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Abstract 

Background: Cuproptosis, a form of copper-mediated programmed cell death, has recently garnered 
significant attention. However, the mechanisms by which CRGs affect the progression of CRC remain 
unclear. 
Methods: Bioinformatics approaches were employed to analyze transcriptomic datasets and clinical data 
from 630 CRC patients, focusing on copy number variations, prognostic implications, and immune 
infiltration characteristics associated with CRGs. Key CRG-related genes impacting prognosis were 
identified using LASSO and Cox regression methods. A prognostic model incorporating various 
molecular markers and clinical parameters was constructed with a training cohort and validated with a 
separate validation cohort. This model was used to explore clinical indicators, immune infiltration, and 
tumor microenvironment characteristics in CRC patients. Additionally, single-cell analysis was performed 
to investigate the biological roles of critical genes, and expression patterns of these genes were assessed 
via qRT-PCR and WB. 
Results: A prognostic scoring model was established based on three pivotal genes associated with CRC 
prognosis. This model, an independent prognostic indicator, outperformed traditional clinicopathological 
features in predicting patient outcomes. Kaplan-Meier survival curves demonstrated superior prognostic 
outcomes for individuals in the low-risk group compared to those in the high-risk group. Model stability 
and reliability were confirmed through ROC analysis and univariate and multivariate Cox regression 
analyses. Further analysis revealed significant correlations between prognostic scores and the presence of 
M0 macrophages and memory CD4+ T cells. Differences in the expression of CDKN2A, PLCB4, and 
NXPE4 across various CRC tissues and cells were characterized using WB, IHC and qRT-PCR. 
Conclusion: This study not only highlights the diverse omics profiles of CRGs in CRC but also 
introduces a novel model for accurate prognostic forecasting. 
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1. Introduction 
Colorectal cancer (CRC) is a major public health 

challenge worldwide, ranking as the third most 
frequently diagnosed cancer and the second leading 
cause of cancer-related deaths [1, 2]. While 

advancements in early detection and therapeutic 
interventions have modestly improved survival rates, 
the prognosis for patients with advanced-stage CRC 
remains poor [3]. Stage IV CRC patients, for instance, 
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have a five-year survival rate of only 10% to 15%, 
underscoring the urgent need for improved treatment 
strategies and early detection methods [4]. Research 
highlights the importance of early screening, 
particularly for identifying adenomatous polyps, 
which are a key early indicator of CRC and are 
manageable if detected early [5]. Despite progress in 
understanding CRC's molecular mechanisms, the 
prognosis for patients with early-onset CRC 
(diagnosed before age 50) has not significantly 
improved, prompting ongoing research into this 
concerning trend [6]. Identifying novel CRC-specific 
biomarkers, investigating its pathogenesis, and 
discovering new targeted treatments are therefore 
critical. 

Recent studies into cell death mechanisms have 
revealed the significant role of various types of 
programmed cell death (PCD) in cancer development 
and progression [7]. Among these, the 
copper-dependent cell death pathway, known as 
cuproptosis, has emerged as a mechanism of 
particular biological relevance [8]. Cuproptosis is 
characterized by copper ions interacting with 
metabolic processes within cells, particularly 
targeting lipoic acid components of the tricarboxylic 
acid (TCA) cycle [9]. This interaction disrupts protein 
folding and destabilizes iron-sulfur cluster proteins, 
leading to proteotoxic stress and cell death. 
Furthermore, copper's dynamic modulation within 
the tumor microenvironment affects cancer cell 
proliferation, invasion, and metastasis [10]. As a 
cofactor for growth factors and extracellular matrix 
enzymes such as superoxide dismutase (SOD), copper 
is vital for maintaining the extracellular matrix's 
structural integrity and supporting tumor cell growth 
[11]. It also influences cancer cell aggressiveness by 
regulating matrix metalloproteinases (MMPs), which 
degrade the extracellular matrix and facilitate cancer 
cell invasion into surrounding tissues [12]. 
Disruptions in copper balance are closely linked to 
various cell death modes, including apoptosis, 
autophagy, and ferroptosis [13]. Excessive copper can 
increase apoptosis through oxidative stress, while 
copper deficiency can impair protective processes like 
autophagy [14]. Additionally, copper plays a crucial 
role in shaping the tumor microenvironment by 
affecting inflammatory cell functions and cytokine 
production, thus influencing the immune landscape 
of tumors through mechanisms such as macrophage 
polarization [15]. The essential roles of copper in 
oncogenesis and tumor microenvironment evolution 
suggest that targeting copper homeostasis could 
provide promising new anti-cancer strategies. 

This research aims to identify potential 
molecular markers and therapeutic targets related to 

cuproptosis in CRC by conducting a comprehensive 
multi-omics analysis of cuproptosis-related genes 
(CRGs), including genomic, transcriptomic, and 
tumor microenvironmental factors. Additionally, it 
explores the roles of cuproptosis within the tumor 
microenvironment with the goal of developing 
innovative diagnostic, therapeutic, and prognostic 
strategies and models. 

2. Methods 
2.1 Obtaining and compiling data 

RNA sequencing data from 701 CRC patients, 
including 51 normal tissue specimens and 650 tumor 
tissue specimens, along with their corresponding 
clinical and mutation profiles, were obtained from 
The Cancer Genome Atlas (TCGA) database 
(http://cancergenome.nih.gov/). Additionally, 
dataset GSE12945 was sourced from the Gene 
Expression Omnibus (GEO) database (https://www 
.ncbi.nlm.nih.gov/geo/). The "limma" R package was 
used to normalize these raw datasets, constructing 
expression matrices. The datasets were then merged, 
and batch effects were removed using the "SVA" R 
package. The final dataset includes various clinical 
characteristics of 630 CRC patients, such as age, 
gender, tumor type, lymph node status, metastasis, 
staging, survival status, and follow-up duration. 

2.2 Screening and validation of differentially 
expressed CRGs in CRC 

We identified 19 CRGs from the literature [16]. 
The differential expression of these genes between 
normal and tumor tissues was analyzed using the 
Wilcoxon rank-sum test, and results were visualized 
with the "ggboxplot" R package. Mutation status of 
CRGs in CRC samples was presented using the 
"maftools" R package. The percentage of copy number 
variations in CRGs was calculated and visualized 
with a circos chart using the "RCircos" R package. 
Gene expression data from TCGA and GEO were 
merged, and CRG expression levels were extracted. 
Kaplan-Meier survival curves and prognostic 
network diagrams were plotted to assess the 
relationship between CRGs and CRC prognosis. 

2.3 Cluster analysis of CRGs and differences 
between subtypes 

CRC samples were classified into different 
subtypes based on CRG expression levels using the 
"ConsensusClusterPlus" R package. Survival curves 
were generated with the "survival" and "survminer" R 
packages to compare survival times among patient 
subtypes. Heatmaps displaying CRG expression 
patterns across classifications were created using the 
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"pheatmap" R package. Principal component analysis 
(PCA) and differential analysis of CRG subtypes were 
also conducted. 

2.4 Gene set variation analysis and 
single-sample gene set enrichment analysis of 
CRGs 

Gene Set Variation Analysis (GSVA) was 
performed using the "GSEABase" and "GSVA" R 
packages to explore enrichment pathway differences 
among subtype gene sets, with results visualized 
using a heatmap from the "pheatmap" R package. 
Single-sample gene set enrichment analysis (ssGSEA) 
was employed to evaluate immune cell infiltration in 
tumor samples. Immune cell infiltration scores were 
obtained for each sample, normalized using the 
min-max normalization method, and merged with 
subtype data for statistical analysis and visualization. 
Box plots depicting differences in immune cell 
infiltration among CRG subtypes were generated 
using the "ggpubr" R package. 

