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Abstract 

Head and neck squamous cell carcinoma (HNSCC) is one of the most frequent cancers with a high 
mortality rate. Lactate accumulation, a hallmark of cancer, has received extensive attention, but its role in 
HNSCC remains underexplored. Therefore, we identified 33 prognostic genes related to lactate 
accumulation. By consensus clustering, we separated all HNSCC samples into cluster_A or cluster_B and 
explored the difference of clinicopathological characteristics and genomics landscape. Next, we 
performed LASSO analysis and RSF to calculate the lactate-related gene score (LRGS) and constructed a 
risk model with high accuracy for predicting survival, as estimated by ROC, nomogram, and calibration 
curve. Then, through OncoPredict algorithm and TCIA, we filter the suitable drugs, especially 
immunology with diverse LRGS. GSEA analysis showed that the DEGs of LRGS were enriched in 
activation of immune response and positive regulation of immune response. Moreover, we developed a 
tumor-infiltrating immune-related lncRNA signature (TILSig) through a combination of 115 immune cell 
lines from 16 GEO datasets and DealGPL570. Subsequently, we identified the 9 tumor-infiltrating 
immune-related lncRNAs and calculated the TIL_score. The correlations among these tumor-infiltrating 
immune-related lncRNAs, hub lactate-related genes and LRGS levels were visualized. According to 
validation using multiple datasets including TCGA, GSE65858, GSE41613, GSE27020, and the IMvigor 210 
database, CARS2, NFU1, and SYNJ1 were identified as hub genes. In light of a comprehensive pan-cancer 
study, we analyzed these genes to detect the potential clinical value. In conclusion, the constructed LRGS 
provides important insights for subsequent mechanistic research and can guide clinicians in proposing 
therapeutic strategies for HNSCC patients. 
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Background 
Head and neck squamous cell carcinoma 

(HNSCC) is the eighth most frequent cancer in the 
world, with a high mortality rate, according to the 
Global Cancer Report of 2018 [1]. Currently, 
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multidisciplinary treatments for HNSCC include 
surgery, chemotherapy, and radiotherapy [2]. 
However, local and distant failures occur in up to 40% 
and 30% of patients, respectively [3]. With an 
improved understanding of the molecular details, 
there has been a prominent surge in the field of 
anticancer drug therapy, resulting in new strategies to 
effectively treat many refractory cancers [4]. 
Beginning with studies by Bonner and EXTREME, 
cetuximab was approved as the first 
molecular-targeted drug to prolong the median 
overall survival from 7.4 to 10.1 months in advanced 
HNSCC or recurrent/metastatic HNSCC [5,6]. 
Subsequently, a deeper exploration of targeted 
immune checkpoint treatments was initiated, 
followed by the success of clinical trials [7]. In 2019, 
immunologies, particularly pembrolizumab, were 
approved as the first-line treatment in the 
KEYNOTE-048 study [8]. Nevertheless, due to the 
high heterogeneity, resistance, which results in worse 
outcomes after these novel treatments, has become a 
significant obstacle [9]. The metabolic competition in 
the tumor environment may be regarded as a different 
clinical outcome of this heterogeneity, thereby 
developing a useful prognostic model to select proper 
treatment for HNSCC. 

Lactate accumulation, a classic hallmark of 
cancer, is a waste byproduct of aerobic glycolysis 
during the Warburg effect. [10]. Emerging results 
exhibit that lactate is essential for acidifying the tumor 
microenvironment (TME), accompanied by defective 
mitochondria and impaired adenosine triphosphate 
production to promote cell growth [11,12]. This 
molecule can act as a fuel for mitochondrial 
procedures to reshape immune cell function and 
metabolism, inhibiting the activation and 
proliferation of immune cells to escape immune 
surveillance [13,14]. Currently, lactate levels exceed 
the glucose concentration by 1.1- to 2.5-fold [15]. The 
acute inflammatory response, such as arthritis and 
lactate accumulation, often amplifies inflammation or 
induces these underlying pathogenic conditions 
[16,17]. One of the important processes of lactate 
accumulation is the lactate shuttles, which consist of 
intracellular and cell-cell shuttles [18], mediated by 
concentration gradients, pH gradients, and redox 
states. This process is transported across the plasma 
membrane by several monocarboxylate transporters 
(MCTs), mainly MCT1 and MCT4 [19]. An emerging 
theory was recently proposed that lactate homeostasis 
is the major source of cyclic carbohydrates for 
maintaining important systems [20]. Moreover, a 
novel function of lactate, which plays a vital role in 
regulating gene expression through histone 
modifications, was discovered. This post-translational 

modification (PTM) of proteins is called lactylation. 
Although lactate accumulation has received 

extensive attention, relevant studies are still limited. 
There have been no studies on lactate accumulation in 
patients with HNSCC. Accordingly, we used this 
study to explore innovations in customized precision 
diagnosis and treatment strategies for HNSCC. 

