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Abstract 

Background: Lung cancer has the highest mortality rate among all cancers, for which immunotherapy 
can frequently lead to drug resistance. To understand the molecular mechanisms behind immune escape 
in patients with lung cancer and develop predictive and therapeutic targets, we carried out analytical 
experiments using single-cell sequencing. 
Methods: We collected eight tumor tissue samples from eight patients with lung adenocarcinoma and 
categorized them based on the positive reactions for programmed cell death ligand 1 (PD-L1) expression 
levels. Single-cell sequencing analysis was employed to create a comprehensive cellular landscape. 
Uniform Manifold Approximation and Projection was used to show the proportion of immune and 
endothelial cells, along with a map depicting the distribution of different cell types. Cells were subdivided 
according to molecular markers; the subpopulations were grouped based on PD-L1 levels and tumor 
marker-positive reactions. The correlation between the occurrence of the PD-L1 reaction and the 
response time of immune cells was explored; differential gene expression between the groups was 
elucidated. Finally, quantitative polymerase chain reaction (qPCR) was used to examine the relationship 
between key differentially expressed genes and PD-L1 immune escape checkpoint response. 
Results: A total of 58,810 single cells were analyzed, identifying seven distinct cell types. In the 
PD-L1-positive sample group, B cells, astrocytes, endothelial cells, outer skin cells, and tissue stem cells 
were present in higher proportions, whereas T and dendritic cells were the main cells in the 
PD-L1-negative sample group. According to the molecular markers, the seven cell types were divided 
into 17 cell clusters, with one cluster classified as tumor cells, showing PD-L1 positivity. Eleven molecular 
markers with different expression levels were simultaneously screened (NAPSA, MUC1, WFDC2, 
MYO6, LYZ, IGHG4, IGLL5, IGHM, IGKC, AQP3, and IGFBP7), and their association with the 
PD-L1/PD-1 immune escape axis response was confirmed by qPCR. 
Conclusion: Our study suggests that PD-L1-mediated immune escape may occur at a later stage of 
tumor progression, involving both PD-L1-positive and negative immune cells. Additionally, we identified 
11 differentially expressed genes that could provide insights into the potential mechanisms of immune 
escape in patients with lung cancer. These findings offer promising molecular targets for the detection and 
treatment of immune escape in clinical settings. 
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Introduction 
Lung cancer is the most common malignant 

tumor of the lungs and bronchi. According to 
statistics from the American Cancer Society (2020–

2021), there were an estimated 2.2 million new cases 
of lung cancer and 1.8 million deaths worldwide [1,2]. 
In the United States alone, it was estimated that 
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235,760 new cases of lung cancer would be diagnosed 
in 2020, accounting for 12.4% of all malignant tumors. 
The number of deaths was expected to reach 131,800, 
representing 21.6% of all cancer-related deaths and 
making lung cancer the leading cause of cancer 
mortality in the U.S. [3]. Approximately 84% of lung 
cancer cases are non-small cell lung cancer, with lung 
adenocarcinoma (LUAD) being the most common 
histological subtype, accounting for 50% of lung 
cancer cases [4]. The prognosis of LUAD is generally 
poor, with limited median survival. Early-stage 
LUAD is primarily treated with surgery, while 
mid-to-late stages are treated with chemotherapy and 
immunotherapy. Although many patients have 
benefited from advances in targeted therapy and 
immunotherapy, certain challenges remain, including 
differences in individual treatment sensitivity and the 
development of tumor-acquired drug resistance. 

Immunotherapy for LUAD includes immune 
checkpoint inhibitors (ICIs), tumor vaccines, 
cytokines, and chimeric antigen receptor T-cell 
immunotherapy, with ICIs receiving significant 
research attention in recent years [5-7]. ICIs, which 
disrupt the body’s immune system and reactivate its 
defense role, have been increasingly used for a variety 
of cancer types over the past decade. Current ICI 
studies mainly focus on cytotoxic T 
lymphocyte-associated antigen-4 (CTLA-4), 
programmed cell death 1 (PD-1), and programmed 
cell death-ligand 1 (PD-L1). PD-1/PD-L1 specifically 
regulates T cell activity within tumors, thereby 
limiting autoimmunity, while CTLA-4 modulates the 
early activation of both naïve and memory T cells [5]. 

