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Abstract 

Background: Colorectal cancer (CRC) is a leading cause of cancer-related deaths, with over 1.9 million 
new cases and 904,000 deaths in 2022. Chemotherapy is a primary treatment for CRC but often leads to 
myelosuppression, significantly affecting treatment efficacy and patient outcomes. Predictive tools for 
chemotherapy-induced myelosuppression are currently lacking. 
Methods: This retrospective study analyzed 855 CRC patients from Guang'anmen Hospital who 
received first-line chemotherapy (CapeOx, FOLFOX, FOLFIRI) between April 2020 and July 2024. 
Patients were divided into training (684) and validation (171) groups. Univariate analysis, LASSO 
regression, and multivariable logistic regression identified risk factors for myelosuppression, and a 
predictive nomogram was developed and validated using ROC curves, calibration curves, and decision 
curve analysis. Propensity score matching (PSM) was employed to minimize baseline differences between 
groups, followed by multivariate logistic regression analysis on the post-PSM data. 
Results: The incidence of myelosuppression was similar in both groups (33.04% vs. 32.16%). Significant 
predictors included age, smoking, diabetes, BMI, tumor location, lung metastasis, albumin (ALB) levels, 
and carcinoembryonic antigen (CEA) levels. The nomogram demonstrated good predictive performance 
with AUC values of 0.78 and 0.80 for the training and validation groups, respectively, showing consistent 
and clinically useful predictions. PSM further validated the robustness of the model, confirming BMI as a 
consistently significant predictor of myelosuppression. 
Conclusions: The study identified key risk factors for chemotherapy-induced myelosuppression in CRC 
patients and developed a nomogram for prediction. This tool can help clinicians assess risk and guide 
treatment decisions. Limitations include potential selection bias and the need for external validation in 
diverse populations. Future studies should further refine and validate this predictive model. 
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Introduction 
Colorectal cancer (CRC) refers to malignant 

tumors occurring in the colon or rectum. It ranks third 
in incidence, following lung cancer and breast cancer, 
and is the second leading cause of cancer-related 
deaths. Statistics indicate that in 2022, there were over 
1.9 million new cases of colorectal cancer (including 
anal cancer) and 904,000 deaths, accounting for nearly 

one-tenth of all cancer cases and deaths[1]. With the 
aging population and changes in lifestyle, the 
incidence and mortality rates of CRC are expected to 
increase significantly in the coming decades. By 2040, 
the global incidence of CRC is projected to rise to 3.2 
million new cases, with 1.6 million deaths[2-3]. 
Evidence suggests that in many high-income 
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countries, the incidence of CRC among individuals 
under 50 years old has been increasing annually[4-5]. 
CRC has thus become an increasingly serious public 
health issue. 

Chemotherapy is one of the main treatment 
options for CRC. For patients with early-stage CRC 
(Stage I and Stage II), surgical resection is the primary 
treatment modality. However, for high-risk Stage II 
patients, adjuvant chemotherapy post-surgery may be 
recommended to reduce the risk of recurrence. For 
patients with locally advanced CRC (Stage III), the 
standard treatment regimen includes surgical 
resection combined with adjuvant chemotherapy. In 
cases of metastatic CRC (Stage IV), systemic 
chemotherapy is the preferred approach, often in 
combination with targeted therapies such as 
bevacizumab or cetuximab[6-7]. The first-line treatment 
regimens for CRC include FOLFOX (fluorouracil 
[5-FU], leucovorin, and oxaliplatin), FOLFIRI 
(fluorouracil [5-FU], leucovorin, and irinotecan), and 
CapeOx (capecitabine and oxaliplatin)[6]. Although 
the aforementioned regimens demonstrate significant 
clinical efficacy[8-9], they are still associated with side 
effects such as myelosuppression, gastrointestinal 
reactions, dermatological lesions, and peripheral 
neurotoxicity[10-12]. In some cases, these regimens can 
lead to life-threatening cardiotoxicity[13] and central 
nervous system toxicity[14]. Among the side effects, 
myelosuppression is one of the most common adverse 
reactions following first-line chemotherapy regimens 
for CRC. Myelosuppression is a side effect induced by 
chemotherapy or radiotherapy that results in a 
reduced ability of the bone marrow to produce blood 
cells, leading to pancytopenia. The primary cause of 
myelosuppression is that chemotherapy, while 
attacking tumor cells, also inhibits the highly 
proliferative and poorly differentiated bone marrow 
cells, suppressing all immature cells with proliferative 
capabilities[15]. Specific manifestations of 
myelosuppression include neutropenia, anemia, and 
thrombocytopenia[16], which can also cause adverse 
reactions such as fever, rash, and bone pain[17-18]. More 
severely, the reduction of neutrophils and platelets 
can significantly increase the risk of infection and 
bleeding, directly threatening the patient's life. 
Furthermore, when severe myelosuppression occurs, 
it necessitates a reduction in chemotherapy dosage or 
a delay in treatment, impacting the clinical benefits of 
the therapy. Therefore, early diagnosis of 
chemotherapy-induced myelosuppression is of 
paramount importance.  

Considering the crucial role of chemotherapy in 
treating CRC patients and the adverse effects of 
chemotherapy-induced myelosuppression, it is 

imperative to identify predictive factors for 
myelosuppression in this population. Currently, there 
are no reliable methods to accurately assess the risk of 
myelosuppression in CRC patients. Creating a reliable 
predictive tool for assessing myelosuppression risk 
after chemotherapy would be of significant clinical 
importance. This study aims to develop and validate a 
model for predicting the myelosuppression after 
first-line chemotherapy for colorectal cancer. The 
study protocol of this article is shown in Figure 1.  

Methods 
Patients and study design 

This study retrospectively selected 855 inpatients 
from the Oncology Department of Guang'anmen 
Hospital, China Academy of Chinese Medical 
Sciences, from April 2020 to July 2024. To maximize 
the accuracy, sensitivity, and specificity of the 
predictive model and enhance its overall 
performance, including its utility in clinical 
decision-making, this study utilized the randomizr 
package in R to perform simple randomization of the 
included cases (training group: validation group = 
8:2). This approach reduces selection bias, improves 
comparability between groups, and enhances the 
predictive power of the model’s features with respect 
to the outcome indicators, thereby increasing the 
external validity of the nomogram predictive model. 
The patients were randomly divided into a training 
group and a validation group at a ratio of 8:2. 
Inclusion criteria: ① Diagnosed with CRC according 
to the diagnostic criteria of the "Chinese Protocol of 
Diagnosis and Treatment of Colorectal Cancer (2023 
Edition)"; ② Received first-line chemotherapy 
regimens: CapeOx (capecitabine and oxaliplatin), 
FOLFOX (fluorouracil, leucovorin, and oxaliplatin), 
FOLFIRI (fluorouracil, leucovorin, and irinotecan); ③ 
Did not exhibit myelosuppression before 
chemotherapy, defined as meeting all of the following 
criteria: adult peripheral blood leukocyte count 
≥4.0×10^9/L, absolute neutrophil count ≥2.0×10^9/L, 
platelet count ≥100×10^9/L, hemoglobin ≥115g/L 
(female) or hemoglobin ≥130g/L (male). Exclusion 
criteria: CRC patients who did not receive first-line 
chemotherapy regimens. 