2.5 GO and KEGG enrichment analysis 
To investigate the potential roles of differential 

CRGs in biological processes, molecular functions, 
cellular components, and specific metabolic and 
signal transduction pathways, Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment analyses were conducted using 
the "clusterProfiler", "org.Hs.eg.db", and "enrichplot" 
R packages [17-19]. Results were visualized using bar 
charts and bubble charts created with the "ggplot2" R 
package. 

2.6 Cluster analysis of differentially expressed 
genes in CRGs 

Univariate Cox analysis was performed to 
identify the most prognostically relevant differentially 
expressed genes (DEGs) among CRGs (P<0.05). The 
ConsensusClusterPlus algorithm, along with 
partitioning around medoids (PAM) clustering 
methods and Euclidean distance measurement, was 
used to determine the optimal number of clusters [20]. 
Differences in survival outcomes among DEG 
subtypes were assessed using the Chi-square test and 
Kaplan-Meier survival curves. Comparisons of DEGs 
and CRGs across different subtypes were made, and 
results were visualized using heatmaps and box plots. 

2.7 Construction and validation of prognostic 
model  

We used the "caret" R package to randomly 
divide the samples obtained from univariate Cox 
analysis into training and test sets. LASSO regression 
analysis was performed with the "glmnet" R package 

to reduce model complexity and prevent overfitting. 
A multivariate Cox proportional hazards model was 
then constructed to select genes with the most 
prognostic significance. A stepwise regression 
approach was employed to optimize the model and 
determine the final predictors. 

Prognostic risk scores were calculated based on 
the final Cox model, and CRC patients were classified 
into high-risk and low-risk groups according to the 
median score. To evaluate the impact of these risk 
scores on survival time, we analyzed the data 
separately for training, test, and all sample groups. 
Risk curves and survival status diagrams were 
plotted. A log-rank test was conducted on survival 
time using the "survival" R package to assess the 
effectiveness of risk scores in prognostic prediction. 

Gene expression patterns in the model were 
visualized using a heatmap generated by the 
"pheatmap" R package, displaying differences in 
expression among patients in different risk groups. 
The model's ability to distinguish between risk groups 
was quantified by calculating the area under the curve 
(AUC) of time-dependent receiver operating 
characteristic (ROC) curves at specific predictive time 
points using the "timeROC" R package. Sankey 
diagrams were created with the "ggalluvial" R 
package to visually demonstrate relationships among 
CRG subtypes, DEG subtypes, and patient survival 
status (alive or dead). Box plots, generated using the 
"ggpubr" R package, illustrated the relationships 
between CRG subtypes, DEG subtypes, and risk 
scores. Differences in CRG expression across risk 
groups were visualized with the "ggpubr", 
"greshape2", and "ggplot2" R packages. 

2.8 Constructing a nomogram 
A nomogram was constructed using the 

"survival", "rms", and "regplot" R packages to predict 
the survival probabilities of CRC patients based on 
clinical characteristics and risk scores. Calibration 
curves for 1-year, 3-year, and 5-year survival rates 
were plotted to assess the predictive accuracy of the 
model. Furthermore, the clinical utility of the 
nomogram was assessed through decision curve 
analysis (DCA) utilizing the “ggDCA” R package. 

2.9 Analysis of immune cell infiltration, tumor 
microenvironment, and tumor mutational 
burden 

Immune cell infiltration levels were obtained 
using the CIBERSORT algorithm, and samples with 
statistical significance (P<0.05) were selected. The 
correlation between risk scores and immune cell 
infiltration levels was analyzed using the Spearman 
correlation test, and scatter plots were created for 
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significantly correlated cell types. Paired analyses of 
immune cell types with gene expression from the risk 
file were conducted, and heatmaps displayed the 
correlation strength between gene expression and 
immune cell infiltration levels. 

To investigate the relationship between tumor 
microenvironment (TME) scores and patient risk 
groups, we merged risk grouping data with TME 
scores. The Wilcoxon rank-sum test was applied to 
evaluate differences in TME scores between risk 
groups, and violin plots were generated using the 
"ggplot2" R package. 

For TMB analysis, we integrated TMB results 
with risk scores and gene typing data. TMB data were 
log-transformed to ensure normal distribution 
characteristics. Samples common across all datasets 
were filtered for consistency and comparability. Box 
plots comparing TMB levels across different risk 
groups were created using the "ggpubr" R package. 
Scatter plots showed the correlation between risk 
scores and TMB, with different gene typings marked 
by various colors. Additionally, waterfall plots 
demonstrating gene mutation patterns in tumor 
samples and their association with patient risk groups 
were generated using the "maftools" R package. 

2.10 Analyzing microsatellite instability, stem 
cell correlations, and drug sensitivity 

We first retrieved risk scores and microsatellite 
instability (MSI) status. Using the "ggplot2" and 
"ggpubr" R packages, we plotted percentage bar 
charts and box plots to illustrate the distribution and 
statistical differences between MSI statuses and tumor 
risk levels. 

To explore the connection between tumor 
stem-like characteristics and CRC prognosis, we 
analyzed risk scores and RNA stemness scores 
(RNAss). Scatter plots were created with the "ggplot2" 
and "ggpubr" R packages to visually display the 
relationship between these variables. 

Drug sensitivity differences among risk groups 
were investigated through differential expression 
analysis and the Wilcoxon test. Box plots, generated 
using the "ggpubr" R package, visually presented 
these changes. 

2.11 Quantitative reverse transcription- 
polymerase chain reaction and single-cell 
analysis 

During surgical procedures at Ningxia Medical 
University General Hospital, 40 CRC patients 
provided tissue samples for analysis. Total RNA was 
extracted using Trizol (Takara, China) and cDNA was 
synthesized with Prime Script RTase (Takara, China). 
Quantitative real-time PCR (qRT-PCR) was 

performed on the Bio-Rad CFX96 System (Bio-Rad, 
California) with specific primers listed in Table S1. 

Single-cell analysis was conducted to investigate 
the primary origins of gene expression for CDKN2A, 
PLCB4, and NXPE4 in CRC, utilizing the TISCH 
database (http://tisch.comp-genomics.org/home/) 
[21]. 

2.12 Western Blotting (WB) 
Protein lysates were prepared from tissues or cell 

extracts by adding protease and phosphatase 
inhibitors to the lysis solution (Nanjing KeyGEN 
BioTECH Co., Ltd., China) and keeping the solution 
on ice for one hour [22]. After centrifugation at 12,000 
× g for 10 minutes at 4°C, the supernatants were 
collected as crude extracts. Fifty micrograms of each 
protein sample were separated by 10% sodium 
dodecyl sulfate-polyacrylamide gel electrophoresis 
(SDS-PAGE) using a Bio-Rad electrophoresis system, 
with the separation taking 1-2 hours. Proteins were 
then transferred to polyvinylidene fluoride (PVDF) 
membranes (Millipore, Burlington, MA), 
pre-activated with methanol for three minutes. The 
membranes were blocked at room temperature for 
one hour with Tris-buffered saline (TBS) containing 
5% skim milk and then incubated overnight at 4°C 
with a rabbit anti-CDKN2A antibody (dilution 1:1000, 
Abcam). After incubation, the membranes were 
washed three times with 1× TBST (0.1% Tween-20 in 
TBS) and incubated at room temperature for two 
hours with horseradish peroxidase (HRP)-conjugated 
goat anti-rabbit IgG (dilution 1:1000, ZSGB-Bio 
Origene, Beijing, China) in blocking buffer. 
Chemiluminescent signals were detected using 
Enhanced Chemiluminescence (ECL) reagent 
(Advansta, Menlo Park, CA, USA). 