PD-L1 is widely expressed in various cell types, 
including tumor cells, monocytes, macrophages, 
natural killer cells, dendritic cells (DCs), and activated 
T cells. PD-1 is an immune checkpoint protein 
expressed in T cells. When PD-1 expressed in 
activated T cells interacts with PD-L1 expressed in 
tumor cells, it triggers a negative feedback loop that 
inhibits T cell activation, preventing them from 
recognizing and attacking tumor cells. This allows 
tumors to evade immune detection and enhance the 
activation of regulatory T cells, helping maintain 
immune homeostasis and prevent autoimmunity. 
Monoclonal antibodies targeting PD-1/PD-L1 block 
this interaction, restoring T-cell-mediated anti-tumor 
immunity and enabling tumor cell destruction [8,9]. 
The 5-year survival rate of patients with advanced 
LUAD treated with PD-1/PD-L1 ICI monotherapy 
significantly improved compared with that of patients 
treated with previous chemotherapy [10]. However, 
among patients with lung cancer receiving 
immunotherapy as first-line treatment, 7–27% 
develop primary drug resistance [11], and 

approximately 25% develop secondary drug 
resistance [12]. The mechanisms of resistance to 
PD-1/PD-L1 ICI in patients with LUAD are complex 
and can be roughly divided into endogenous and 
exogenous factors. Endogenous resistance occurs due 
to cancer cell changes related to immune recognition, 
cell signaling, gene expression, and DNA damage 
response, while exogenous resistance occurs during 
the entire process of T-cell activation outside tumor 
cells [10]. Factors such as low immunogenicity, 
unfavorable chemokine environment, regulatory 
T-cell activity, and endothelial growth factors 
significantly reduce the effectiveness of 
immunotherapy in treating LUAD. Therefore, 
identifying key molecular mechanisms of immune 
escape and the sources of resistance and heterogeneity 
in patients with LUAD to PD-1/PD-L1 drug therapy 
is crucial. Such research can help avoid overtreatment 
of early tumors and contribute to the development of 
individualized precision therapy. Identifying key 
regulatory molecules involved in immune escape also 
provides important targets for clinical prediction and 
treatment. 

Single-cell sequencing analysis, including 
single-cell whole-genome sequencing and single-cell 
transcriptome sequencing (scRNA-seq), reveals 
changes in the genome and transcriptome, making it 
one of the most popular technologies in the field of 
biology. With its high resolution, it can accurately 
analyze the composition of sample cells, reveal the 
gene structure and gene expression status of a single 
cell and reflect heterogeneity between cells. The 
single-cell sequencing process includes four main 
aspects: single-cell isolation; cell lysis, genomic DNA 
acquisition, and whole-genome amplification; 
sequencing; and data analysis [13,14]. Current 
methods primarily use single-cell recognition based 
on barcodes; that is, a specific DNA sequence is added 
to each cell, and the sequence carrying the same 
barcode is regarded as coming from the same cell 
during sequencing [14-16]. The continuous 
development of single-cell sequencing technology 
will play an increasingly important role in analyzing 
cell heterogeneity, revealing the relationship between 
cell populations in the microenvironment, tracking 
the occurrence and development of diseases, and 
providing technical support for personalized 
prevention and treatment [13,17]. RNA sequencing 
(RNA-seq) offers unique advantages for 
high-throughput, unbiased studies using minimal 
samples, allowing for more accurate gene expression 
measurement and higher sensitivity in the 
quantification of rare variants and transcripts. Its 
advantages are all-encompassing and multilevel. 

While immunotherapy, particularly the use of 
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PD-1/PD-L1 inhibitors, has significantly advanced 
the treatment of LUAD, noting that there remain 
unresolved challenges, particularly related to drug 
resistance and treatment heterogeneity, is important. 
Current research has focused heavily on the 
mechanisms of immune checkpoint inhibition. 
However, less attention has been paid to the cellular 
heterogeneity within the tumor microenvironment 
that contributes to immune escape and therapy 
resistance. Furthermore, although the development of 
single-cell sequencing technologies has revealed 
promising insights into tumor biology, understanding 
how these findings could be applied to LUAD is still 
limited, specifically in the context of resistance to 
PD-1/PD-L1 inhibitors. 