The training group consisted of 684 patients and 
was used to develop and train the model. The 
validation group consisted of 171 patients and was 
used to validate the model. 

The study was approved by the ethical 
committee of our hospital (Approval Number: 
2022-215-KY). 
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Figure 1. Flowchart of the study protocol. 

 

Outcome definition 
The outcome variable of this study is 

antineoplastic drug-related myelosuppression, 
defined as adult peripheral blood leukocyte count 
<4.0×10^9/L, absolute neutrophil count <2.0×10^9/L, 
platelet count <100×10^9/L, and hemoglobin 
<115g/L (female) or hemoglobin <130g/L (male). 
Meeting any one of these four criteria qualifies as a 
diagnosis of antineoplastic drug-related 
myelosuppression[16]. Laboratory tests were evaluated 
between the start of each chemotherapy cycle and the 
next cycle, typically conducted 3-7 days after 
chemotherapy, to assess the severity of 
myelosuppression following first-line chemotherapy. 

Demographic and clinical measures for 
prediction and defnition 

The predictive variables include patient-specific 
and chemotherapy regimen-related risk factors. The 
candidate predictors include age, gender, smoking, 

diabetes, hypertension, body surface area (BSA), body 
mass index (BMI), tumor staging, tumor location, 
hepatic metastasis, lung metastasis, peritoneal 
metastasis, albumin (ALB), carcinoembryonic antigen 
(CEA), carbohydrate antigen 19-9 (CA19-9), 
carbohydrate antigen 125 (CA125), KRAS gene 
mutation, BRAF gene mutation, TP53 gene mutation, 
chemotherapy regimen, and chemotherapy cycle. 
These predictive variables were assessed and 
recorded before each chemotherapy session. 

Age was categorized into three groups: <60 
years, 60-74 years, and ≥75 years. Smoking status 
included both past and current smoking habits. BSA 
was divided into three categories: <1.6 m², 1.6-1.8 m², 
and >1.8 m². According to the Chinese standard[19], 
BMI was categorized into non-overweight and 
overweight, with a cutoff point of 24.0 kg/m². CRC 
staging was based on the AJCC Cancer Staging 
Manual, 8th Edition[20], and divided into four stages: 
Stage I, II, III, and IV. Tumor location was categorized 
into five anatomical sites: ascending colon, transverse 
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colon, descending colon, sigmoid colon, and rectum. 
The first-line chemotherapy regimens for CRC were 
categorized into three groups: CapeOx (capecitabine 
and oxaliplatin), FOLFOX (fluorouracil, leucovorin, 
and oxaliplatin), and FOLFIRI (fluorouracil, 
leucovorin, and irinotecan). The number of 
chemotherapy cycles was divided into three 
categories: 1-2 cycles, 3-4 cycles, and 5 or more cycles. 

Statistical analysis 
Univariate analysis was conducted to 

preliminarily identify potential risk factors for 
myelosuppression following first-line chemotherapy 
in CRC patients. Subsequently, to identify the most 
predictive factors associated with myelosuppression 
in CRC patients undergoing first-line chemotherapy, 
we applied the Least Absolute Shrinkage and 
Selection Operator (LASSO) regression model. This 
statistical approach is particularly effective in 
selecting relevant non-zero features, thereby 
enhancing the model's predictive accuracy by 
focusing on the most significant variables 
contributing to myelosuppression risk in this patient 
population[21-22]. Based on the univariate analysis and 
the non-zero features identified, combined with 
clinical experience, a multivariable logistic regression 
model was established for further analysis. In the 
multivariable logistic regression analysis, the 
relationship between each factor and the outcome 
variable was determined using forward selection, 
backward elimination, and stepwise selection 
methods. The likelihood ratio test with the minimum 
Akaike Information Criterion (AIC) value was used as 
the stopping rule[23]. A nomogram model was then 
constructed, incorporating the results from both the 
LASSO regression analysis and the multivariable 
logistic regression analysis. 

To assess the discriminatory capability of the 
developed nomogram, we analyzed the area under 
the receiver operating characteristic (ROC) curve. This 
metric provides a quantitative measure of the 
nomogram's ability to distinguish between different 
clinical outcomes, offering a robust evaluation of its 
predictive accuracy and effectiveness in clinical 
practice. Calibration was assessed by comparing 
observed outcomes with predicted probabilities, with 
an optimal fit indicated by an intercept of α=0 and a 
slope of β=1. To thoroughly evaluate the clinical 
utility and applicability of the nomogram, we 
employed decision curve analysis (DCA). This 
analytical method offers a nuanced approach to 
assessing the net benefit by quantifying it across a 
comprehensive spectrum of threshold probabilities 
present within the dataset. By doing so, DCA 
provides a more detailed and practical understanding 

of the nomogram's performance in various clinical 
scenarios, ensuring that its predictive accuracy and 
potential benefits are effectively validated in 
real-world settings. This approach underscores the 
robustness and reliability of the nomogram in guiding 
clinical decision-making[24-25]. 
Due to certain differences in specific factors between 
patients with myelosuppression and those without, 
we employed a propensity score matching (PSM) 
analysis model using a caliper of 0.2 to balance the 
intergroup variability of these factors. This approach 
was aimed at eliminating potential selection bias and 
enhancing the evidence level of our retrospective 
study. Matching was performed using the 
"nearest-neighbor" method, with a PSM ratio of 1:1. 
Subsequently, a multivariable logistic regression 
analysis was conducted on the post-PSM baseline 
data to further validate the original logistic regression 
model and the nomogram. 

The organization of data and execution of 
statistical analyses were conducted using Zstats 
software alongside R version 4.4.0. For the univariate 
analysis, continuous variables were assessed using 
the Wilcoxon rank-sum test, while categorical 
variables were analyzed with the χ² test. In the 
multivariable logistic regression analysis, we 
employed forward selection, backward elimination, 
and stepwise selection techniques, determining the 
optimal model based on the minimum AIC value. The 
calibration curve was assessed using the unreliable U 
test, ensuring the model's calibration accuracy. The 
"rms" package in R facilitated the creation of the 
nomogram and calibration curve. A p-value of less 
than 0.05 was considered statistically significant 
throughout the analysis. 

Results 
Characteristics of patients 

In this study, a retrospective selection of 684 
patients was made for inclusion in the training group, 
while 171 patients were assigned to the validation 
group. There were no statistically significant 
differences in demographic and clinical characteristics 
between the two groups (P>0.05). Additionally, the 
incidence of myelosuppression did not differ 
significantly between the training and validation 
groups (33.04% vs. 32.16%, P=0.827) (Table 1). 

Feature selection 
In the univariate analysis of the training group of 

CRC patients after first-line chemotherapy, significant 
differences were observed between the 
myelosuppression and non-myelosuppression groups 
in terms of age, gender, smoking, diabetes, body 
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surface area(BSA), body mass index(BMI), tumor 
staging, tumor location, hepatic metastasis, lung 
metastasis, albumin(ALB), carcinoembryonic 
antigen(CEA), and the number of chemotherapy 
cycles. No statistically significant differences were 
found between the two groups in terms of 
hypertension, peritoneal metastasis, carbohydrate 
antigen 19-9(CA19-9), carbohydrate antigen 
125(CA125), KRAS gene mutation, BRAF gene 
mutation, TP53 gene mutation, or chemotherapy 
regimen (Table 2). 