2.13 Immunohistochemistry (IHC) 
This research involved the use of formalin-fixed, 

paraffin-embedded (FFPE) tissue samples from both 
normal and tumor tissues sourced from ten patients 
diagnosed with colon cancer at the Pathology 
Department of Ningxia Medical University General 
Hospital. Tissue sections, each 4 µm in thickness, were 
prepared and underwent deparaffinization in xylene, 
followed by a rehydration process through a series of 
graded ethanol concentrations. For the purpose of 
antigen retrieval, sections were placed in a citrate 
buffer (pH 6.0) and heated in a microwave oven at 
95°C for 15 minutes. After the heating process, 
endogenous peroxidase activity was inhibited using 
3% hydrogen peroxide. The sections were then 
incubated overnight at 4°C with a primary antibody 
targeting CDKN2A. Subsequent to rinsing with PBS, 
the sections received a treatment with a biotinylated 
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secondary antibody for 30 minutes at room 
temperature, followed by an additional 30 minutes of 
incubation with an avidin-biotin complex (ABC) 
solution. Visualization of immunostaining was 
achieved using a diaminobenzidine (DAB) 
chromogen, and the sections were counterstained 
with hematoxylin. The stained slides were 
dehydrated and mounted for microscopic analysis.  

2.14 Statistical analysis 
Data analysis was performed using R version 

4.3.2 and Strawberry Perl version 5.3.1. Statistical 
significance was denoted by *, **, and ***, 
corresponding to thresholds of < 0.05, < 0.01, and < 
0.001, respectively. Findings with a P below 0.05 were 
considered statistically significant, indicating a 
reliable degree of confidence in the results. We used 
the Pearson correlation coefficient for the CRGs 
prognostic network. For the relationship between risk 
scores and immune landscape factors (such as 
immune cell infiltration and TMB), we used the 
Spearman correlation coefficient. 

3. Results 
3.1 Differential expression analysis of CRGs 

As illustrated in the boxplot (Figure 1A), 13 out 
of 19 CRGs demonstrated significant differential 
expression between normal and tumor tissues in CRC. 
Notably, CDKN2A, a well-known tumor suppressor 
gene, showed high expression in tumor tissues. The 
waterfall plot (Figure 1B) indicates that mutations in 
CRGs were present in 97 out of 616 CRC patients, 
with NLRP3 having the highest mutation frequency at 
5%. Analysis of copy number variations (CNVs) and 
their circos plots (Figures 1C-D) revealed that all 
CRGs had a high number of CNVs. Specifically, DBT 
exhibited the highest frequency of CNVs, mainly due 
to deletions on chromosome 1, while other CRGs 
showed varying degrees of amplifications and 
deletions. These results highlight the potential 
significance of CNVs in shaping the genetic landscape 
of CRC. Intriguingly, DBT, which had the highest 
CNV frequency, also showed significant differential 
expression, suggesting that CNVs might influence the 
expression of genes associated with CRC. The 
prognostic network diagram (Figure 1E) identified 
GLS, NLRP3, and CDKN2A as potentially linked to 
poor prognosis in CRC, with CDKN2A being 
particularly associated with high-risk prognosis. This 
discovery suggests that these genes may function as 
significant biomarkers for the prognosis of CRC, 
underscoring the necessity of assessing their 
expression levels in clinical environments. 
Co-expression analysis revealed a negative correlation 

between CDKN2A and DLD, ATP7A, PDHB, DBT, 
and NFE2L2. Kaplan-Meier survival curves (Figures 
1F-M) demonstrated that the expression of CDKN2A, 
DBT, DLAT, DLD, FDX1, MTF1, PDHA1, and PDHB 
was significantly associated with CRC prognosis. 
High expression of CDKN2A correlated with poor 
prognosis, whereas high expression of other genes 
was associated with longer survival, indicating that 
CDKN2A may function as an oncogene in CRC. 

3.2 Analysis of differences between the two 
clusters of CRGs 

Based on the CRG expression data and clinical 
information of CRC patients, we determined the 
optimal number of clusters as K=2, dividing the 
samples into subtypes A and B (Figure 2A, Figure S1). 
Kaplan-Meier survival curves (Figure 2B) revealed 
that subtype A had a significantly better prognosis 
compared to subtype B. Heatmap analysis (Figure 2C) 
showed that subtype A had more favorable clinical 
parameters, such as TNM staging, compared to 
subtype B. Subtype B exhibited significant expression 
of CDKN2A. Subtype A was notably enriched in 
processes related to "ACETYL COA BIOSYNTHETIC 
PROCESS" and "CYTOPLASMIC DYNEIN 
COMPLEX," which are associated with intracellular 
metabolic regulation and cell signaling, as identified 
by GSEA (Figure 2D). Conversely, subtype B was 
enriched in terms related to "APOPTOTIC PROCESS," 
"DEPENDENT PROTEIN SERINE THREONINE 
KINASE INHIBITOR ACTIVITY," and "JUNCTION," 
which are linked to immunological modulation and 
cell proliferation. The activation of these processes in 
subtype B may indicate a tumor phenotype that is 
more aggressive, marked by increased cell 
proliferation and immune evasion. Immune cell 
expression, including CD56dim natural killer cells, 
immature dendritic cells, MDSCs, macrophages, mast 
cells, natural killer T cells, neutrophils, T follicular 
helper cells, Type 1 T helper cells, and Type 17 T 
helper cells, varied significantly between subtypes A 
and B, according to ssGSEA (Figure 2E). This indicates 
that variations in the immune microenvironment 
could play a role in the observed differences in 
prognosis, with subtype A likely gaining from a more 
advantageous immune landscape. PCA results 
(Figure 2F) successfully identified two distinct 
groups, cluster A and cluster B. This confirms the 
robustness of our method in distinguishing between 
CRC subtypes. GO and KEGG enrichment analysis 
(Figures 3A-D) showed significant enrichment of 
these CRGs in cellular processes related to cell growth 
and metabolism, particularly in lipid and 
glycoprotein metabolism, highlighting their critical 
role in cell cycle regulation, DNA damage repair, and 
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energy metabolism balance. 

3.3 Analysis of differences between the two 
subtypes of DEGs 

Initially, 34 DEGs associated with prognosis 
were identified (Figure S2). Cluster analysis 
optimized the parameter K to 2 (Figure 3E, Figure S3), 
stratifying CRC patients into two distinct subtypes, A 
and B. Kaplan-Meier survival curves (Figure 3F) 
indicated that subtype B had a significantly better 
overall survival compared to subtype A (P<0.05). 
Clinical parameter analysis showed that subtype A 
was positively correlated with advanced TNM staging 

and reduced expression of prognosis-related genes 
(Figure 3G). Significant differences in gene expression 
were observed between the two subtypes, except for 
SLC31A1, FDX1, LIAS, and MTF1 (Figure 3H). 
Subtype A exhibited higher expression levels of 
NLRP3, ATP7B, CDKN2A, and DLST, reinforcing the 
role of CDKN2A as a carcinogenic factor. These 
findings highlight the distinct molecular 
characteristics of the subtypes and their potential 
implications for targeted therapy and prognosis in 
CRC. 