Materials and Methods 
Data acquisition and preprocessing  

We downloaded HNSCC datasets from the 
Cancer Genome Atlas (TCGA) database 
(https://portal.gdc.cancer.gov/), including raw 
mRNA transcriptome profiles based on counts, copy 
number variation (CNV), and somatic mutation data. 
Next, normalized count data were derived using the 
DESeq2 package [21] and converted to TPM using the 
R function "counts_to_tpm." In this study, we also 
obtained clinical data, including TNM stage, gender, 
race, survival status, and survival time from TCGA as 
the training set. To validate the prognostic value of 
hub genes, the raw data of patients with HNSCC were 
retrieved from GEO under accession numbers 
GSE65858 and GSE41613 [22,23] with data on overall 
survival (OS). Moreover, PFS data were obtained from 
GEO datasets under accession numbers GSE65858 
and GSE27020 [24]. Based on the Molecular Signatures 
Database (MSigDB) (https://www.gsea-msigdb.org/ 
gsea/msigdb), we identified nine classic lactate 
metabolism pathways, namely, total lactate 
transmembrane transport and lactate dehydrogenase 
activity, consisting of 324 genes. Then, we utilized the 
Cox analysis to select prognostic genes with P < 0.05, 
based on the TCGA-HNSC dataset for subsequent 
analysis. 

Consensus clustering of HNSCC subtypes 
In this study, we excluded samples diagnosed 

with HNSCC with an OS > 30 days, and the survival 
time was recorded. "The R package 
"ConsensusClusterPlus" [25] was used to identify 
diverse subtypes in HNSCC, and K-means clustering, 
a method of vector quantization from signal 
processing to partition observations into k clusters, 
was conducted." The consensus matrix, cumulative 
distribution function (CDF), and relative change in the 
area under the CDF curve were employed to select the 
best clusters. Kaplan–Meier (KM) survival plots were 
used to calculate the OS rates of distinct clusters. 
Moreover, the distribution of TNM stage, somatic 
mutations, CNVs, TMB, and expression of related 
genes was visualized among diverse clusters. Finally, 
principal component analysis (PCA) was applied to 
validate the clustering results. 
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Construction of a prognostic lactylation- 
related gene signature 

First, we applied the least absolute shrinkage 
and selection operator (LASSO) to construct a model 
with the "glmnet" package [26]. Then, the KM curves 
were utilized to exhibit the difference in OS between 
diverse subtypes, and we also used the package 
"survROC" to display the ROC curves [27]. The 
random survival forest (RSF) has demonstrated 
superior predictive performance in risk model 
construction [28]. Accordingly, we applied this 
method to determine essential genes based on cluster 
clustering or survival status to establish a risk model. 
Meanwhile, in both ways of the KM plot, the ROC 
curves were applied to validate the robustness of 
previous models. We identified the optimal method 
and generated the prognostic lactate-related gene 
score (LRGS) based on the validation results. Using 
univariate and multivariate Cox analysis, we 
compared the clinical value of the risk score with 
clinical features, such as the TNM stage in the TCGA 
dataset. Furthermore, a nomogram combining the 
LRGS and clinical characteristics was developed and 
assessed using calibration and ROC curves. 

Evaluation of drug sensitivity in HNSCC 
A novel method developed by Maeser et al. [29], 

called OncoPredict, bridged in vitro drug screening 
with in vivo drug and biomarker discovery. Based on 
the statistics of the recorded 198 drugs, we selected 
the sensitivity of the drugs (between high- and 
low-LRGS groups or diverse clusters) with a 
threshold of P < 0.05. 