 

Table 1. Balance test between the training and validation groups.  

Variables Total (n = 
855) 

Validation 
group (n = 
171) 

Training 
group (n = 
684) 

Statistic P 

Age (y)    χ²=5.27 0.072 
<60 302 (35.32) 72 (42.11) 230 (33.63)   
60~74 481 (56.26) 83 (48.54) 398 (58.19)   
≥75 72 (8.42) 16 (9.36) 56 (8.19)   
Gender    χ²=0.00 0.945 
 Male 507 (59.30) 101 (59.06) 406 (59.36)   
Female 348 (40.70) 70 (40.94) 278 (40.64)   
Smoking    χ²=0.00 0.972 
Yes 306 (35.79) 61 (35.67) 245 (35.82)   
Not 549 (64.21) 110 (64.33) 439 (64.18)   
Diabetes    χ²=0.94 0.333 
Yes 141 (16.49) 24 (14.04) 117 (17.11)   
Not 714 (83.51) 147 (85.96) 567 (82.89)   
Hypertension    χ²=0.03 0.862 
Yes 345 (40.35) 68 (39.77) 277 (40.50)   
Not 510 (59.65) 103 (60.23) 407 (59.50)   
BSA (m2)    χ²=3.39 0.183 
<1.6 291 (34.04) 48 (28.07) 243 (35.53)   
1.6~1.8 309 (36.14) 67 (39.18) 242 (35.38)   
>1.8 255(29.82) 56 (32.75) 199 (29.09)   
BMI    χ²=2.81 0.094 
Overweight 416 (48.65) 93 (54.39) 323 (47.22)   
Not overweight 439 (51.35) 78 (45.61) 361 (52.78)   
Tumor(T)    χ²=1.66 0.646 
1 18 (2.11) 3 (1.75) 15 (2.19)   
2 97 (11.35) 21 (12.28) 76 (11.11)   
3 447 (52.28) 95 (55.56) 352 (51.46)   
4 293 (34.27) 52 (30.41) 241 (35.23)   
Node(N)    - 0.700 
0 180 (21.05) 38 (22.22) 142 (20.76)   
1 367 (42.92) 67 (39.18) 300 (43.86)   
2 303 (35.44) 65 (38.01) 238 (34.80)   
3 5 (0.58) 1 (0.58) 4 (0.58)   
Metastasis(M)    χ²=0.01 0.918 
0 393 (45.96) 78 (45.61) 315 (46.05)   
1 462 (54.04) 93 (54.39) 369 (53.95)   
Tumor staging    χ²=2.34 0.504 
I 15 (1.77) 5 (2.94) 10 (1.48)   
II 73 (8.62) 12 (7.06) 61 (9.01)   
III 296 (34.95) 58 (34.12) 238 (35.16)   
IV 463 (54.66) 95 (55.88) 368 (54.36)   
Tumor location    χ²=2.77 0.596 
Ascending colon 167 (19.53) 32 (18.71) 135 (19.74)   
 Transverse colon 22 (2.57) 2 (1.17) 20 (2.92)   
Descending colon 28 (3.27) 4 (2.34) 24 (3.51)   

Variables Total (n = 
855) 

Validation 
group (n = 
171) 

Training 
group (n = 
684) 

Statistic P 

Sigmoid colon 234 (27.37) 51 (29.82) 183 (26.75)   
Rectum 404 (47.25) 82 (47.95) 322 (47.08)   
Hepatic metastasis    χ²=0.22 0.640 
Yes 293 (34.27) 56 (32.75) 237 (34.65)   
Not 562 (65.73) 115 (67.25) 447 (65.35)   
Lung metastasis    χ²=0.07 0.789 
Yes 237 (27.72) 46 (26.90) 191 (27.92)   
Not 618 (72.28) 125 (73.10) 493 (72.08)   
Peritoneum 
metastasis 

   χ²=0.42 0.516 

Yes 51 (5.96) 12 (7.02) 39 (5.70)   
Not 804 (94.04) 159 (92.98) 645 (94.30)   
ALB    χ²=0.00 0.968 
Normal 654 (76.49) 131 (76.61) 523 (76.46)   
Abnormal 201 (23.51) 40 (23.39) 161 (23.54)   
CEA    χ²=1.06 0.304 
Normal 455 (53.22) 85 (49.71) 370 (54.09)   
Abnormal 400 (46.78) 86 (50.29) 314 (45.91)   
CA19-9    χ²=0.31 0.575 
Normal 255 (29.82) 48 (28.07) 207 (30.26)   
Abnormal 600 (70.18) 123 (71.93) 477 (69.74)   
CA125    χ²=1.13 0.287 
Normal 89 (10.41) 14 (8.19) 75 (10.96)   
Abnormal 766 (89.59) 157 (91.81) 609 (89.04)   
KRAS    χ²=1.92 0.166 
Yes 140 (16.37) 34 (19.88) 106 (15.50)   
Not 715 (83.63) 137 (80.12) 578 (84.50)   
BRAF    χ²=0.20 0.659 
Yes 16 (1.87) 2 (1.17) 14 (2.05)   
Not 839 (98.13) 169 (98.83) 670 (97.95)   
TP53    χ²=0.04 0.850 
Yes 68 (7.95) 13 (7.60) 55 (8.04)   
Not 787 (92.05) 158 (92.40) 629 (91.96)   
Myelosuppression    χ²=0.05 0.827 
Yes 574 (67.13) 116 (67.84) 458 (66.96)   
Not 281 (32.87) 55 (32.16) 226 (33.04)   
Chemotherapy cycle    χ²=1.53 0.465 
First or Second  344 (40.23) 66 (38.60) 278 (40.64)   
Third or Fourth  267 (31.23) 60 (35.09) 207 (30.26)   
Fifth and Above 244 (28.54) 45 (26.32) 199 (29.09)   
Chemotherapy 
regimen 

   χ²=0.35 0.840 

CapeOx 639 (74.74) 126 (73.68) 513 (75.00)   
FOLFOX 93 (10.88) 18 (10.53) 75 (10.96)   
FOLFIRI 123 (14.39) 27 (15.79) 96 (14.04)   

χ²: Chi-square test, -: Fisher exact 
BSA: Body Surface Area; BMI: Body Mass Index; ALB: Albumin; CEA: 
Carcinoembryonic Antigen; CA19-9: Carbohydrate Antigen 19-9; CA125: 
Carbohydrate Antigen 125. 

 
Using the LASSO regression model, the 24 

sociodemographic and clinical characteristics were 
reduced to 12 potential risk factors with non-zero 
coefficients (approximately 2:1 ratio) (Figure 2). These 
features include age, smoking, diabetes, BSA, BMI, 
tumor staging, tumor location, lung metastasis, ALB, 
CEA, TP53 gene mutation, and the number of 
chemotherapy cycles. 
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Table 2. Clinical characteristics of patients in both the training and validation groups. 