This study aimed to create a comprehensive 
cellular map of LUAD using scRNA-seq to uncover 
the mechanisms behind PD-L1 monoclonal antibody 
resistance and immune escape. The study findings 
could support personalized medicine and improve 
clinical strategies.  

Materials and Methods 
Proportions of cell types  

The eight LUAD samples used in this study were 
collected from tumor tissues of hospitalized patients 
at Zhongshan People’s Hospital. The inclusion criteria 
were as follows: patients aged 18 to 85 years with a 
diagnosis of localized early-stage LUAD that was 
pathologically confirmed; patients who had not 
received immunotherapy, chemotherapy, or 
radiotherapy prior to enrollment; and patients with 
good organ function and no serious complications or 
chronic diseases. Exclusion criteria included patients 
with severe immune deficiency (such as HIV infection 
or those undergoing immunosuppressive therapy), 
patients with autoimmune diseases, organ transplant 
recipients, and pregnant or breastfeeding women. All 
patients were required to sign an informed consent 
form prior to enrollment, confirming their 
understanding of the study’s purpose and potential 
risks. This study included only patients undergoing 
tumor tissue removal for the first time and required a 
full clinical evaluation to ensure that the selected 
patients were representative and aligned with the 
study needs. 

Single-cell suspension preparation and taxa 
identification 

After the operation, the cut tissue was immersed 
in a 1× phosphate-buffered saline (PBS) tube and 
moved to a super-clean table, where the fresh tissue 
was cleaned with 1× PBS and then cut into a tissue 
homogenate of approximately 0.5 mm3 in a Petri dish 

using sterile surgical scissors. All operations were 
carried out at a low temperature of 4 ℃. A final 
concentration of 10% collagenase and 10% pancreatin 
was added to the centrifuge tube, and the culture 
medium supplement system was incubated on a 
constant temperature shaking table at 37℃ for 30 min. 
After digestion, the cell suspension was filtered 
through a 40 μm cell screen on a super-clean table, 
and the filtered solution was collected at 4 ℃ at 300 × 
g. The cardiac supernatant was removed after 5 min, 
retaining the precipitation at the bottom of the tube. 
Suspension cells (1× PBS + 0.04% BSA) were added. 

The auto-annotated results of SingleR were used 
to determine the proportion of various cell types in a 
single sample (top), different groups (bottom), 
immune/stromal cells (left), and total cells (right). 
SingleR achieved cell type annotation by calculating 
the correlation between the expression profile of the 
self-tested sample and the reference sample. For this 
project, the software’s built-in 
HumanPrimaryCellAtlasData reference dataset was 
used for the corresponding label. The main 
information included the cell type label, each cell’s 
calculated expression spectrum, and the Spearman 
correlation between the expression of each reference 
sample’s spectrum. Correlation analysis was 
conducted only for differences in gene expression 
levels, and the levels of self-measured samples and 
reference samples were normalized by logcounts. The 
score of the reference cell type label was defined by 
the correlation coefficient, and the label with the 
highest score was taken as the annotation result for 
the corresponding cell. Finally, the proportion of cells 
contained in each cluster corresponding to the 
annotated cell type was counted. The cell type label 
with the highest proportion was taken as the final cell 
type annotation result for the cluster. 

The parameters are as follows: clusters = NULL, 
genes = ‘de’, de.method = ‘classic’, assay.type.test = 
‘logcounts’, assay.type.ref = ‘logcounts’, no 
parameters specified, run with default parameters. 
These proportions are displayed in bar chart format 
using the ggplot2 package (version 3.3.5). 

Uniform Manifold Approximation and 
Projection (UMAP) plot 

UMAP clustering results from Seurat (version 
4.1.0) were labeled based on tumor malignancy 
predictions (malignant, normal, and undefined cells) 
derived from CopyKAT (version 1.1.0). The results 
were assigned a naming label in the legend. Clusters 
with more than 60% PD-L1-negative cells were 
labeled as PD-L1-negative; those with more than 60% 
PD-L1-positive cells were labeled as PD-L1-positive. 
Other clusters were marked as “unknown” in the 
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UMAP plot and identified accordingly in the legend. 

Proportion of each cell cluster 
The proportion of cells in each cluster was 

calculated using Seurat (version 4.1.0) based on tumor 
malignancy prediction results from CopyKAT and 
PD-L1 status (positive/negative). These proportions 
are shown in bar plot form using ggplot2 (version 
3.3.5). 