Exploration of the immune characteristics in 
HNSCC 

 Using the edgeR R package, we obtained 
differentially expressed genes (DEGs) between the 
diverse clusters with P < 0.05 by comparing diverse 
risk scores or clusters. Furthermore, using the R 
packages the "GSVA" and "GSEABase," we analyzed 
the main biological functions and the relationship 
between HNSCC and the immune landscape 
following the "c5.v7.4. symbols.gmt" database. To 
quantify the proportion of immune cells in HNSCC, 
CIBERSORT converted the gene matrix to the relative 
proportions of 22 TIIC subtypes [30]. The ESTIMATE 
algorithm was used to calculate the immune-related 
score [31]. Moreover, we downloaded the 
immunophenoscores (IPS) of HNSCC from the TCIA 
database (https://tcia.at/) to predict the sensitivity of 
immunotherapy when comparing the IPS among 
diverse clusters. In this study, we used a new strategy 
to identify and construct a tumor-infiltrating 
immune-related lncRNA signature (TILSig) through 

integrative analysis of lncRNA, immune, and clinical 
profiles of 115 immune cell lines, 187 NSCLC cell 
lines, and 1533 patients with NSCLC [32]. Finally, 
prognostic tumor-infiltrating immune-related 
lncRNAs were determined for subsequent analysis. 

Identification and validation of LRGS and hub 
genes through multi-omics and pan-cancer 
analysis 

To validate the prognostic value of clinical 
survival and immunology decision-making in LRGS, 
we downloaded the raw data of GSE65858 and 
GSE41613 to validate OS and the data of GSE65858 
and GSE41613 for PFS. Furthermore, we obtained 
data from IMvigor 210 (NCT01208652 and 
NCT02951767) using the R package 
IMvigor210CoreBiologies (http://research-pub.gene 
.com/IMvigor210CoreBiologies/). In pan-caner 
analysis, we evaluated the relationship between hub 
genes and immune characteristics in the TIMER 
database, a comprehensive resource for systematical 
analysis of immune infiltrates across diverse cancer 
types [33]. Next, we downloaded mRNA expression 
profiles, CNV, somatic mutation, and correlative 
clinical data from 33 types of cancer samples, 
including 11,315 samples. Finally, we 
comprehensively depicted the landscape of survival, 
somatic mutations, and CNV of hub genes in 33 types 
of cancer.  

Cell lines and cell culture 
Oral cancer cells (Cal27 and HN6) were obtained 

from ATCC and cultured in Dulbecco's modified 
Eagle's medium (Procell, Wuhan, China) 
supplemented with 10% fetal bovine serum (FBS) 
(Procell, Wuhan, China). The cells were incubated in a 
thermostatic incubator with 5% CO2. 

RNA interference, transfection, and qRT-PCR  
siRNAs and negative controls (NC) were 

designed and acquired from GenePharma (Suzhou, 
Jiangsu, China). The following primers for CARS2 
were used (Forward: GTGTACCTGAGGGTAAC 
CGAA; Reverse: TTGCCGTTGAATAAGCGTTCC). 
Next, we constructed siRNAs targeting CARS2 
(si-CARS2#1 and si-CARS2#2) for further 
experiments. The knockdown efficiency was 
determined. Total RNA was extracted from cultured 
cells using the TRIzol reagent (Takara). The relative 
mRNA expression level was detected using the 2–△△CT 
method, with GAPDH as the internal loading control. 

CCK8, Colony formation, and Transwell assays 
A total of 3000 cells were seeded in 96-well plates 

(LABSELECT, China) with 100 μL of medium. The cell 
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proliferation rate was determined using CCK-8 assays 
(Biosharp, China) at 0, 24, 48, 72, and 96 h. Briefly, 10 
μL of CCK-8 reagent was added to each well at the 
specified time. After 2 h of incubation at 37 ℃, the 
absorbance was measured at a wavelength of 450 nm. 
Next, 1000 cells were plated in a 6-well plate with 2 
mL of complete medium, and the medium was 
replaced every three days. After 14 days, colonies 
were stained with 0.25% crystal violet. A total of 5 × 
104 cells suspended in serum-free medium were 
added into the upper chamber, and 600 μL of DMEM 
containing 20% FBS was added to the lower chamber. 
After approximately 24 h of incubation, the cells in the 
Transwell system were stained with 0.25% crystal 
violet. The cells that migrated across the membrane 
were imaged and counted. 

Statistical analysis  
All statistical analyses in this study were 

performed using R software (version 4.1.3; https:// 
www.r-project.org/), and a P-value < 0.05 was 
considered statistically significant for all analyses.  