Characteristics Training group Validation group 
Myelosuppression 
(n=458) 

Non-myelosuppression 
(n=226) 

P 
-value 

Myelosuppression 
(n=116) 

Non-myelosuppression 
(n=55) 

P 
-value 

Age (y)   0.001   0.067 
<60 136 (29.69%) 94 (41.59%)  43 (37.07%) 29 (52.73%)  
60~74 276 (60.26%) 122 (53.98%)  59 (50.86%) 24 (43.64%)  
≥75 46 (10.04%) 10 (4.42%)  14 (12.07%) 2 (3.64%)  
Gender   <.001   <.001 
Male 244 (53.28%) 162 (71.68%)  58 (50.00%) 43 (78.18%)  
Female 214 (46.72%) 64 (28.32%)  58 (50.00%) 12 (21.82%)  
Smoking   0.001   0.134 
Not 313 (68.34%) 126 (55.75%)  79 (68.10%) 31 (56.36%)  
Yes 145 (31.66%) 100 (44.25%)  37 (31.90%) 24 (43.64%)  
Diabetes   0.006   0.200 
Not 367 (80.13%) 200 (88.50%)  97 (83.62%) 50 (90.91%)  
Yes 91 (19.87%) 26 (11.50%)  19 (16.38%) 5 (9.09%)  
Hypertension   0.083   0.167 
Not 283 (61.79%) 124 (54.87%)  74 (63.79%) 29 (52.73%)  
Yes 175 (38.21%) 102 (45.13%)  42 (36.21%) 26 (47.27%)  
BSA (m2)   <.001   <.001 
<1.6  184 (40.17%) 59 (26.11%)  39 (33.62%) 9 (16.36%)  
1.6-1.8 181 (39.52%) 61 (26.99%)  51 (43.97%) 16 (29.09%)  
>1.8 93 (20.31%) 106 (46.90%)  26 (22.41%) 30 (54.55%)  
BMI   <.001   <.001 
Not overweight 281 (61.35%) 80 (35.40%)  52 (44.83%) 41 (74.55%)  
Overweight 177 (38.65%) 146 (64.60%)  64 (55.17%) 14 (25.45%)  
Tumor staging   <.001   0.032 
I 4 (0.89%) 6 (2.65%)  4 (3.48%) 1 (1.82%)  
II 53 (11.75%) 8 (3.54%)  11 (9.57%) 1 (1.82%)  
III 171 (37.92%) 67 (29.65%)  44 (38.26%) 14 (25.45%)  
IV 223 (49.45%) 145 (64.16%)  56 (48.70%) 39 (70.91%)  
Tumor location   <.001   <.001 
Ascending colon 110 (24.02%) 25 (11.06%)  31 (26.72%) 1 (1.82%)  
Transverse colon 18 (3.93%) 2 (0.88%)  1 (0.86%) 1 (1.82%)  
Descending colon 18 (3.93%) 6 (2.65%)  0 (0.00%) 4 (7.27%)  
Sigmoid colon 117 (25.55%) 66 (29.20%)  36 (31.03%) 15 (27.27%)  
Rectum 195 (42.58%) 127 (56.19%)  48 (41.38%) 34 (61.82%)  
Hepatic metastasis   0.046   0.730 
Not 311 (67.90%) 136 (60.18%)  79 (68.10%) 36 (65.45%)  
Yes 147 (32.10%) 90 (39.82%)  37 (31.90%) 19 (34.55%)  
Lung metastasis   <.001   0.022 
Not 355 (77.51%) 138 (61.06%)  91 (78.45%) 34 (61.82%)  
Yes 103 (22.49%) 88 (38.94%)  25 (21.55%) 21 (38.18%)  
Peritoneum metastasis   0.968   0.682 
Not 432 (94.32%) 213 (94.25%)  109 (93.97%) 50 (90.91%)  
Yes 26 (5.68%) 13 (5.75%)  7 (6.03%) 5 (9.09%)  
ALB   0.001   0.047 
Normal 367 (80.13%) 156 (69.03%)  94 (81.03%) 37 (67.27%)  
Abnormal 91 (19.87%) 70 (30.97%)  22 (18.97%) 18 (32.73%)  
CEA   <.001   0.012 
Normal 222 (48.47%) 148 (65.49%)  50 (43.10%) 35 (63.64%)  
Abnormal 236 (51.53%) 78 (34.51%)  66 (56.90%) 20 (36.36%)  
CA19-9   0.415   0.194 
Normal 134 (29.26%) 73 (32.30%)  29 (25.00%) 19 (34.55%)  
Abnormal 324 (70.74%) 153 (67.70%)  87 (75.00%) 36 (65.45%)  
CA125   0.643   1.000 
Normal 52 (11.35%) 23 (10.18%)  9 (7.76%) 5 (9.09%)  
Abnormal 406 (88.65%) 203 (89.82%)  107 (92.24%) 50 (90.91%)  
KRAS   0.497   0.701 
Not 384 (83.84%) 194 (85.84%)  92 (79.31%) 45 (81.82%)  
Yes 74 (16.16%) 32 (14.16%)  24 (20.69%) 10 (18.18%)  
BRAF   0.222   1.000 
Not 446 (97.38%) 224 (99.12%)  114 (98.28%) 55 (100.00%)  
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Characteristics Training group Validation group 
Myelosuppression 
(n=458) 

Non-myelosuppression 
(n=226) 

P 
-value 

Myelosuppression 
(n=116) 

Non-myelosuppression 
(n=55) 

P 
-value 

Yes 12 (2.62%) 2 (0.88%)  2 (1.72%) 0 (0.00%)  
TP53   0.065   0.098 
Not 415 (90.61%) 214 (94.69%)  104 (89.66%) 54 (98.18%)  
Yes 43 (9.39%) 12 (5.31%)  12 (10.34%) 1 (1.82%)  
Chemotherapy regimen   0.111   0.002 
CapeOx 174 (37.99%) 104 (46.02%)  93 (80.17%) 33 (60.00%)  
FOLFOX 142 (31.00%) 65 (28.76%)  6 (5.17%) 12 (21.82%)  
FOLFIRI 142 (31.00%) 57 (25.22%)  17 (14.66%) 10 (18.18%)  
Chemotherapy cycle   <.001   0.268 
 First or Second  371 (81.00%) 142 (62.83%)  40 (34.48%) 26 (47.27%)  
Third or Fourth  29 (6.33%) 46 (20.35%)  44 (37.93%) 16 (29.09%)  
Fifth and Above 58 (12.66%) 38 (16.81%)  32 (27.59%) 13 (23.64%)  

BSA: Body Surface Area; BMI: Body Mass Index; ALB: Albumin; CEA: Carcinoembryonic Antigen; CA19-9: Carbohydrate Antigen 19-9; CA125: Carbohydrate Antigen 125. 
 

 
Figure 2. Demographic and Clinical Characteristics Screening Using the LASSO Regression Model. (A) LASSO regression coefficient path diagram of risk factors. (B) 
Cross-validation curve for the LASSO regression. 
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Risk factors for myelosuppression following 
first-line chemotherapy in CRC patients 

In the multivariate analysis, this study employed 
a multivariate logistic regression analysis method, 
using myelosuppression as the dependent variable. 
The independent variables included age, smoking, 
diabetes, BSA, BMI, tumor staging, tumor location, 
hepatic metastasis, lung metastasis, ALB, CEA, and 
the number of chemotherapy cycles. The results 
indicated that age, smoking, diabetes, BMI, tumor 
location, lung metastasis, ALB, and CEA were 
independent risk factors for myelosuppression in 
CRC patients undergoing first-line chemotherapy 
(Table 3). 

 

Table 3. Multivariate logistic regression analysis. 