Heatmap of Gene Set Variation Analysis 
(GSVA) enrichment score  

To estimate pathway activity for each cell 
cluster, GSVA was performed using standard settings 
in the GSVA R package (version 1.32.0). A gene set 
comprising 50 hallmark pathways (h.all.v2023.1. 
Hs.symbols.gmt) was downloaded from the Gene Set 
Enrichment Analysis website (https://www.gsea- 
msigdb.org/gsea/index.jsp).  

Volcano plot  
Differential expression analysis was conducted 

between PD-L1-positive and negative groups using 
the FindAllMarkers function in Seurat (version 4.1.0) 
with the parameters “min.pct = 0.25, thresh.use = 
0.25”, plotted by ggplot2 (version 3.3.5). The top 10 
markers were visualized using the DotPlot function. 
Additionally, significantly differentially expressed 
genes were identified based on avg_log2FC >1 and 
abs (pct.1-pct.2) >0.1. 

Pseudotime plot of normal cells  
Pseudotime analysis was performed on cells 

with different PD-L1 statuses within normal cell 
clusters from Seurat (version 4.1.0) using Monocle 2 
(version 2.22.0, http://cole-trapnelllab.github.io/ 
monocle-release) with DDR-tree and default 
parameters. 

Radiation plot 
Based on pseudotime analysis, branch 

expression analysis modeling (BEAM) was performed 
to determine branch fate using the BEAM function of 
Monocle 2 (version 2.22.0). Pseudotime BEAM genes 
were also calculated using p- and q-values to adjust 
for the significance of gene expression. Significant 
genes (q-value <0.0001) were selected for further 
analysis. 

Histogram and violin plots 
Histograms and violin plots showing the 

expression of selected markers in different groups 
were generated using ggplot2 (version 3.3.5) and the 
VlnPlot function in Seurat (version 4.1.0). 

Bubble plot  
Selected markers were visualized using the 

DotPlot function in Seurat (version 4.1.0) with default 
parameters. 

Protein-protein interaction network analysis 
of selected markers 

Protein-protein interaction (PPI) network 
analysis was performed using the STRING website 
tools (https://string-db.org/) with default 
parameters. 

Real-time quantitative polymerase chain 
reaction (RT-qPCR) 

The lung cancer cell line A-549 (CCL-185) and 
lung cell line HPAEC (PCS-100-022) used in this study 
were purchased from ATCC (https://www.atcc. 
org/) and cultured in DMEM medium containing 10% 
fetal bovine serum at 37 ℃ and 5% CO2. Cells were 
transferred every 2–3 days; those in the logarithmic 
growth stage were used for the experiment. Cells 
were lysed with Trizol solution, and RNA was 
extracted. Reverse transcription of mRNA was 
performed using the PrimeScript™ RT reagent Kit 
with gDNA Eraser (Perfect Real Time) (Code No. 
RR047Q; TAKARA, Beijing, China). RT-qPCR was 
performed using cDNA obtained from reverse 
transcription. The procedure followed the protocol of 
the TB Green® Premix Ex Taq™ II (Tli RNaseH Plus) 
(Code No. RR820Q; TAKARA Bio). Reverse 
transcription and fluorescence quantitative PCR 
procedures were performed according to the 
manufacturer’s instructions. Primers and sequences 
used for the analysis are listed in Tables 1 and 2. 

 

Table 1. Gene silencing sequence 

Name SS Sequence AS Sequence 
si-MUC1#1 GUUUUUGCAGAUUUA

UAAACA 
UUUAUAAAUCUGCAAAAA
CAU 

si-MUC1#2 GCUUACAGUUGUUAC
GGGUUCUGGU 

ACCAGAACCCGUAACAACU
GUAAGC 

si-MUC1#3 GGCCAGGAUCUGUGG
UGGUACAAUU 

AAUUGUACCACCACAGAUC
CUGGCC 

si-MYO6#1 AAUAUCGAGCUGAAG
CCUGCAUUAA 

UUAAUGCAGGCUUCAGCUC
GAUAUU 

si-MYO6#2 CGAGUAAGUUUGACC
ACAAGA 

UUGUGGUCAAACUUACUCG
AA 

si-MYO6#3 GGAUCUGUGUUCAAG
GCAAAG 

UUGCCUUGAACACAGAUCC
UA 

si-IGKC#1 GGACCAAGCUGGAGA
UCAAAC 

UUGAUCUCCAGCUUGGUCC
CC 

si-IGKC#2 GCAAAGCAGACUACG
AGAAAC 

UUCUCGUAGUCUGCUUUGC
UC 

si-IGKC#3 GAGCAGGACAGCAAG
GACAGC 

UGUCCUUGCUGUCCUGCUC
UG 
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Results 
Immune landscape of lung cancer tumors 