Results 
Construction of lactate-related subtypes in 
HNSCC 

In this study, 500 HNSCC samples were 
downloaded from the TCGA database with the 
primary tumor, and 10 patients lacking follow-up 
information or survival of less than 30 days were 
excluded from survival analysis. In total, 324 
lactate-related proteins from MSigDB were 
considered, and 34 genes were identified as potential 
prognostic biomarkers through Cox analysis in 
TCGA-HNSCC. Using consensus clustering with k = 
2, we separated all HNSCC samples into two clusters, 
cluster_A and cluster_B (Figure S1 and Table S1). 
Next, we plotted the picture, including the TNM 
stage, diverse clusters, and lactate-related genes, into 
a heatmap (Figure 1A). The KM plot illustrated that 
cluster_A had a much lower survival rate when 
compared to cluster_B with P = 0.0218 (Figure 1B). 
The box plot displayed the prominent expressions of 
most prognostic lactylation-related genes in normal 
and HNSCC samples (Figure 1C). Unfortunately, our 
findings in the barplot indicated that TNM stage DRG 
and most somatic mutations failed to exhibit 
significant differences in comparison of cluster_A and 
B except for TTN with P = 0.0012 and USH2A 
mutations with P = 0.0088 (Figure 1D). Additionally, 
we applied the PCA, a standard technique for 
statistical data analysis, to validate the clustering 
algorithm (Figure 2A).  

Interestingly, we observed a remarkable 

difference of TMB in cluster_A and B (Figure 2B), 
implying the conspicuous genomic heterogeneity of 
somatic mutations and CNVs may play a significant 
role in HNSCC. First, the waterfall plot identified the 
top 30 most frequently mutated genes, such as TP53 
with 67% mutation (Figure 2C), and presented 
lactate-related somatic mutations in clusters_A and B, 
respectively (Figure S2). Then, the boxplot presented 
the distribution of CNVs in cluster_A or B. As 
revealed in Figure 2D, many amplification regions of 
CNAs were enriched in the cluster_A, including 
11p11.2, 11p13, 11q13.3, and 8q24.21, except for 
amplification-19q13.2, 22q11.21, 3q11.2, 4q12, and 
8p11.23 (Figure 2D). As for the distribution of 
deletion regions of CNAs, we observed that only 
deletion-11p15.5 was enriched in cluster_A (Figure 
2E). Based on the consensus clustering of cluster_A 
and B, we further analyzed the location of lactate 
biomarkers of two groups (Figure 2F) and visualized 
the frequency of CNVs (Figure 2G).  

Establishment of lactate-related consensus 
signature 

We performed LASSO regression to identify hub 
lactate-related biomarkers correlated with OS, and 
only 10 LRGs were used to construct a risk model 
(Figure S3A). Based on this coefficient, we calculated 
the LRGS (Table S2) and obtained the LRGS of every 
patient with HNSCC. Selecting the median value as a 
cut-off, the KM analysis indicated that patients with a 
high LRGS score had shorter OS than others. 
Moreover, the area under the curve (AUC) value of 1-, 
3-, and 5 years for ROC analysis was 0.666, 0.710, and 
0.698, which suggests superior prognostic efficacy 
than other clinical features, including TNM stage, 
race, gender, and TP53 (Figure 3A). The RSF is a 
marvelous method designed to handle survival data. 
First, we utilized this method to filter the biomarkers 
based on diverse clusters (cluster_A and B). As 
depicted in the KM survival curve, high-risk patients 
exhibited a worse prognosis compared to low-risk 
patients. Moreover, ROC analysis indicated that LRGS 
was an excellent biomarker compared to other clinical 
characteristics (Figures 3B and S3B). 

Furthermore, we found similar results when 
applying RSF to construct a risk model based on 
survival status (Figures 3C and S3C). Combining 
these results above, these enrolled lactate genes 
intimately interacted with each other and mediated 
the tumor environment of HNSCC to influence the 
prognosis (Figure 3D). Moreover, univariate and 
multivariate regression analyses demonstrated that 
LRGS was an independent risk factor for OS (hazard 
ratio = 1.311, 95% confidence interval (1.235–1.391); P 
< 0.001) (Figures 3E-F). A nomogram that integrated 
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the LRGS scores and other clinicopathological 
features was established (Figure 3G). Then, we 
further estimated the survival rate of 1-, 3-, and 
5-years based on the total points. Subsequently, the 
time-dependent ROC curve (Figure 3H) and 
calibration curve (Figure 3I) both indicated that this 
nomogram had high accuracy for predicting survival. 