Intercept and variable β P Odds ratio (95% CI) 
Intercept 1.32 0.214 3.73 (0.47 ~ 29.84) 
Age (y)    
<60   1.00 (Reference) 
60~74 -0.16 0.442 0.85 (0.56 ~ 1.29) 
≥75 -1.05 0.012 0.35 (0.15 ~ 0.79) 
Smoking    
Yes   1.00 (Reference) 
Not -0.60 0.005 0.55 (0.36 ~ 0.84) 
Diabetes    
Yes   1.00 (Reference) 
Not 0.61 0.025 1.83 (1.08 ~ 3.11) 
BMI    
Overweight   1.00 (Reference) 
Not overweight -1.21 <.001 0.30 (0.20 ~ 0.44) 
Tumor location    
Ascending colon   1.00 (Reference) 
 Transverse colon -1.33 0.121 0.26 (0.05 ~ 1.42) 
Descending colon 0.42 0.477 1.52 (0.48 ~ 4.85) 
Sigmoid colon 0.47 0.136 1.60 (0.86 ~ 2.96) 
Rectum 0.80 0.005 2.22 (1.28 ~ 3.84) 
Tumor staging    
I   1.00 (Reference) 
II -2.22 0.026 0.11 (0.02 ~ 0.76) 
III -1.33 0.152 0.26 (0.04 ~ 1.64) 
IV -1.42 0.133 0.24 (0.04 ~ 1.54) 
Lung metastasis    
Yes   1.00 (Reference) 
Not -0.68 0.006 0.50 (0.31 ~ 0.82) 
ALB    
Normal   1.00 (Reference) 
Abnormal 0.49 0.032 1.63 (1.04 ~ 2.54) 
CEA    
Normal   1.00 (Reference) 
Abnormal -0.56 0.019 0.57 (0.35 ~ 0.91) 
Chemotherapy regimen    
CapeOx   1.00 (Reference) 
FOLFOX 1.11 <.001 3.03 (1.58 ~ 5.82) 
FOLFIRI -0.13 0.650 0.88 (0.50 ~ 1.54) 

β is the regression coefficient. CI: Confidence Interval 
BMI: Body Mass Index; ALB: Albumin; CEA: Carcinoembryonic antigen. 

 

Establishment of the nomogram for predicting 
myelosuppression after first-line 
chemotherapy in CRC patients 

By synthesizing the outcomes of univariate 
analysis, LASSO regression, and multivariate logistic 
regression, and incorporating clinical expertise, the 
study identified age, smoking, diabetes, BMI, tumor 
location, lung metastasis, ALB, and CEA as 
independent risk factors for myelosuppression 
following first-line chemotherapy in CRC patients. 
These eight risk factors were incorporated into a 
predictive model, culminating in the creation of a 
nomogram for forecasting myelosuppression in CRC 
patients after first-line chemotherapy (Figure 2). 

The model uses the 8 risk factors as variable axes. 
Each variable’s score is vertically aligned with the 
score axis, which ranges from 0 to 100 points. The total 
score of the eight variables corresponds to the total 
score axis, ranging from 0 to 500 points. The total 
score is then vertically aligned with the probability 
axis, which ranges from 0.1 to 0.9, indicating the 
probability of myelosuppression. The total score of 
each variable corresponds to the risk probability line 
to obtain the probability of risk of myelosuppression. 
For example, for a 90-year-old CRC patient with lung 
metastasis, a BMI of 25 kg/m², a history of type 2 
diabetes, chronic smoking, and an albumin level 
(ALB) of 32 g/L, the nomogram scores are as follows: 
age 90 years (47.5 points), lung metastasis (32 points), 
BMI 25 kg/m² (54 points), type 2 diabetes (27.5 
points), smoking (27 points), and ALB 32 g/L (22 
points), totaling 210 points, resulting in a 0.13 (13%) 
probability of myelosuppression. Thus, both doctors 
and patients can use this intuitive and user-friendly 
scoring system to predict the risk of 
myelosuppression and rationalize clinical decisions 
regarding any adjunctive treatment before or during 
chemotherapy. Therefore, this nomogram has clinical 
value for predicting and preventing 
myelosuppression in CRC patients after first-line 
chemotherapy. 

Evaluation of the nomogram for predicting 
myelosuppression after first-line 
chemotherapy in CRC patients in the training 
and validation groups 

To validate the sensitivity and specificity of the 
nomogram model, this study evaluated the predictive 
nomogram using the area under the ROC curve 
(AUC). The AUC values of the nomogram for the 
training and validation groups were found to be 0.78 
and 0.80, respectively (Figure 5). The calibration 
curves demonstrated acceptable consistency between 
the predicted and actual values in two groups of CRC 
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patients receiving first-line chemotherapy (Figure 4). 
DCA showed that if the threshold probability (Pt) in 
the training and validation groups ranged between 
10-90%, timely clinical intervention based on the 
predicted probability from the nomogram before 
first-line chemotherapy could provide a higher net 
benefit compared to either the full intervention or no 
intervention strategies (Figure 6). Therefore, the 
nomogram model exhibits good discriminative 
ability, acceptable calibration, and clinical utility in 
predicting myelosuppression in CRC patients 

following chemotherapy. 

Risk factors for myelosuppression after 
first-line chemotherapy in CRC patients 
following PSM 

After PSM, all variables achieved balance 
between the groups, with P-values greater than 0.05 
and standardized mean differences (SMDs) generally 
below 0.10 (Table 4). 

 
 

 
Figure 3. Nomogram for predicting myelosuppression induced by first-line chemotherapy in CRC. BMI: body mass index; LM: Lung metastasis; ALB: albumin; CEA: 
carcinoembryonic antigen. (Age: 1=<60y 2=60~74y 3=≥75y; Smoking: 1=Yes 2=Not; Diabetes: 1=Yes 2=Not: BMI: 1=<1.6 m² 2=1.6-1.8 m² 3=>1.8 m²; Location: 1=Ascending 
colon 2=Transverse colon 3=Descending colon 4=Sigmoid colon 5=Rectum; LM: 1=Yes 2=Not; ALB: 1=Normal 2=Abnormal; CEA: 1=Normal 2=Abnormal). 

 

 
Figure 4. ROC curves for the training and validation groups. ROC curve for the training group, AUC = 0.78; ROC curve for the validation group, AUC = 0.80. 
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Figure 5. Calibration curves for training and validation groups. (A) Calibration curve for the training group (B) Calibration curve for the validation group. 

 
We conducted a multivariate logistic regression 

analysis on data after PSM and reconfirmed that BMI 
is a significant risk factor for bone marrow 
suppression in CRC patients following first-line 
chemotherapy. It is important to emphasize that BMI 
consistently emerged as a significant risk factor in 
both the initial model and the model optimized for 
baseline variables, indicating its critical role in the 
occurrence of chemotherapy-induced bone marrow 
suppression. 

Discussion 
Despite recent advancements in treatment 

options, CRC continues to significantly impact public 
health due to its high incidence and mortality rates. 
Currently, standard treatment regimens rely on 
chemotherapy protocols containing highly myelotoxic 
drugs, such as FOLFOX and FOLFIRI. These 
treatments often lead to myelosuppression, 
particularly in elderly patients with multiple 

comorbidities. Therefore, identifying risk factors for 
myelosuppression in CRC patients following first-line 
chemotherapy is crucial for optimizing treatment 
outcomes and improving survival rates. 