 

 
Figure 1. Differential Expression and Genetic Variation of 19 CRGs in CRC. (A) Box plot depicting the differential expression of CRGs across various CRC tissues. Statistical 
significance was assessed using the Wilcoxon rank-sum test, with differences considered significant when P<0.05. (B) Waterfall chart illustrating the mutation frequencies of 
CRGs. (C) Copy number variations (CNVs) of CRGs in 630 samples from the TCGA database. (D) Chromosomal locations of CNVs in CRGs. (E) Interaction network of CRGs. 
(F-M) Kaplan-Meier survival analysis of 8 CRGs associated with CRC prognosis. Symbols indicate statistical significance: *for P<0.05, ** for P<0.01, ***for P<0.001). 
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Figure 2. Identification of Cuproptosis Modification Patterns in CRC by Consensus Clustering. (A) Identification of two clusters through consistent clustering analysis (k = 2). 
(B) Kaplan-Meier survival curves comparing patients with different cuproptosis modification patterns. (C) Comparison of clinicopathological characteristics and CRG expression 
levels between the two cuproptosis subgroups. (D) Gene Set Variation Analysis (GSVA) of patients with different cuproptosis modification patterns to determine the activation 
status of biological pathways. (E) Analysis of immune cell infiltration abundance across different molecular subtypes. (F) Principal Component Analysis illustrating distinct 
distributions between the two subtypes. 

 

3.4 Risk model in training and validation sets 
We identified 11 candidate genes with 

significant associations with CRC prognosis (P<0.05) 
through single-variable Cox analysis of 34 candidate 
genes. Using the LASSO model with a 
partial-likelihood deviation λ value of 0.0115803, we 
selected four genes for multivariable Cox analysis 
(Figures 4A-B). Ultimately, three prognostic genes 
(CDKN2A, PLCB4, and NXPE4) were integrated into 
the final multivariable Cox risk model. CRC patients 
were stratified into high-risk and low-risk groups 
based on median risk scores. The prognostic impact of 
this model on the overall survival (OS) of CRC 
patients was evaluated using Kaplan-Meier analysis. 
Results showed that patients in the low-risk group 
had a significantly higher survival rate compared to 
those in the high-risk group in both training and 
testing cohorts (Figures 4C-D). The distribution map 
of patient risk scores and survival status (Figures 
4E-H) demonstrated a positive correlation between 
higher risk scores and mortality rates. Heatmaps 
illustrated expression differences of the three CRGs 
between high-risk and low-risk groups in both 
cohorts. Analysis of Figures 4I-J suggested similar 
expression patterns of various CRGs across different 
groups. These findings reinforce the potential of the 
identified risk model to guide clinical 
decision-making in CRC management. 

3.5 Validation of the independent prognostic 
model 

Sankey diagrams were used to assess the 
distribution and correlation of patients with varying 
prognoses across different subtypes and risk score 
subgroups (Figure 5A). Figures 5B-C show differences 
in risk scores across various subgroups between 
clusters. Boxplots revealed significant differences in 
CRG expression between groups, with elevated 
expression observed in CDKN2A and DLST within 
the high-risk cohort, supporting the carcinogenic 
potential of CDKN2A (Figure 5D). ROC curves were 
generated to evaluate the prognostic model’s 
performance. The AUC values for the 1, 3, and 5 years 
training sets were 0.688, 0.640, and 0.637, respectively 
(Figure 5E). Similarly, the test set showed AUC values 
of 0.634, 0.600, and 0.562 for 1, 3, and 5 years, 
respectively (Figure 5F). Furthermore, the 
concordance index revealed that the risk score 
exhibited enhanced predictive capability, consistently 
yielding higher values over time when compared to 
age, gender, and stage in forecasting patient outcomes 
(Figure S4). This reinforces the robustness of the risk 
score as a predictive tool in CRC. A nomogram was 
constructed for prognostic analysis, integrating 
various molecular and clinicopathological parameters 
(Figure 5G). Calibration plots highlighted the model's 
excellent reliability (Figure 5H). The DCA (Figures 
5I-K) further illustrated the clinical utility of the 
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nomogram. Over the intervals of 1, 3, and 5 years, the 
nomogram consistently provided a greater net benefit 
across various risk thresholds when compared to 
individual predictors, emphasizing its significance in 
clinical decision-making. Overall, the integration of 
these predictive models enhances the precision of 
prognosis in CRC patients, ultimately contributing to 
more personalized treatment strategies. 

3.6 Correlation analysis between immune cell 
infiltration, immune microenvironment, 
tumor mutation burden, and risk scoring 

Our study reveals associations between different 

immune cell types and risk scores. Specifically, T 
follicular helper cells, activated CD4 memory T cells, 
neutrophils, M1 macrophages, and M0 macrophages 
showed positive correlations with risk scores, while 
naive B cells, monocytes, plasma cells, and resting 
CD4 memory T cells displayed negative correlations 
(Figures 6A-I). CDKN2A, PLCB4, and NXPE4 were 
also significantly correlated with various immune 
cells (Figure 6J). Violin plots illustrated tumor 
microenvironment characteristics across high and 
low-risk cohorts, showing significantly higher 
StromalScore, ImmuneScore, and ESTIMATEScore in 
the high-risk group (Figure 6K). This finding suggests 

 

 
Figure 3. Enrichment Analysis and Identification of DEG Modification Patterns in CRC. (A-B) Bar and bubble plots illustrating the results of Gene Ontology (GO) enrichment 
analysis. (C-D) Bar and bubble plots displaying the results of KEGG enrichment analysis. (E) Two distinct clusters were identified through consistent clustering analysis (k = 2). 
(F) Kaplan-Meier survival curves for patients categorized by DEG modification patterns. (G-H) Differences in clinicopathological characteristics and expression levels of CRGs 
between the two DEG subgroups. 
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that the immune microenvironment may be more 
active in high-risk patients, potentially influencing 
tumor progression. Examination of the somatic 
mutation spectrum identified APC, TP53, and TTN as 
the top three genes with elevated mutation 
frequencies in both high and low-risk groups, 
providing insights into the relationship between 
genetic variability and tumor risk stratification 

(Figures 6L-M). Additionally, TMB calculations 
showed a notable positive correlation with risk scores, 
suggesting that elevated TMB may indicate higher 
tumor risk (Figures 6N-O). These correlations 
emphasize the importance of integrating immune and 
genetic factors for more accurate risk assessment in 
CRC patients, potentially guiding personalized 
treatment strategies. 

 
 

 
Figure 4. Construction and Validation of Risk Models. (A-B) LASSO variable trajectory plot and coefficient profile based on 1,000 cross-validations. (C-D) Kaplan-Meier survival 
curves for both the training and test sets. (E-H) Risk scores and survival status of CRC patients in the training and test sets. (I-J) Heatmaps showing the expression levels of three 
pivotal genes in high-risk and low-risk groups. 
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Figure 5. Analysis of Differences Between Clusters. (A) Sankey diagram illustrating the risk scoring and distribution between CRGs and DEGs clusters. (B-C) Box plots illustrate 
the risk scores and differences between CRG and DEG clusters. (D) Box plot showing the risk differences across CRGs clusters. (E-F) ROC curves estimating prognostic value. 
(G) Nomogram for predicting overall survival in CRC patients. (H) Calibration curves assessing the accuracy of the nomogram. (I-K) DCA to evaluate the clinical net benefit of 
the nomogram compared to individual factors across different risk thresholds for 1-year, 3-year, and 5-year prognosis in CRC patients. 
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3.7 Analysis of risk scores with microsatellite 
instability and stem cell correlation, and drug 
sensitivity between different risk groups 

This study explored the association between 
microsatellite instability (MSI) and risk scores. In the 
low-risk cohort, the distribution of MSI statuses was 
81% microsatellite stable (MSS), 15% MSI-Low 
(MSI-L), and 4% MSI-High (MSI-H). In contrast, the 
high-risk cohort exhibited a decrease in MSS to 58%, 
an increase in MSI-L to 18%, and a significant rise in 
MSI-H to 24% (Figure 6P). These results indicate a 
notable correlation between elevated risk scores and 
increased microsatellite instability, suggesting that 
higher risk is associated with a more unstable 
genomic environment. Further analysis of risk scores 
across different MSI statuses revealed that the median 
risk score was significantly higher in the MSI-H group 
compared to the MSS and MSI-L groups, highlighting 
a strong association between high microsatellite 
instability and increased risk scores (Figure 6Q). 
Additionally, the analysis of RNA-SS scores showed a 
negative correlation with risk scores (Figure 6R). Drug 
sensitivity analysis indicated that most chemotherapy 
drugs were more effective in the high-risk group 
(Figure S5). 