Evaluation of the differences of drug and 
PD1/PD-L1 sensitivity in HNSCC 

To explore suitable drugs for patients in 
cluster_A and B or low and high risk, HNSCC tissues 
from cluster_A exhibited greater resistance to seven 
drugs, including 5-fluorouracil, cisplatin, and 
docetaxel, than those from cluster_A patients except 

temozolomide (Figure S4A). In view of LRGS, we 
found that afatinib and temozolomide presented less 
resistance in the high-risk group compared to the 
low-risk group (Figure 4A). Next, we visualized the 
correlation between the hub lactate genes and 
multiple drugs with P < 0.05 (Figure 4B). IPS values 
were calculated based on immunogenicity from the 
TCIA database. The outcome failed to depict the 
unambiguous relationship between diverse clusters 
and anti-PD-1/PD-L1 (Figure S4B). To further 
investigate the quantification of TME indicators for 
individual patients with HNSCC by the methods of 
ESTIMATE and CIBERSORT, while in comparison of 
cluster_A and B, we also failed to unravel the 
difference of immune landscape (Figure S5). 

 

 
Figure 1. The clinical features of lactate-related subtypes in HNSCC. (A) The heatmap displays the gene expression of lactate-related genes and the distribution of 
clinicopathological characteristics. (B) Kaplan-Meier curves of OS for cluster_A and cluster_B. (C) The box plot displayed the expression of lactate-related genes in normal and 
HNSCC samples. (D) The barplot indicated the relationship between diverse clusters and T, N, M, clinical stage, and mutation status of TP53, TTN, respectively. 



 Journal of Cancer 2025, Vol. 16 

 
https://www.jcancer.org 

1673 

Interestingly, LRGS was regarded as a novel and 
superior indicator of heterogeneity in the immune 
landscape compared to the previous clustering. First, 
we observed a negative association with LRGS and 
PDCD1, CTLA4 (Figure 4C). We then continuously 
displayed the relationship between hub lactate genes, 
immune cell types, and immune-related scores 
(Figure 4D). Furthermore, following the data from 
TCIA, we presented the potential of diverse risk 
groups to respond to anti-PD-1/PD-L1 (Figure 4E). 

Exploration of the innate mechanism of TME 
in HNSCC 

We identified up- and downregulated DEGs 
between the high- and low-risk groups (P < 0.05) 

(Figure 5A). Furthermore, we utilized the 
"c5.v7.4.symbols.gmt" database to reveal that multiple 
pathways, such as immune response activation, 
adaptive immune response, and positive regulation of 
immune response and immune system process were 
activated by the high LRGS group (Figure 5B). 
Besides, these DEGs participated in epidermal cell 
differentiation, extracellular matrix disassembly, 
epithelial cell differentiation, and glycosaminoglycan 
binding (Figure 5C). Moreover, we obtained the DEGs 
based on clutser_A and B (Figure S6A) and presented 
the main pathways involved in the diverse clusters 
(Figure S6B). In this study, we developed TILSig 
using a combination of 115 immune cell lines [32]. We 
downloaded the raw data from 16 GEO datasets and 

 

 
Figure 2. The genomics characteristics of lactate-related subtypes in HNSCC. (A) The PCA validated the clustering algorithm. (B) The difference of TMB in cluster_A and B. (C) 
The waterfall plot of top 30 mutated genes in HNSCC. (D) The amplification of CNA alterations between cluster_A and B showed significant differences (***P<0.001; **P<0.01; 
*P<0.05). (E) The difference in deletion of CNA between cluster_A and B (***P<0.001; **P<0.01; *P<0.05). (F) The location of important prognostic biomarkers. (G) The 
frequency of CNV, including gain and loss in cluster_A and B. 



 Journal of Cancer 2025, Vol. 16 

 
https://www.jcancer.org 

1674 

utilized DealGPL570 to calculate the expression 
profiles of 114 cell lines and 19 immune cells. Then, 
through the R package "Combat," we integrated and 
calibrated all the data above (Figure 5D). 
Subsequently, we identified nine important lncRNAs 
closely associated with tumor-infiltrating immune 
cells and calculated the TIL_score from these lncRNAs 
(Table S3). Then, we performed a KM analysis to 
evaluate the influence of the TIL_score on survival, 
and the result demonstrated that the survival time of 
the high-TIL group was shorter than that of the 
low-TIL group (Figure 5E). Furthermore, we plotted 
the association between lactate genes and 
tumor-infiltrating immune-related lncRNAs (Figure 
5F) and the correlations between these hub 
lactate-related genes and LRGS levels in human 
HNSCC cancer tissues (Figure 5G).  