This study aimed to identify risk factors for 
chemotherapy-induced myelosuppression in CRC 
patients. Through univariate and multivariate logistic 
regression analyses, we identified eight significant 
risk factors: age, smoking status, diabetes, BMI, tumor 
location, lung metastasis, ALB, and CEA. 
Nomograms, which graphically represent the 
relationships between multiple variables using a 
statistical model, are widely used in clinical practice 
due to their user-friendly interface, high accuracy, 
ease of prognostic interpretation, and utility in 
guiding clinical decision-making. This study seeks to 
develop and validate such a nomogram, aiming to 
predict the probability of myelosuppression and aid 
in individualized treatment decisions. The predictive 
model incorporates eight easily obtainable 
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demographic and clinical variables, enabling accurate 
and personalized risk assessment for 
myelosuppression post-chemotherapy in CRC 
patients. Meanwhile, the large sample size of our 
group enhances the nomogram’s applicability and 
accuracy. This study also utilized AUC, calibration 
curves, and DCA to validate the model. The AUC is a 
widely used metric for evaluating the performance of 
predictive models, providing a single value that 
quantifies the model’s ability to distinguish between 
positive and negative cases[26]. The AUC of the 
training group in this model is 0.78, indicating good 
generalization without overfitting, while the AUC of 
the validation group is 0.80, confirming strong 
performance on new data. The small difference 
between the training and validation AUCs suggests 
that the model is robust. Calibration curves assess 
how well predicted probabilities align with actual 
outcomes. A well-calibrated model produces 

predictions that match observed results, ideally 
falling on a diagonal line representing perfect 
calibration[27]. In this model, both the training and 
validation groups show calibration curves that closely 
follow the ideal line, indicating good calibration. The 
p-values for the training and validation groups (0.770 
and 0.433, respectively) further support that there is 
no significant deviation from good calibration. DCA 
evaluates the clinical utility of the model by 
comparing its net benefit across different risk 
thresholds to two extreme strategies: treating all 
patients or treating none[28]. The model provides a 
higher net benefit within the threshold probability 
range of 10-90%, indicating that it supports more 
effective decision-making, helps to personalize 
interventions, reduces unnecessary treatments, and 
balances the benefits and risks of clinical 
interventions. 

 

 
Figure 6. Decision curves for the training and validation groups. (A) Decision curve for the training group (B) Decision curve for the validation group. 

 



 Journal of Cancer 2025, Vol. 16 

 
https://www.jcancer.org 

1390 

Table 4. Clinical characteristics of patients in both the myelosuppression and non-myelosuppression patients. 

Variable Total (n = 440) 0 (n = 220) 1 (n = 220) Statistic P SMD 
Age, n (%)    χ²=0.395 0.821  
 1 164 (37.27) 84 (38.18) 80 (36.36)   -0.038 
 2 250 (56.82) 122 (55.45) 128 (58.18)   0.055 
 3 26 (5.91) 14 (6.36) 12 (5.45)   -0.040 
Sex, n (%)    χ²=2.103 0.147  
 1 306 (69.55) 160 (72.73) 146 (66.36)   -0.135 
 2 134 (30.45) 60 (27.27) 74 (33.64)   0.135 
Smoke, n (%)    χ²=0.000 1.000  
 1 180 (40.91) 90 (40.91) 90 (40.91)   0.000 
 2 260 (59.09) 130 (59.09) 130 (59.09)   0.000 
Diabetes, n (%)    χ²=0.090 0.764  
 1 50 (11.36) 26 (11.82) 24 (10.91)   -0.029 
 2 390 (88.64) 194 (88.18) 196 (89.09)   0.029 
Hypertension, n (%)    χ²=0.758 0.384  
 1 183 (41.59) 96 (43.64) 87 (39.55)   -0.084 
 2 257 (58.41) 124 (56.36) 133 (60.45)   0.084 
BSA, n (%)    χ²=1.692 0.429  
 1 117 (26.59) 54 (24.55) 63 (28.64)   0.090 
 2 152 (34.55) 82 (37.27) 70 (31.82)   -0.117 
 3 171 (38.86) 84 (38.18) 87 (39.55)   0.028 
BMI, n (%)    χ²=0.231 0.631  
 1 249 (56.59) 122 (55.45) 127 (57.73)   0.046 
 2 191 (43.41) 98 (44.55) 93 (42.27)   -0.046 
Tumor(T), n (%)    - 0.314  
 1 1 (0.23) 0 (0.00) 1 (0.45)   0.068 
 2 51 (11.59) 30 (13.64) 21 (9.55)   -0.139 
 3 234 (53.18) 111 (50.45) 123 (55.91)   0.110 
 4 154 (35) 79 (35.91) 75 (34.09)   -0.038 
Node(N), n (%)    - 0.374  
 0 79 (17.95) 35 (15.91) 44 (20.00)   0.102 
 1 212 (48.18) 110 (50.00) 102 (46.36)   -0.073 
 2 147 (33.41) 75 (34.09) 72 (32.73)   -0.029 
 3 2 (0.45) 0 (0.00) 2 (0.91)   0.096 
Metastasis(M), n (%)    χ²=0.091 0.763  
 0 151 (34.32) 74 (33.64) 77 (35.00)   0.029 
 1 289 (65.68) 146 (66.36) 143 (65.00)   -0.029 
Staging, n (%)    - 0.382  
 1 4 (0.91) 2 (0.91) 2 (0.91)   0.000 
 2 12 (2.73) 3 (1.36) 9 (4.09)   0.138 
 3 131 (29.77) 67 (30.45) 64 (29.09)   -0.030 
 4 293 (66.59) 148 (67.27) 145 (65.91)   -0.029 
Position, n (%)    χ²=0.756 0.944  
 1 47 (10.68) 22 (10.00) 25 (11.36)   0.043 
 2 8 (1.82) 5 (2.27) 3 (1.36)   -0.078 
 3 19 (4.32) 9 (4.09) 10 (4.55)   0.022 
 4 137 (31.14) 69 (31.36) 68 (30.91)   -0.010 
 5 229 (52.05) 115 (52.27) 114 (51.82)   -0.009 
HM, n (%)    χ²=0.755 0.385  
 1 185 (42.05) 97 (44.09) 88 (40.00)   -0.084 
 2 255 (57.95) 123 (55.91) 132 (60.00)   0.084 
LM, n (%)    χ²=0.254 0.614  
 1 149 (33.86) 72 (32.73) 77 (35.00)   0.048 
 2 291 (66.14) 148 (67.27) 143 (65.00)   -0.048 
PM, n (%)    χ²=0.164 0.686  
 1 26 (5.91) 14 (6.36) 12 (5.45)   -0.040 
 2 414 (94.09) 206 (93.64) 208 (94.55)   0.040 
ALB, n (%)    χ²=0.106 0.745  
 1 325 (73.86) 164 (74.55) 161 (73.18)   -0.031 
 2 115 (26.14) 56 (25.45) 59 (26.82)   0.031 
CEA, n (%)    χ²=0.356 0.551  
 1 282 (64.09) 138 (62.73) 144 (65.45)   0.057 
 2 158 (35.91) 82 (37.27) 76 (34.55)   -0.057 