3.8 Differential expression of CDKN2A, 
NXPE4, and PLCB4 in normal and tumor 
tissues of CRC 

We examined the expression levels of CDKN2A, 
NXPE4, and PLCB4 in normal and tumor tissues 
using data from the TCGA database (Figures 7A-C). 
To validate these findings, qRT-PCR was performed. 
Results showed increased levels of CDKN2A and 
PLCB4 in tumor tissues, whereas NXPE4 expression 
was higher in normal tissues (Figures 7D-F). 

3.9 Differential expression of CDKN2A, 
NXPE4, and PLCB4 in scRNA-seq 

To investigate the roles of CDKN2A, NXPE4, 
and PLCB4 at the single-cell level, we performed 
scRNA-seq analysis on the GSE166555 dataset using 
the TISCH database. Cell clustering and annotation 
identified 13 cell types (Figures 7G-H, Figure S6). 
CDKN2A was primarily expressed in proliferative T 
cells, CD8 T cells, and malignant cells, PLCB4 was 
mainly found in malignant and endothelial cells, and 
NXPE4 was predominantly present in epithelial cells 
(Figures 7I-K). These findings align with our qRT-PCR 
results. Kaplan-Meier survival analysis revealed that 
high CDKN2A expression is associated with poorer 
prognosis, while high PLCB4 and NXPE4 expressions 
are associated with better prognosis (Figures 7L-N). 
This highlights the potential of CDKN2A as a 

prognostic marker for aggressive disease, while 
PLCB4 and NXPE4 may act as favorable prognostic 
indicators, indicating their distinct functions in the 
progression of CRC and patient outcomes. 

3.10 Differential Expression of CDKN2A in 
CRC 

We analyzed CDKN2A expression across 
various tissue samples, including normal, adjacent, 
and tumor tissues, as well as normal intestinal 
epithelial cells (NCM460) and multiple CRC cell lines 
(HT29, HCT116, SW620, SW480). Elevated protein 
levels of CDKN2A were observed in both cancerous 
tissues and tumor cell lines (Figures 8A-D). IHC 
analysis showed that CDKN2A is primarily expressed 
in small amounts in the nucleus in normal tissues, 
while in Colon cancer tissue, its expression is 
significantly localized to the cytoplasm, with a small 
amount still present in the nucleus (Figures 8E-F). 
Further quantitative assessment corroborated this 
finding, indicating that the proportion of CDKN2A 
positive expression in cancer tissues was substantially 
elevated relative to normal tissues (Figure 8G). These 
findings suggest a pronounced expression trend of 
CDKN2A in CRC tissues, indicating its potential 
significance in the initiation and advancement of 
CRC. 

4. Discussion 
Recent research has highlighted the significant 

role of copper ions in cancer progression, particularly 
their impact on tumor proliferation, movement, and 
vascular development [23]. Copper ions influence 
cancer cell survival and death by affecting 
mitochondrial functions and copper transport across 
the extracellular matrix [24]. This has led to new 
therapeutic strategies, such as targeting 
cuproptosis—a novel form of cell death that disrupts 
mitochondrial acylated proteins and Fe-S cluster 
proteins [25]. The dysregulation of CRGs is closely 
linked to CRC progression and prognosis, positioning 
these genes as potential therapeutic targets [26]. Our 
study investigates the variation in CRG copy numbers 
in CRC, exploring their relationships with clinical 
features, the tumor microenvironment, and immune 
cell infiltration at both transcriptome and single-cell 
levels. We identified CDKN2A, NXPE4, and PLCB4 as 
key players in cuproptosis and potential targets for 
CRC therapy. 

Chromosomal copy number variations are 
crucial in tumor development, particularly in CRC 
[27, 28]. Research by Zhang et al. has shown that 
chromosomal instability and copy number changes 
significantly affect tumor cell genetic heterogeneity 
and adaptability [29]. For instance, HER2 gene 
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amplification in breast cancer leads to overproduction 
of the HER2 protein, which correlates with aggressive 
tumor behavior and poor prognosis [30]. Similarly, 
TP53 deletions are common across various cancers, 
leading to the loss of tumor suppressor functions and 
promoting tumor growth and resistance to apoptosis 
[31]. Our study integrates CNV and gene expression 
analyses, revealing that DBT has the highest mutation 

rate among the 19 CRGs studied, mainly due to 
deletions on chromosome 1. DBT expression is higher 
in normal colorectal tissues compared to cancerous 
ones, suggesting that DBT may be crucial for 
maintaining normal colorectal tissue function, and its 
copy number alterations could contribute to cancer 
progression. 

 

 
Figure 6. Immunological landscape analysis. (A-I) Correlation analysis between risk score and immune infiltrating cells. (J) Correlation between model-built genes and immune 
cells. (K) Violin maps for differential analysis of the tumor microenvironment. (L-M) Waterfall plots of tumor mutation burden for high- and low-risk groups. (N) Bar chart 
showing the difference in TMB between high- and low-risk groups. (O) Scatter plot of the correlation between TMB values and risk scores. (P) MSI characteristics of the diverse 
CPS-score subgroups. (Q) Differences in CPS score between MSS, MSI-L, and MSI-H. (R) Scatterplot of stem cell correlations. 
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Figure 7. Three key genes exhibit expression differences at both the single-cell level and the transcriptome level. (A-C) Expression levels of CDKN2A, NXPE4, and PLCB4 in 
CRC tumor tissues compared to normal tissues from the TCGA database. Statistical significance was assessed using independent sample t-tests. (D–F) Validation of gene 
expression levels in CRC tumors and normal tissues via qRT-PCR. Expression differences were evaluated using paired t-tests, revealing statistically significant results. (G-H) 
UMAP plots from the GSE166555 dataset showing the distribution of CDKN2A, NXPE4, and PLCB4 expression at the single-cell level. These plots illustrate the heterogeneity 
of gene expression within individual CRC cells. (I-K) Detailed expression distribution maps for CDKN2A, NXPE4, and PLCB4 at the single-cell level, highlighting variability across 
different cell populations in CRC. Statistical analysis of single-cell data was performed using non-parametric tests, with significance thresholds set at *P<0.05, **P<0.01, and 
***P<0.001. 

