GSE15459 cohort and a BLCA immunotherapeutic 
cohort of IMvigor210 also confirmed the reliability of 
the riskScore signature. In addition, comparative 
analysis with the ten recently published gene 
signatures also revealed the superior prognostic 
performance of our glycogen riskScore model, 
making it a robust and effective tool for predicting GC 
prognosis.  

Meanwhile, analyses with IPS and TIDE data 
demonstrated that lower glycogen riskScore 
corresponded to higher immunotherapy sensitivity, 
in line with IMvigor210 cohort findings. High TMB 
predicts better outcomes with ICI treatment across 
various cancers [45]. In this study, high TMB was 
linked to improved survival in GC patients. Notably, 
glycogen riskScore showed a negative correlation 
with TMB score. Somatic mutation landscape 
indicated that low-risk GC patients had higher genetic 
mutation rates. Previous studies demonstrated that 
MUC16 and TTN mutations could predict high TMB 
and were related with better prognosis in pan-cancer 
including GC [46, 47]. These results were consistent 
with our findings that MUC16 and TTN displayed 
higher mutation levels in the low-risk group. 
Interestingly, low glycogen riskScore was tied to 
higher tumor neoantigens, cytolytic activity, and most 
types of PCD patterns, likely contributing to enhanced 
anti-tumor immunity. Immune correlation analysis 
revealed its positive correlation with immune and 
stromal scores, predicting components within the 
tumor microenvironment. Pro-tumor immune cells, 
such as M2 macrophage and myeloid dendritic cell, 
correlated positively with riskScore, while anti-tumor 
immune cells like M1 macrophage showed a negative 
correlation [48]. Correlation with immune checkpoint 
genes further supported the glycogen riskScore as a 
potential immunotherapy biomarker [49]. On the 
other hand, the predictive value of the model could 
extend to chemotherapy and targeted therapy 
responses. Patients with low-risk scores might benefit 
from metformin, paclitaxel, rapamycin, and sorafenib, 
whereas high-risk patients could prioritize axitinib. 
Drug sensitivity analysis of NCI-60 cell lines also 
demonstrated specific drugs for the patients in the 
two groups. These results revealed the glycogen 
riskScore signature as an effective tool for guiding 
precise treatment strategies for GC. 

Our study also conducted a comprehensive 
analysis of the glycogen riskScore in pan-cancer, 
affirming its prognostic significance. This riskScore 
demonstrated predictive power in 24 types of cancers, 
indicating poor outcomes in 20 types and favorable 
outcomes in 4. It was also associated with treatment 
response, showing higher scores in non-responders 
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compared to patients achieving objective response in 
several cancer types. Furthermore, the riskScore 
correlated with important prognostic factors like 
TMB, MSI, and neoantigen levels in specific cancer 
categories [50, 51]. It was worth mentioning that three 
types of PCD patterns (cuproptosis, oxeiptosis, and 
parthanatos) were negatively associated with the 
glycogen riskScore across pan-cancer, which was 
desirable to be further studied. The riskScore also 
showed close link to immune responses, favoring 
immunoinhibitory pathways and 
immunosuppressive cells while inhibiting 
immunostimulatory pathways and immune cells. It 
was deserved to be mentioned about the role of 
hypoxia in TME. As a central feature of TME, hypoxia 
has extensive effects on malignant phenotypes of 
cancer, including cancer stemness, angiogenesis, 
invasion and metastasis, metabolic reprogramming 
(including glycogen metabolism) and so on, which 
synergistically facilitate the development and 
progression of cancer [52]. Our results demonstrating 
the close relationship between the glycogen riskScore 
and hypoxia pathway also verified the importance of 
the signature in predicting the status of hypoxic TME 
across pan-cancer. All these findings confirmed the 
reliable and valid value of the application of the 
glycogen riskScore model in pan-cancer. 

Finally, we randomly selected three genes 
(LARP6, CDS1 and TUBB6) which showed 
consistently positive relationship with both glycogen 
biosynthesis and degradation to evaluate their effects 
on proliferation, apoptosis, invasion and metastasis of 
GC cells. Except for TUBB6 which did not 
significantly affect migration, all three genes 
demonstrated a clear role in promoting carcinogenesis 
in GC cells, further confirming the crucial role of 
glycogen metabolism in GC. Predictive value of 
LARP6 and TUBB6 for worse outcomes in GC patients 
could also be found in previous studies [53, 54]. 
However, the exact roles and biological functions of 
these glycogen metabolism related genes are 
warranted for further assessment in future studies.  

Some limitations of the study should also be 
listed. Firstly, though assessment and validation of 
glycogen metabolism and glycogen riskScore model 
with multi-omics data of TCGA and GEO datasets at 
bulk and single-cell levels through external validation 
of GC and BLCA immunotherapy cohorts followed by 
pan-cancer analyses, our study was conducted mainly 
based on public databases. Future prospective and 
multicenter clinical studies should be performed to 
facilitate the application of the signature with broad 
applicability in predicating prognosis and treatment 
response of cancer patients in the real world. 
Secondly, the glycogen metabolism genes and related 

genes identified in the study was proved to play vital 
roles in cancer and interactions with TME through in 
silico analysis and limited in vitro experiments. Thus, 
the exact mechanisms involving these genes need to 
be further explored with in vitro and in vivo 
experiments in the future. 

Conclusion 
Due to the important roles of glycogen 

metabolism in GC, we constructed a glycogen 
riskScore model with multi-omics data, which could 
accurately classify the GC patients with different 
outcomes, genomic and immune landscape. The 
glycogen riskScore was proved to perform well in 
predicting clinical outcomes through the validation, 
immunotherapy and pan-cancer cohorts. In addition, 
the riskScore could predict response to chemotherapy 
and immunotherapy, thus helpful for patients to 
select optimal treatment strategies. Future studies 
confirmed our findings and explored the mechanisms 
of the identified genes, which are helpful for the 
application and understanding of this powerful 
biomarker in cancer patients. 
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