 Journal of Cancer 2025, Vol. 16 

 
https://www.jcancer.org 

1391 

Variable Total (n = 440) 0 (n = 220) 1 (n = 220) Statistic P SMD 
CA199, n (%)    χ²=0.010 0.920  
 1 151 (34.32) 75 (34.09) 76 (34.55)   0.010 
 2 289 (65.68) 145 (65.91) 144 (65.45)   -0.010 
CA125, n (%)    χ²=0.084 0.771  
 1 54 (12.27) 28 (12.73) 26 (11.82)   -0.028 
 2 386 (87.73) 192 (87.27) 194 (88.18)   0.028 
KRAS, n (%)    χ²=1.087 0.297  
 1 51 (11.59) 22 (10.00) 29 (13.18)   0.094 
 2 389 (88.41) 198 (90.00) 191 (86.82)   -0.094 
BRAF, n (%)    χ²=0.000 1.000  
 1 3 (0.68) 2 (0.91) 1 (0.45)   -0.068 
 2 437 (99.32) 218 (99.09) 219 (99.55)   0.068 
TP53, n (%)    χ²=0.927 0.336  
 1 18 (4.09) 7 (3.18) 11 (5.00)   0.083 
 2 422 (95.91) 213 (96.82) 209 (95.00)   -0.083 
CF, n (%)    χ²=0.842 0.656  
 1 182 (41.36) 88 (40.00) 94 (42.73)   0.055 
 2 143 (32.5) 76 (34.55) 67 (30.45)   -0.089 
 3 115 (26.14) 56 (25.45) 59 (26.82)   0.031 
CR, n (%)    χ²=1.822 0.402  
 1 307 (69.77) 160 (72.73) 147 (66.82)   -0.125 
 2 73 (16.59) 33 (15.00) 40 (18.18)   0.082 
 3 60 (13.64) 27 (12.27) 33 (15.00)   0.076 

BSA: Body Surface Area; BMI: Body Mass Index; ALB: Albumin; CEA: Carcinoembryonic Antigen; CA19-9: Carbohydrate Antigen 19-9; CA125: Carbohydrate Antigen 125. 
 

Table 5. Multivariate logistic regression analysis after PSM 

Variables β P OR (95%CI) 
Intercept -1.25 0.549 0.29 (0.00 ~ 17.24) 
Age    
 1   1.00 (Reference) 
 2 -0.00 0.990 1.00 (0.62 ~ 1.60) 
 3 -0.61 0.200 0.55 (0.22 ~ 1.38) 
Sex    
 1   1.00 (Reference) 
 2 -0.26 0.485 0.77 (0.37 ~ 1.61) 
Smoke    
 1   1.00 (Reference) 
 2 -0.18 0.548 0.84 (0.47 ~ 1.50) 
Diabetes    
 1   1.00 (Reference) 
 2 0.39 0.219 1.48 (0.79 ~ 2.75) 
Hypertension    
 1   1.00 (Reference) 
 2 -0.00 0.993 1.00 (0.63 ~ 1.59) 
BSA    
 1   1.00 (Reference) 
 2 -0.21 0.532 0.81 (0.41 ~ 1.58) 
 3 -0.03 0.942 0.97 (0.41 ~ 2.29) 
BMI    
 1   1.00 (Reference) 
 2 -0.71 0.008 0.49 (0.29 ~ 0.83) 
Tumor(T)    
 1   1.00 (Reference) 
 2 1.39 0.260 4.02 (0.36 ~ 45.48) 
 3 1.50 0.215 4.50 (0.42 ~ 48.34) 
 4 1.37 0.259 3.93 (0.36 ~ 42.32) 
Node(N)    
 0   1.00 (Reference) 
 1 -0.02 0.952 0.98 (0.48 ~ 1.99) 
 2 -0.28 0.473 0.75 (0.35 ~ 1.64) 
Metastasis(M)    
 0   1.00 (Reference) 
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Variables β P OR (95%CI) 
 1 -0.72 0.562 0.49 (0.04 ~ 5.52) 
Staging    
 1   1.00 (Reference) 
 2 -1.51 0.164 0.22 (0.03 ~ 1.85) 
 3 -0.95 0.366 0.39 (0.05 ~ 3.03) 
 4 -0.17 0.917 0.84 (0.03 ~ 20.45) 
Position    
 1   1.00 (Reference) 
 2 -0.73 0.450 0.48 (0.07 ~ 3.20) 
 3 0.12 0.846 1.13 (0.34 ~ 3.78) 
 4 0.19 0.629 1.21 (0.56 ~ 2.63) 
 5 0.44 0.197 1.55 (0.80 ~ 3.01) 
HM    
 1   1.00 (Reference) 
 2 0.07 0.823 1.07 (0.59 ~ 1.93) 
LM    
 1   1.00 (Reference) 
 2 -0.37 0.218 0.69 (0.39 ~ 1.24) 
PM    
 1   1.00 (Reference) 
 2 -0.10 0.837 0.91 (0.36 ~ 2.31) 
ALB    
 1   1.00 (Reference) 
 2 0.28 0.253 1.33 (0.82 ~ 2.17) 
CEA    
 1   1.00 (Reference) 
 2 -0.47 0.104 0.63 (0.36 ~ 1.10) 
CA199    
 1   1.00 (Reference) 
 2 0.05 0.858 1.05 (0.62 ~ 1.78) 
CA125    
 1   1.00 (Reference) 
 2 0.33 0.345 1.39 (0.70 ~ 2.75) 
KRAS    
 1   1.00 (Reference) 
 2 0.03 0.933 1.03 (0.50 ~ 2.12) 
BRAF    
 1   1.00 (Reference) 
 2 0.15 0.903 1.16 (0.11 ~ 11.99) 
TP53    
 1   1.00 (Reference) 
 2 0.28 0.608 1.33 (0.45 ~ 3.89) 
CF    
 1   1.00 (Reference) 
 2 -0.13 0.581 0.87 (0.54 ~ 1.41) 
 3 -0.28 0.270 0.75 (0.45 ~ 1.25) 
CR    
 1   1.00 (Reference) 
 2 0.56 0.140 1.76 (0.83 ~ 3.71) 
 3 -0.26 0.454 0.77 (0.39 ~ 1.53) 

OR: Odds Ratio, CI: Confidence Interval 
BSA: Body Surface Area; BMI: Body Mass Index; ALB: Albumin; CEA: Carcinoembryonic Antigen; CA19-9: Carbohydrate Antigen 19-9; CA125: Carbohydrate Antigen 125. 

 
Finally, to minimize the impact of baseline 

imbalance on the results of multivariate analysis, we 
employed PSM to balance baseline characteristics. In 
the matched dataset with balanced baselines, we 
conducted a multivariate logistic regression analysis 
again, and the results indicated that BMI remained a 
significant risk factor. Although several other 
significant factors were identified in the initial model, 
this does not imply that they were false associations 

due to confounding bias. On the contrary, these 
factors may indeed have an influence on the 
occurrence of myelosuppression in specific subgroups 
of patients, but their significance was weakened in the 
dataset with balanced baseline characteristics. The 
persistent significance of BMI in the optimized model 
reflects its consistency and independence under 
varying baseline conditions. 
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Age is one of the risk factors for chemotherapy- 
induced myelosuppression identified in this study. 
Chemotherapy-related myelosuppression in elderly 
patients may be associated with decreased 
metabolism of myelosuppressive drugs, leading to 
drug accumulation and increased toxicity[29]. Decline 
in bone marrow function and depletion of 
hematopoietic stem cell reserves are also reasons for 
increased susceptibility to myelosuppression in the 
elderly. This decline results from changes in the bone 
marrow microenvironment and alterations in the 
intrinsic properties of hematopoietic stem cells. 
Chronic low-grade inflammation and elevated levels 
of oxidative stress commonly present in the elderly[30], 
as well as diminished DNA damage repair 
capacity[31], can impair the bone marrow 
microenvironment and hematopoietic stem cell 
function, making myelosuppression more likely. 
Furthermore, elderly patients often have multiple 
chronic diseases, and medications used to treat these 
conditions, such as methotrexate and allopurinol, may 
suppress bone marrow function or exacerbate 
myelosuppression through drug interactions[32]. 