To assess the immune landscape based on the 
PD-L1 signaling axis and immune escape status, we 
collected tumor samples from eight patients with lung 
cancer for scRNA-seq and bioinformatics analysis. 
These samples included 4 without PD-L1 expression, 
2 with PD-L1 expression, and 2 with high PD-L1 
expression. In total, 58810 single cells were analyzed: 
38,244 cells from four samples without PD-L1 
expression, 14231 cells from two samples with PD-L1 
expression, and 6335 cells from two samples with 

high PD-L1 expression. As shown in Figure 1, seven 
cell types were identified in the dataset: T cells, B cells, 
epithelial cells, DCs, astrocytes, tissue stem cells, and 
endothelial cells. These cell types were annotated 
separately for each group of cells and patients, and 
there were differences between PD-L1-positive and 
negative samples. T-cells and B-cells were dominant 
in both groups. The numbers of B cells, astrocytes, 
endothelial cells, epidermal cells, and tissue stem cells 
were higher in the PD-L1-positive sample group, 
whereas T cells and DCs were dominant in the 
PD-L1-negative sample group. 

 

 
Figure 1. Single-cell landscape of lung cancer tumor and its PD-L1 immune signaling axis response. PD-L1: Programmed Death-Ligand 1 
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Cell subpopulation analysis 
We further subdivided the seven cell types from 

different classes into 17 clusters (Figure 2A). 
Considering the large-scale chromosomal changes in 
cancer cells, we used molecular markers to annotate 
the 17 cell clusters as tumor or normal cells. Among 
the 17 clusters, one was identified as tumor cells, and 
another 6 clusters of cells were annotated as 
unknown; that is, it could not be determined whether 
they were tumor cells or normal cells (Figure 2B). To 
analyze the relationship between PD-L1 positivity 
and cell clusters, we compared the PD-L1 detection 
rates between different cell clusters (Figure 2C) and 
found that the positive rate of PD-L1 in the tumor_C1 
cell cluster exceeded 50%. The negative rate of PD-L1 
in most of the normal cell clusters was more than 50%, 
such as Norm_C1, Norm_C2, Norm_C4, Norm_C5, 
Norm_C7, Norm_C8, Norm_C9, and Norm_C10. The 
Norm_C3 and Norm_C6 clusters showed positive 
rates of PD-L1 of over 50%. According to the UMAP 
cluster analysis, tumor_C1 clusters were isolated from 
epithelial cells, and Norm_C3 and Norm_C6 clusters 
were isolated from stem cells and astrocytes, 
respectively (Figure 2D, E). 

PD-L1 pseudotime series analysis of normal 
cell communities 

The transcriptional differentiation trajectory of 
normal cells showed that the cells were divided into 
six different sequences according to the results of the 
different molecular markers (Figure 3A, B). By further 
comparing pseudotime results with PD-L1 labeling 
results (Figure 3C, D), we found that DCs, B cells, and 
astrocytes in the PD-L1-negative group differentiated 
into fate1 (PD-L1-positive group) or fate2 (unknown 
group). Initially, no PD-L1-positive DCs, astrocytes, 
or B cells entered the tumor tissue for an immune 
response. However, as the tumor progressed, a 
PD-L1-positive reaction gradually occurred after the 
differentiation of tissue stem cells and endothelial 
cells, resulting in immune escape. Meanwhile, 
immune cells, such as T and B cells with insignificant 
PD-L1-positive reactions, were retained. 