 
Additionally, we developed a prognostic risk 

model based on differentially expressed CRGs in 
CRC. This model, incorporating CDKN2A, PLCB4, 
and NXPE4, serves as an independent prognostic 
marker, offering a comprehensive assessment of CRC 
prognosis beyond traditional TNM staging. It 
enhances the precision and dynamics of tumor 
progression and prognosis monitoring. Similar 

models have been developed in previous studies; for 
example, Liang et al. used cancer stem cell-associated 
genes to establish a CRC risk model [32], while Shi et 
al. investigated CRGs in hepatocellular carcinoma 
(HCC) and identified eight CRGs linked to HCC 
prognosis. Their models predicted 1-, 3-, and 5-year 
survival rates with AUC values of 0.658, 0.647, and 
0.629, respectively [33]. Our model, using CDKN2A, 
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PLCB4, and NXPE4, demonstrated improved stability 
with AUC values ranging from 0.634 to 0.688 for 1 
year, 0.600 to 0.640 for 3 years, and 0.562 to 0.637 for 5 
years. This model offers a cost-effective and clinically 
viable alternative to whole transcriptome sequencing, 
making it a valuable tool for CRC diagnostics and 
therapeutics. 

Recent studies underscore the critical role of 
immune cell infiltration, particularly tumor- 
infiltrating lymphocytes (TILs), in modulating the 
tumor microenvironment [34, 35]. Our research 
reveals that high-risk CRC patients exhibit increased 
infiltration of M0 macrophages, which are typically 
associated with adverse outcomes. In contrast, 
low-risk patients show higher levels of resting 
memory CD4+ T cells and plasma cells. Resting 
memory CD4+ T cells are essential for regulating 
tumor dynamics and maintaining long-term immune 
memory through specific regulatory mechanisms [36]. 
These cells remain dormant until activated by tumor 
antigens, enabling rapid immune responses that are 
crucial for preventing tumor recurrence [37]. Jakic et 
al. report that these memory cells enhance immune 
responses by releasing cytokines such as IL-2 and 
IFN-γ, which boost the cytotoxic activities of other 
immune cells, including CD8+ T cells [38]. This 
enhancement improves immune surveillance and 
combats tumor proliferation. Additionally, resting 
memory CD4+ T cells play a key role in monitoring 
long-standing tumors or minimal residual disease, 
providing ongoing protection and aiding in the 
prevention of tumor reemergence [39]. Conversely, 

M0 macrophages promote tumor progression and 
growth through various mechanisms [40]. They 
secrete significant amounts of pro-inflammatory 
cytokines and growth factors, such as TNF-α and 
VEGF, which support tumor cell growth, survival, 
and angiogenesis by providing essential nutrients and 
oxygen. M0 macrophages also release immuno-
suppressive cytokines like IL-10 and TGF-β, which 
can diminish T cell activity and impair the immune 
system's ability to target tumor cells, thereby 
facilitating tumor evasion [41]. Furthermore, M0 
macrophages contribute to tumor invasiveness and 
metastasis by releasing matrix metalloproteinases 
(MMPs) that degrade the extracellular matrix, 
promoting tumor cell migration [42]. They also induce 
resistance to chemotherapy and radiotherapy by 
activating pathways such as NF-κB, STAT3, and 
PI3K/Akt [43]. Our findings highlight how specific 
immune cells respond to and influence disease 
progression across different risk levels, offering 
valuable insights into their roles in immune-related 
diseases. 

We identified three key genes—CDKN2A, 
PLCB4, and NXPE4—that exhibited significant 
differences at both the transcriptomic and single-cell 
levels. Survival analysis indicates that these genes are 
closely related to CRC prognosis. PLCB4, a crucial 
signal transduction enzyme, regulates cell 
proliferation, differentiation, and survival by 
modulating IP3 and DAG levels, affecting calcium 
signaling and the protein kinase C pathway [44]. High 
expression of PLCB4 in tumor tissues, malignant cells, 

 
Figure 8. Differential expression of CDKN2A. (A-B) Expression of CDKN2A in normal, adjacent, and colon cancer tissues assessed by WB. Statistical significance between 
groups was determined using one-way ANOVA, with significance denoted by **** for P < 0.0001. (C-D) WB results showing CDKN2A expression in normal intestinal epithelial 
cells (NCM460) compared to multiple CRC cell lines (HT29, HCT116, SW620, SW480). Statistical significance was calculated by one-way ANOVA, with symbols indicating **P 
< 0.01, ***P < 0.001, and ****P < 0.0001. (E-F) Representative images from our IHC staining of CDKN2A in normal and colon cancer tissues, illustrating protein localization and 
abundance. (G) Quantitative analysis of CDKN2A staining intensity in colon cancer versus normal tissues, with statistical significance assessed by independent samples t-tests, 
indicated by *** for P < 0.001. 
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and endothelial cells correlates with its role in 
promoting tumor proliferation and angiogenesis. 
Typically, such expression patterns are associated 
with aggressive tumors and poor prognosis [45]. 
However, our survival analysis shows that high 
PLCB4 expression is linked to better prognosis in CRC 
patients. This suggests that PLCB4's role in tumor 
biology may be more complex, potentially enhancing 
angiogenesis and improving therapeutic drug 
delivery, which could increase treatment efficacy [46]. 
Additionally, PLCB4's role in regulating calcium 
signaling might help cells resist cuproptosis, a form of 
cell death induced by copper-based treatments [47]. 
This resistance could reduce stress-induced cell death 
in other therapeutic scenarios, thereby positively 
influencing prognosis [48]. In contrast, NXPE4 
expression is generally lower in CRC tissues and cells 
compared to normal tissues, suggesting that NXPE4 
may be important for maintaining normal cell 
functions and inhibiting tumor progression. Survival 
analysis indicates that low NXPE4 expression is 
associated with poorer prognosis, highlighting its 
potential role in tumor suppression. Reduced NXPE4 
expression may affect CRC cell sensitivity to 
cuproptosis, as cuproptosis depends on cellular 
metabolic states and disturbances in fatty acid 
metabolism [49]. Lower NXPE4 functionality could 
make tumor cells more susceptible to copper ion 
toxicity, exacerbating cuproptosis [50]. In summary, 
PLCB4 and NXPE4 exhibit distinct expression 
patterns and functions across various CRC tissue and 
cell types, reflecting their complex and dual roles in 
tumor biology. Understanding these genes' roles is 
crucial for developing targeted therapies and 
predicting treatment outcomes. Future research 
should further explore these molecules' specific 
interactions in the TME and their impact on treatment 
responses, providing more precise and effective 
options for CRC patients. 

This study primarily investigates the differential 
expression of CDKN2A protein across various tissues 
and cell types in CRC. Our results reveal that 
CDKN2A is significantly more expressed in tumor 
tissues compared to normal and adjacent non-tumor 
tissues. Additionally, CDKN2A expression levels are 
markedly higher in six CRC cell lines than in normal 
intestinal epithelial cells. Notably, low CDKN2A 
expression correlates with better prognosis in CRC 
patients. CDKN2A functions as a tumor suppressor 
gene, with its encoded protein, p16INK4a, inhibiting 
CDK4/6 and blocking the transition from G1 to S 
phase of the cell cycle [51]. This action is crucial for 
cell cycle regulation. CDKN2A also stabilizes the p53 
protein through its p14ARF subunit, which enhances 
the cellular response to DNA damage, promotes 

apoptosis, and induces senescence [52]. Shi et al. have 
suggested that CDKN2A might resist cuproptosis by 
regulating glycolysis and copper ion homeostasis. 
This mechanism could be associated with malignant 
phenotypes and changes in the tumor 
microenvironment, offering new insights into 
therapeutic strategies for CDKN2A-expressing CRC 
[53]. Our observations show that CDKN2A is highly 
expressed in malignant CRC cells, potentially 
enhancing cellular resistance to oxidative stress. This 
upregulation of antioxidant enzymes, such as 
superoxide dismutase and glutathione peroxidase, 
may help cells mitigate oxidative damage caused by 
copper ions, thereby reducing the risk of 
copper-induced cell death [54]. High CDKN2A 
expression might also promote mitochondrial 
function, improving energy production efficiency and 
helping cells manage the increased energy demands 
triggered by copper ions [55]. By maintaining energy 
balance and mitochondrial health, CDKN2A helps 
cells resist the death pressures caused by copper ions 
[56]. Furthermore, CDKN2A's role in regulating the 
cell cycle under copper-induced stress conditions 
contributes to cellular stability, influencing survival 
or death decisions [57]. This is crucial for tumor cell 
survival, potentially enhancing resistance to 
chemotherapeutic drugs [58]. Therefore, the 
expression patterns and functional complexity of 
CDKN2A underscore its importance as a prognostic 
marker and potential therapeutic target in CRC. 
Further exploration of CDKN2A's role in cuproptosis 
regulation could lead to more effective treatment 
strategies. 