The impact of smoking on chemotherapy- 
induced myelosuppression is also noteworthy. While 
smoking is generally associated with altered 
peripheral blood cell counts, such as increased 
neutrophils and erythrocytes[33], this does not imply a 
protective effect of smoking on bone marrow 
function. On the contrary, smoking exacerbates 
chemotherapy-induced myelosuppression through 
various mechanisms. Chronic inflammation and 
oxidative stress caused by smoking can damage bone 
marrow stem cells. Free radicals and toxic compounds 
produced by tobacco combustion induce systemic 
inflammatory responses, altering the bone marrow 
microenvironment and making it more susceptible to 
chemotherapeutic agents. Additionally, chemicals in 
tobacco, such as benzene, carbon monoxide, and 
nicotine, exert direct toxic effects on bone marrow 
stem cells by damaging DNA and interfering with cell 
signaling pathways, thereby inhibiting their function. 
Moreover, smoking suppresses immune system 
function, making the body more vulnerable to 
chemotherapy-induced bone marrow damage. 
Immunosuppression also increases the risk of 
infection, which further exacerbates 
myelosuppression[32-34]. In summary, smokers are 
more likely to experience severe neutropenia and 
thrombocytopenia during chemotherapy. 

Consistent with previous studies, diabetic 
patients are more prone to experiencing 
chemotherapy-related myelosuppression[35]. The 
exacerbation of chemotherapy-induced myelo-
suppression in diabetic patients may be related to 

systemic chronic inflammation and metabolic 
disorders caused by chronic hyperglycemia. Chronic 
hyperglycemia in diabetic patients induces a state of 
low-grade systemic inflammation, primarily 
mediated by endotoxins, free fatty acids, and 
cholesterol through the activation of Toll-like receptor 
(TLR) and nuclear factor κB (NF-κB) pathways. This 
activation leads to the release of numerous 
pro-inflammatory cytokines that disrupt the bone 
marrow microenvironment, resulting in reduced 
production of red blood cells, white blood cells, and 
platelets. These inflammatory cytokines also directly 
induce apoptosis and dysfunction of bone marrow 
cells, thereby exacerbating chemotherapy-induced 
myelosuppression[36-37]. 

Our predictive model indicates that overweight 
patients are more likely to experience chemotherapy- 
induced myelosuppression. Additionally, we have 
demonstrated the robustness and significance of this 
result under different statistical methods. Previous 
studies have shown that obese patients typically have 
a slower clearance rate of chemotherapeutic drugs, 
resulting in an extended drug elimination half-life[38]. 
High BMI is also usually associated with increased 
bone marrow fat content, which may affect the 
hematopoietic function of the bone marrow[36]. 
Contradictorily, however, many studies have shown 
no significant correlation between high BMI and 
myelosuppression[40-41]. Some evidence even suggests 
that BMI is inversely related to myelosuppression[42]. 
The primary reason for these conflicting findings may 
be related to variations in chemotherapy dosing, 
among other factors, and the exact mechanisms need 
further investigation. 

Previous studies have not discussed the 
correlation between specific tumor locations in CRC 
and chemotherapy-induced myelosuppression. Our 
research is the first to propose this association. Our 
model indicates that malignancies in the rectum and 
sigmoid colon are more prone to chemotherapy- 
induced myelosuppression, which may be related to 
differences in treatment modalities. Rectal cancer 
often requires concurrent chemoradiotherapy, and the 
dose-volume parameters of radiotherapy (such as V20 
and V25 for pelvic bone marrow) significantly affect 
the incidence of myelosuppression. Treatment for 
rectal cancer typically involves high-dose 
radiotherapy to the pelvic area, increasing the risk of 
myelosuppression. In contrast, cancers of the 
ascending colon, transverse colon, and descending 
colon generally do not require radiotherapy, with 
chemotherapy being the primary treatment modality. 
Therefore, myelosuppression in these cases is solely 
related to chemotherapeutic drugs. 
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It is evident that lung metastasis, elevated CEA, 
and decreased albumin levels in CRC are risk factors 
for chemotherapy-induced myelosuppression. We 
believe this is likely related to a higher tumor burden. 
CRC with lung metastasis has already progressed to 
an advanced stage, and CEA levels are proportional to 
the severity of CRC. A high tumor burden leads to 
significant albumin consumption, and such patients 
typically have poorer overall health, lower immune 
function, and reduced tolerance to chemotherapeutic 
drugs, making them more susceptible to 
myelosuppression[43-44]. 

In this study, we chose not to include the 
chemotherapy regimen in the final predictive model, 
despite its statistical significance, as it contradicts 
common sense and clinical experience. Although the 
p-value for this factor was less than 0.05, our team’s 
clinical experience suggests that this variable does not 
align with existing theories and common sense, 
possibly indicating a false-positive result due to data 
issues or chance. Additionally, previous studies have 
presented conflicting findings regarding the 
differences in myelosuppression caused by the 
FOLFOX, CapeOx, and FOLFIRI regimens[45-49]. For 
these reasons, we decided to exclude the 
chemotherapy regimen variable from the model. 

Limitations 
We acknowledge the limitations of our study. 

First, as a retrospective investigation, our study 
inevitably carries selection bias, even though we 
applied the same inclusion and selection criteria in 
both the validation and training groups. Second, our 
findings may not be representative of all CRC 
patients, as the patients in this study were primarily 
from northern China, potentially limiting the 
generalizability to other populations. Furthermore, 
although we attempted to include all possible 
influencing factors, it is unavoidable that some 
potential factors affecting chemotherapy-induced 
myelosuppression were not included. Additionally, in 
this study, a small number of patients began 
interventions for myelosuppression to prevent severe 
cases. While this introduces some bias, it better 
reflects the real-world data rules. Lastly, although we 
performed internal validation, the robustness of our 
nomogram has not been verified in other groups, and 
its applicability to other populations of CRC patients 
undergoing first-line chemotherapy in different 
regions and countries remains uncertain. This 
necessitates external evaluation in a broader 
population. We believe it is essential to conduct 
further prospective studies to identify more new 
practical factors and validate the nomogram across 
multiple centers. 

Conclusions 
The nomogram predictive model developed in 

this study, based on general information and relevant 
laboratory test results from colorectal cancer patients, 
demonstrates strong clinical decision-making 
capabilities. It accurately predicts the likelihood of 
myelosuppression after first-line chemotherapy, 
thereby assisting clinicians in formulating subsequent 
treatment plans. This approach is aimed at ensuring 
the smooth progression of the treatment process, 
reducing risks, and improving patients' quality of life. 
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