Molecular markers of differential genes in cells 
with different PD-L1 states 

In different cell clusters, genes with significantly 
different expression levels were found to be 
significantly higher than those in other cell clusters 
(Figure S1). The top 20 genes with the largest 
differences in different cells are shown in Figure 4A 
and B. According to Figure 4B, MUC1 in NAPSA, 
WFDC2, S100A6, CNN1, SOX4, MYO6, HSPB1, 

LMNA, DSTN, DOCK2, FYB1, CD53, PDE4B, 
ARHGAP15, PTPRC, LCP1, CXCR4, SRGN, and 
LAPTM5 were among the top 20. Among the genes 
with significant differences, NAPSA, MUC1, WFDC2, 
and MYO6 were well correlated with Tumor_C1 and 
Unknow_C2 (cells with a high positive rate of tumor 
markers), and these two cell clusters were all cells 
with a high positive rate of PD-L1. At the same time, 
MUC1 and AQP3 genes were also selected among 
Tumor_C1, Norm_C3, and Unknow_C2, which had a 
high positive rate of PD-L1, according to the bubble 
map (Figures S2-S7) to obtain more comprehensively 
correlated significant differential genes.  

MUC1, IGFBP7 gene and MYO6, IGFBP7 
expression 

We selected IGHG4, IGLL5, IGHM, and IGKC 
from nine normal cell clusters with high PD-L1 
negativity rates. LYZ was selected in Norm_C8, and 
the characteristics of these genes were that their 
expression in the normal cell cluster was very 
different and significantly correlated with 
PD-L1-negative markers. In the PD-L1-negative cell 
cluster Norm_C2, the top ten differential genes were 
co-expressed in the PD-L1-positive cell cluster 
Norm_C3. Therefore, no genes significantly 
associated with negative PD-L1 expression were 
identified. 

 

Table 2. quantitative polymerase chain reaction primer sequence 

Gene Name  Sequence Long 
MUC1 f CGACGTGGAGACACAGTTCA 208bp 

r CCAGACTGGGCAGAGAAAGG 
MYO6 f CCCACTCCTAGAAGCCTTTGG 212bp 

r CAGAAGCACCAGCACACAAC 
IGKC f AGTGGGTCTGGGACAGACTT 296bp 

r CTCTCCTGGGAGTTACCCGA 
 

Table 3. Expression of marker genes in different types of cells 

Gene name highly expressed cells 
NAPSA Unknow_C2; Tumor_C1 
MUC1 Unknow_C2; Tumor_C1 
WFDC2 Unknow_C2; Tumor_C1 
MYO6 Unknow_C2; Tumor_C1 
AQP3 Unknow_C2; Tumor_C1 
LYZ Norm_C8 
IGHG4 Norm_C5 
IGLL5 Norm_C5 
IGHM Norm_C5 
IGKC Norm_C5 
IGFBP7 Norm_C4; Norm_C3 
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Figure 2. Cell subsets and their tumor marker responses. A: Cell subdivision map obtained by sequencing; B: The ratio of all cells to tumor cell markers; C: PD-L1 positive and 
negative ratio of cell subsets; D: UMAP of tumor, normal and unknown cell subsets; E: UMAP of different cell subpopulations. PD-L1: Programmed Death-Ligand 1; UMAP: 
uniform manifold approximation and projection 
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Figure 3. PD-L1 pseudotime of normal cell subsets. A: Classify and name the cells according to the time sequence; B: The position of 6 kinds of classified cells in the timeline; 
C: Cells were divided into Fate1 and Fate2 groups according to cell type. D: PD-L1 signal axis response and Fate1 and Fate2 cells were located in the time axis, respectively. 
PD-L1: Programmed Death-Ligand 1 

 
In conclusion, cells with high positive rates of 

PD-L1, NAPSA, MUC1, WFDC2, MYO6, AQP3, and 
IGFBP7 genes, with prominent differences in 
expression among Tumor_C1, Norm_C3, and 
Unknow_C2 were selected as PD-L1-positive 
molecular markers. Regarding cells with a high 
negative rate of PD-L1, we selected the IGHG4, 
IGLL5, IGHM, IGKC, and LYZ genes in Norm_C5, 
Norm_C8, and Norm_C2 as negative molecular 
markers to explore PD-L1 expression (Figure 4C). The 
expression levels of genes in different cells are 
presented in Table 3. 