However, our study has several limitations. 
Primarily, our data is derived from the TCGA and 
GEO databases and lacks external validation. 
Additionally, the verification of expression profiles 
has been limited to tissue and cell levels. To enhance 
our understanding of key genes in CRC, further 
assays of cellular functions and the development of 
animal models in a physiological environment are 
necessary. 

Supplementary Material 
Supplementary figures and table.  
https://www.jcancer.org/v16p1264s1.pdf 

Acknowledgements 
Funding 

This project was supported by the National 
Natural Science Foundation of China (No. 82260543), 
Natural Science Foundation of Ningxia 
(2023AAC05058). 



 Journal of Cancer 2025, Vol. 16 

 
https://www.jcancer.org 

1279 

Date availability statement 
The datasets presented in this study can be 

found in online repositories. The names of the 
repository/repositories and accession number(s) can 
be found below: https://portal.gdc.cancer.gov, The 
Cancer Genome Atlas; https://www.ncbi.nlm.nih 
.gov/geo, The Gene Expression Omnibus (GSE12945). 

Ethical approval and consent to participate 
Written informed consent was obtained from 

each patient before surgery and all study protocols 
were approved by the Ethics Committee for Clinical 
Research of General Hospital of Ningxia Medical 
University (Reference Number: KYLL-2022-0800). All 
methods were carried out in accordance with relevant 
guidelines and regulations/Declaration of Helsinki. 

Author contributions 
The research was planned by T.J. and H.L. The 

data was analyzed and the original article was written 
by T.J. and Z.W. Z.S. is responsible for experimental 
validation. H.L. and G.L gathered references and 
reviewed the paper. The data was gathered by Z.W. 
The final manuscript was reviewed and approved by 
all authors. 

Competing Interests 
The authors have declared that no competing 

interest exists. 

References 
1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN 

estimates of incidence and mortality worldwide for 36 cancers in 185 
countries. CA: a cancer journal for clinicians. 2021;71(3):209-49. 

2. Jin P, Yin FM, Sheng JQ. Endoscopic diagnosis and treatment of early 
colorectal cancer and precancerous lesions: current status and future 
prospects. Zhonghua Yi Xue Za Zhi. 2022;102:3650–3653. 

3. Koroukian SM, Booker BD, Vu L, et al. Receipt of Targeted Therapy and 
Survival Outcomes in Patients with Metastatic Colorectal Cancer. JAMA Netw 
Open. 2023;6(1):e2250030. 

4. Ugai T, Akimoto N, Haruki K, et al. Prognostic role of detailed colorectal 
location and tumor molecular features: analyses of 13,101 colorectal cancer 
patients including 2994 early-onset cases. J Gastroenterol. 2023;58:229–245. 

5. Li YQ. [Focusing on the study of colorectal tumor and improving the detection 
rate of advanced adenoma]. Zhonghua Yi Xue Za Zhi. 2022;102:3647–3649. 

6. Yang J, Zhao Y, Yuan R, et al. Identifying individualized prognostic signature 
and unraveling the molecular mechanism of recurrence in early-onset 
colorectal cancer. Eur J Med Res. 2023;28:533. 

7. Liu J, Hong M, Li Y, et al. Programmed Cell Death Tunes Tumor Immunity. 
Front Immunol. 2023;13:847345. 

8. Tsvetkov P, Coy S, Petrova B, et al. Copper induces cell death by targeting 
lipoylated TCA cycle proteins. Science. 2022;375:1254–1261. 

9. Wang J, Luo LZ, Liang DM, et al. Progress in the research of cuproptosis and 
possible targets for cancer therapy. World J Clin Oncol. 2023;14:324–334. 

10. Zheng X, Zhang C, Zheng D, et al. An original cuproptosis-related genes 
signature effectively influences the prognosis and immune status of head and 
neck squamous cell carcinoma. Front Genet. 2022;13:1084206. 

11. Fukai T, Ushio-Fukai M, Kaplan JH. Copper transporters and copper 
chaperones: roles in cardiovascular physiology and disease. Am J Physiol Cell 
Physiol. 2018;315:C186–C201. 

12. Xu W, Qian J, Hou G, et al. A Hollow Amorphous Bimetal Organic Framework 
for Synergistic Cuproptosis/Ferroptosis/Apoptosis Anticancer Therapy via 
Disrupting Intracellular Redox Homeostasis and Copper/Iron Metabolisms. 
Angew Chem Int Ed. 2022;32(40):2205013. 

13. Xue Q, Kang R, Klionsky DJ, et al. Copper metabolism in cell death and 
autophagy. Autophagy. 2023;19:2175–2195. 

14. Wan F, Zhong G, Ning Z, et al. Long-term exposure to copper induces 
autophagy and apoptosis through oxidative stress in rat kidneys. Ecotoxicol 
Environ Saf. 2020;190:110158. 

15. Kang Z, Qiao N, Liu G, et al. Copper-induced apoptosis and autophagy 
through oxidative stress-mediated mitochondrial dysfunction in male germ 
cells. Toxicol In Vitro. 2019;61:104639. 

16. Zhou Y, Li X, Ng L, et al. Identification of copper death-associated molecular 
clusters and immunological profiles in rheumatoid arthritis. Front Immunol. 
2023;14:1103509. 

17. Kanehisa M. Toward understanding the origin and evolution of cellular 
organisms. Protein Sci. 2019;28:1947–1951. 

18. Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. 
Nucleic Acids Res. 2000;28:27–30. 

19. Kanehisa M, Furumichi M, Sato Y, et al. KEGG for taxonomy-based analysis of 
pathways and genomes. Nucleic Acids Res. 2023;51:D587–D592. 

20. He R, Zhang H, Zhao H, et al. Multiomics Analysis Reveals 
Cuproptosis-Related Signature for Evaluating Prognosis and Immunotherapy 
Efficacy in Colorectal Cancer. Cancers (Basel). 2023;15(2):387. 

21. Khaliq AM, Erdogan C, Kurt Z, et al. Correction: Refining colorectal cancer 
classification and clinical stratification through a single-cell atlas. Genome 
Biol. 2022;23:156. 

22. Wu W, Dong J, Lv Y, Chang D. Cuproptosis-related genes in the prognosis of 
colorectal cancer and their correlation with the tumor microenvironment. 
Front Genet. 2023;13:984158. 

23. Gao L, Zhang A. Copper-instigated modulatory cell mortality mechanisms 
and progress in oncological treatment investigations. Front Immunol. 
2023;14:1236063. 

24. Tsang T, Posimo JM, Gudiel AA, et al. Copper is an essential regulator of the 
autophagic kinases ULK1/2 to drive lung adenocarcinoma. Nat Cell Biol. 
2020;22:412–424. 