Pathway enrichment analysis of significantly 
differentially expressed genes was performed. As 
shown in Figure 4D, many pathways showed 

significant differences between PD-L1-positive and 
negative cells, with increased expression in 
PD-L1-positive cells, while decreased expression was 
seen in negative cells. Not all cells exhibited a 
consistent trend. Most of the differential signal 
transduction pathways are biologically based and 
involve relatively upstream genes. This indicates that 
the PD-L1 immune escape pathway is a complex and 
variable process in tumor tissues and that both tumor 
promotion and tumor suppression reactions occur 
and interact with each other. 

A regulatory network analysis was performed 
on the selected 11 marker genes; the results are shown 
in Figure 4E. Among the 11 genes, PD-L1-positive 
molecular markers NAPSA, MUC1, and WFDC2 
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mainly act through EGFR receptors, and the 
PD-L1-negative molecular marker IGLL5 acts 
similarly. PD-L1-positive molecular markers MYO6, 
AQP3, IGFBP7, and PD-L1-negative molecular 
markers IGHG4, IGHM, IGKC, and LYZ acted 
through other pathways, ultimately affecting the 
expression or response of PD-L1. According to the box 
(Figure S8) and the violin (Figure S9) plots, in the 
PD-L1-positive and negative cells, AQP3, MUC1, 
MYO6, NAPSA, and IGKC produced significant 
differences, among which the expression levels of 

AQP3, MUC1, MYO6, and NAPSA genes in 
PD-L1-positive cells were significantly higher than 
those in negative cells. However, the expression levels 
of the IGKC gene in PD-L1-positive cells were 
significantly lower than those in negative cells, which 
was consistent with the results in different cell 
clusters. 

In vitro validation 
To validate the sequencing results, we selected 

three genes (MUC1, MYO6, and IGKC) among the 11 
 

 
Figure 4. Molecular marker gene screening. A: Differential gene volcano map; B: Bubble map of expression of highly different genes in different cells; C: Bubble map of the 
expression of important genes in each cell; D: Differential channel heat map of different cell clusters; E: Screening important gene interaction networks. 
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important molecular marker candidates for silent 
transient cell line construction and transferred silent 
MUC1 and MYO6 into lung cancer cell line A-549, and 
silent IGKC into normal lung cell HPAEC. PD-L1 and 
PD-1 expression in each cell line was detected after 
the transient strain was obtained. As shown in Figure 
5A, the si-muc1#2 cell line exhibited the lowest MUC1 
expression among the three transient strains, leading 
to a significant reduction in PD-L1 expression. 
Similarly, in the si-MYO6#2 cell line, the lowest 
MYO6 expression resulted in decreased PD-L1 
expression (Figure 5B). When the IGKC gene was 
silenced, the expression of PD-1 in SI-IGKC #1 normal 
lung tissue cell lines with the lowest expression level 
was significantly higher than that in the negative and 
positive controls, indicating that the PD-1 and PD-L1 
immune escape signaling axes were activated with a 
decrease in IGKC expression level (Figure 5C). 

Discussion 
In our study, we analyzed eight tumor samples 

from patients with lung cancer using scRNA-seq and 
bioinformatics. PD-L1 expression was absent in four 
cases, present in two, and highly expressed in the 
other two cases. The tumor’s immune cells primarily 
consisted of T cells, B cells, epithelial cells, DCs, 
astrocytes, tissue stem cells, and a minor fraction of 
endothelial cells. We categorized these into tumor 
cells, normal cells, PD-L1-positive cells, and 
PD-L1-negative cells and examined the expression of 
differentially expressed genes. This analysis yielded 
eleven candidate marker genes, whose synergies with 
the PD-L1 immune escape signaling axis were 
confirmed. 

 

 
Figure 5. Verification of the relationship between candidate genes and the activation of PD-L1 immune signal axis response. A: Construction of MUC1 gene knock-down 
transient cell line and its effect on PD-L1 expression; B: MYO6 knockdown transient cell line construction and its effect on PD-L1 expression; C: Construction of IGKC gene 
knock-down transient cell line and its effect on PD-1 expression. PD-L1: Programmed Death-Ligand 1 
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From a cellular perspective, although the 
composition of PD-L1-positive and negative samples 
was analogous, the proportions of various cell types 
differed. In the PD-L1-positive sample group, there 
was a higher presence of B cells, astrocytes, 
endothelial cells, epidermal cells, and tissue stem 
cells, whereas the PD-L1-negative sample group 
exhibited a greater abundance of T cells and DCs. 
Through quasi-time series analysis, it was observed 
that DCs, astrocytes, and B cells lacking a 
PD-L1-positive response appeared to play a role in the 
early immune response to tumor tissue. However, 
immune escape occurred following tissue 
differentiation in later stages. Concurrently, immune 
cells such as T cells and B cells, showing no significant 
PD-L1-positive reaction, were preserved. This 
suggests that an immune escape reaction may 
transpire in the late stages of tumor growth, 
diminishing the efficacy of the immune cells’ attack 
on tumor cells with increasing immune infiltration, 
thereby facilitating the formation and proliferation of 
lung tumors. Accordingly, the exploration of gene 
regulation furnishes insights into developing drugs to 
inhibit immune escape. 

Immunotherapy has emerged as a potent clinical 
strategy for cancer treatment. Recent studies have 
shown a renewed interest in immunotherapy for 
managing patients with ICI-positive lung cancer. 
However, determining which patients with lung 
squamous cell carcinoma would benefit from 
immunotherapy remains challenging [18]. The 
RNA-seq technique is an effective tool for exploring 
tumor heterogeneity and different cellular 
subpopulations, crucial for identifying potential 
therapeutic targets [19]. We identified 11 marker 
genes associated with the PD-L1 immune escape 
signaling axis, including MUC1, IGKC, IGHG4, LYZ, 
IGLL5, and IGHM, all linked to immune responses. 
MUC1, a potent lipopeptic immune activator, is 
involved in specific immune responses and has been 
developed and utilized as a cancer vaccine [20-23]. 
IGKCs play a significant role in the immune 
microenvironment of various tumors [24-26]. 
Although less explored, IGHG4 is suggested to be 
involved in immune and transcriptional disorders, 
such as those observed in autistic dissonant identical 
twins, and may play a role in lymphocyte interactions 
[27,28]. LYZ is markedly expressed in ovarian and 
estrogen-related immune responses and prominent in 
the immune invasion of diseases such as diabetic 
nephropathy and thyroid cancer [29-32]. IGLL5 has 
been found to be involved in the immune invasion of 
renal cell carcinoma [33]. IGHM activates the immune 
response in megakaryocytes, T cells, and other 
immune cells, subsequently triggering autophagy 

[34-36]. This response is primarily related to the 
immune cell response during immune escape 
checkpoint sequencing. Additionally, genes like 
NAPSA, related to surfactant metabolism and 
autophagy, were identified [37,38]. Significant 
differences were observed in the injury response, 
EGFR response factor WFDC2 [39,40], 
transport-related factor MYO6 [41], redox-regulatory 
factor, inflammatory damage response factor AQP3 
[42,43], and cell senility-related factor IGFBP7 [44,45], 
all of which correlated with the PD-L1 response. 
These findings indicate that the PD-L1 response 
process is intricately linked to the immune system and 
involves complex processes related to cell 
metabolism, autophagy, injury, transport, 
reoxidation, aging, and others, a fact further 
confirmed by the enrichment analysis in our study. 

Possible limitations of this study include a 
relatively small sample size consisting of only eight 
tumor samples, which may not have adequately 
represented the full heterogeneity of LUAD. 
Moreover, the cross-sectional design of the study 
might constrain the ability to monitor temporal 
changes in PD-L1 signaling and immune escape 
mechanisms. Additionally, potential biases in sample 
collection and processing could influence the 
generalizability of the findings. Further validation 
with larger, more diverse cohorts is required to 
corroborate these results. 

In conclusion, this study indicated that a PD-L1 
immune escape checkpoint response might be evident 
in the later stages of tumor tissue development. 
Eleven target genes — NAPSA, MUC1, WFDC2, 
MYO6, LYZ, IGHG4, IGLL5, IGHM, IGKC, AQP3, 
and IGFBP7—were identified for potential use in 
detecting and treating LUAD immune escape. Among 
these, three genes (MUC1, MYO6, and IGKC) have 
been experimentally validated for clinical application. 
Future research should focus on elucidating the 
functional mechanisms of PD-L1-mediated immune 
escape in LUAD, assessing the therapeutic efficacy of 
targeting these marker genes and evaluating the 
combined use of PD-L1 inhibitors with other 
treatments. Moreover, longitudinal studies are 
essential for monitoring the progression and 
resistance patterns associated with PD-L1 signaling. 
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