25. Nie G, Peng D, Wen N, et al. Cuproptosis-related genes score: A predictor for 
hepatocellular carcinoma prognosis, immunotherapy efficacy, and metabolic 
reprogramming. Front Oncol. 2023;13:1096351. 

26. Chu B, Wang Y, Yang J, Dong B. Integrative analysis of single-cell and bulk 
RNA seq to reveal the prognostic model and tumor microenvironment 
remodeling mechanisms of cuproptosis-related genes in colorectal cancer. 
Aging (Albany NY). 2023;15:14422–14444. 

27. Liu H, Gu X, Wang G, et al. Copy number variations primed lncRNAs 
deregulation contribute to poor prognosis in colorectal cancer. Aging (Albany 
NY). 2019;11:6089–6108. 

28. Molparia B, Oliveira G, Wagner JL, et al. A feasibility study of colorectal 
cancer diagnosis via circulating tumor DNA derived CNV detection. PLoS 
One. 2018; 13(5):e0196826. 

29. Zhang S, Pan X, Zeng T, et al. Copy Number Variation Pattern for 
Discriminating MACROD2 States of Colorectal Cancer Subtypes. Front Bioeng 
Biotechnol. 2019;7:407. 

30. Hu W, Li M, Zhang Q, et al. Establishment of a novel CNV-related prognostic 
signature predicting prognosis in patients with breast cancer. J Ovarian Res. 
2021;14:103. 

31. Liu Y, Ye X, Zhan X, et al. TPQCI: A topology potential-based method to 
quantify functional influence of copy number variations. Methods. 
2021;192:46–56. 

32. Liang XY, Zhang Y, He YN, et al. A cancer stem cell associated gene signature 
for predicting overall survival of hepatocellular carcinoma. Front Genet. 
2022;13:888601. 

33. Shi H, Huang J, Wang X, et al. Development and validation of a copper-related 
gene prognostic signature in hepatocellular carcinoma. Front Cell Dev Biol. 
2023;11:1157841. 

34. Paijens ST, Vledder A, de Bruyn M, Nijman HW. Tumor-infiltrating 
lymphocytes in the immunotherapy era. Cell Mol Immunol. 2021;18:842–859. 

35. Zhang YX, Zhao YY, Shen J, et al. Nanoenabled Modulation of Acidic Tumor 
Microenvironment Reverses Anergy of Infiltrating T Cells and Potentiates 
Anti-PD-1 Therapy. Nano Lett. 2019;19:2774–2783. 

36. Zhang Q, Zheng F, Chen Y, et al. The TOPK Inhibitor HI-TOPK-032 Enhances 
CAR T-cell Therapy of Hepatocellular Carcinoma by Upregulating Memory T 
Cells. Cancer Immunol Res. 2024;12:631–643. 

37. Mami-Chouaib F, Blanc C, Corgnac S, et al. Resident memory T cells, critical 
components in tumor immunology. J Immunother Cancer. 2018;6:87. 

38. Jakic B, Olson WJ, Siegmund K, et al. Loss of the orphan nuclear receptor 
NR2F6 enhances CD8+ T-cell memory via IFN-γ. Cell Death Dis. 2021;12:187. 

39. Ruelas-Galindo I, Huerta L. Soluble factors from TLR4- or TCR-activated cells 
contribute to stability of the resting phenotype and increase the expression of 
CXCR4 of human memory CD4 T cells. Immunol Res. 2023;71:388–403. 

40. Montemurro N, Pahwa B, Tayal A, et al. Macrophages in Recurrent 
Glioblastoma as a Prognostic Factor in the Synergistic System of the Tumor 
Microenvironment. Neurol Int. 2023;15:595–608. 

41. Gankema AAF, Furumaya C, Fernández-Hermira S, et al. Efficient 
complement-mediated clearance of immunosuppressed T cells by 
macrophages. Front Immunol. 2023;14:1183180. 

42. Jiang M, Liu L, Huang W, et al. HMGB1-activated tumor-associated 
macrophages promote migration and invasion via NF-κB/IL-6 signaling in 
oral squamous cell carcinoma. Int Immunopharmacol. 2024;126:111200. 

43. Chiu CH, Lin YJ, Ramesh S, et al. Gemcitabine resistance in non-small cell lung 
cancer is mediated through activation of the PI3K/AKT/NF-κB pathway and 



 Journal of Cancer 2025, Vol. 16 

 
https://www.jcancer.org 

1280 

suppression of ERK signaling by reactive oxygen species. J Biochem Mol 
Toxicol. 2023;37(12):e23497. 

44. Kanemaru K, Nakamura Y. Activation Mechanisms and Diverse Functions of 
Mammalian Phospholipase C. Biomolecules. 2023;13:915. 

45. Calon A, Espinet E, Palomo-Ponce S, et al. Dependency of colorectal cancer on 
a TGF-β-driven program in stromal cells for metastasis initiation. Cancer Cell. 
2012;22:571–584. 

46. Saman H, Raza SS, Uddin S, Rasul K. Inducing Angiogenesis, a Key Step in 
Cancer Vascularization, and Treatment Approaches. Cancers. 2020;12:1172. 

47. Cobine PA, Brady DC. Cuproptosis: Cellular and molecular mechanisms 
underlying copper-induced cell death. Mol Cell. 2022;82:1786–1787. 

48. Zhao R, Sukocheva O, Tse E, et al. Cuproptosis, the novel type of 
oxidation-induced cell death in thoracic cancers: can it enhance the success of 
immunotherapy? Cell Commun Signal. 2024;22:379. 

49. Wang Y, Pei P, Yang K, et al. Copper in colorectal cancer: From copper-related 
mechanisms to clinical cancer therapies. Clin Transl Med. 2024;14(6):e1724. 

50. de Jong MC, Khan S, Christakis I, et al. Comparative performances of 
nomograms and conditional survival after resection of adrenocortical cancer. 
BJS Open. 2021;5(1):zraa036. 

51. Sun J, Wang X, Shen Q, et al. DNASE1L3 inhibits hepatocellular carcinoma by 
delaying cell cycle progression through CDK2. Cell Oncol. 2022;45:1187–1202. 

52. Wang C, Cao F, Cao J, et al. CD58 acts as a tumor promoter in hepatocellular 
carcinoma via activating the AKT/GSK-3β/β-catenin pathway. J Transl Med. 
2023;21:539. 

53. Shi W-K, Li Y-H, Bai X-S, Lin G-L. The Cell Cycle-Associated Protein 
CDKN2A May Promote Colorectal Cancer Cell Metastasis by Inducing 
Epithelial-Mesenchymal Transition. Front Oncol. 2022;12:834235. 

54. Wu H, Liu S, Wu D, et al. Cell division cycle-associated 8 is a prognostic 
biomarker related to immune invasion in hepatocellular carcinoma. Cancer 
Med. 2023;12:10138–10155. 

55. Wan X, Xiang J, Fan H, et al. Ciclopirox Olamine Induces Proliferation 
Inhibition and Protective Autophagy in Hepatocellular Carcinoma. 
Pharmaceuticals (Basel). 2023;16(1):113. 

56. Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death. Nat 
Rev Mol Cell Biol. 2020;21:85–100. 

57. Nagai M, Vo NH, Shin Ogawa L, et al. The oncology drug elesclomol 
selectively transports copper to the mitochondria to induce oxidative stress in 
cancer cells. Free Radic Biol Med. 2012;52:2142–2150. 

58. Tsvetkov P, Detappe A, Cai K, et al. Mitochondrial metabolism promotes 
adaptation to proteotoxic stress. Nat Chem Biol. 2019;15:681–689. 

 