Identification of the hub genes through 
multi-omics and pan-cancer analysis 

The IMvigor 210 database was used to analyze 
the immunotherapy response of these crucial 
lactate-related biomarkers. First, we performed 
LASSO regression to calculate the risk score, and KM 
analysis revealed a higher OS of the low-risk group in 
the IMvigor 210 database (P < 0.001) (Figure 6A). 
Moreover, the AUC values at 1-, 3-, and 5-years were 
0.665, 0.671, and 0.686, respectively (Figure 6B). The 
percentages of the four immunotherapy response 
types (SD, PR, PD, and CR) were different between 
the two risk groups (Figure 6C). The risk score was 
higher in the patients with PD/SD than in the patients 
with CR/PR (Figure 6D). These data indicated that 
the low-risk group responded better to 
immunotherapy. However, there was no relationship 
between the risk score and immunophenotypes, 
including desert, excluded, and inflamed (Figures 
6E-F). Consequently, we believe that essential 
lactate-regulating genes do not participate in 
regulating immune phenotypes but rather have their 
roles. Further screening is needed for regulatory 
genes closely related to prognosis and immunity. To 
validate the prognostic value of hub genes and LRGS, 
we first downloaded the raw data of GSE65858 and 
GSE41613 for OS. The KM plot implied that LRGS was 
a potential indicator for predicting OS in GSE65858 
(Figure 6G) and GSE41613 (Figure 6I). Furthermore, 
the ROC curve was generated successfully to validate 
the ability of the logistic model to predict prognosis in 
GSE65858 (Figure 6H) and GSE41613 (Figure 6J). 
Nine intersecting genes were revealed to act as hub 
genes in Venn plots, which are intimately related to 
OS (Table S4 and Figure 6K). The protein-protein 

interaction network of the nine hub genes was 
visualized using GeneMANIA (Figure 6L). Next, we 
obtained PFS data from GEO datasets GSE65858 and 
GSE27020. The Venn plot filtered three hub genes: 
CARS2, NFU1, and SYNJ1 (Table S4 and Figure 6M). 
Finally, we drew the KM plots to present the 
prognostic ability of hub genes based on the TCGA 
(Figure 6N), GSE65858 with OS (Figure S7A), 
GSE41613 with OS (Figure S7B), GSE27020 with PFS 
(Figure S7C), GSE65858 with PFS (Figure S7D) and 
IMvigor 210 (Figure S8A). However, we failed to 
observe a clear association between the three hub 
genes and immunotherapy response type (Figure 
S8B) or immunophenotype (Figure S8C). Meanwhile, 
TIMER data illustrated the association between three 
hub gene expression and immune cell infiltration in 
HNSCC (Figure 7A). Considering a comprehensive 
pan-cancer study, we analyzed the data for these 
three genes to detect the frequency of variants in each 
cancer subtype. As displayed in Figure 7B, mutation 
frequencies were quite high in multiple cancers, 
including skin cutaneous melanoma (SKCM) and 
uterine corpus endometrial carcinoma (UCEC) 
(Figure 7B). Next, we depicted the relationship 
between somatic CNAs and the expression of the 
three hub genes in pan-cancer analysis (Figure 7C). 
Finally, we presented forest plots to evaluate the 
prognostic roles of CARS2, NFU1, and SYNJ1 in 
multiple cancers (Figure 7D). 

CARS2 regulated lactate and promote 
proliferation, migration, and invasion  

First, we downloaded data from GSE24922, 
including oral squamous cell carcinoma cell lines 
before and after lactate treatment, which was also 
validated in HNSCC tissues through ChIP-qPCR and 
RT-qPCR. Interestingly, we found that CARS2 played 
a significant role in lactate regulation in in vitro and in 
vivo experiments (Table S5). Moreover, we analyzed 
the relationship between hub genes and important 
clinical factors in HNSCC. CARS2 is an independent 
prognostic biomarker that predicts OS and PFS, and 
SYNJ1 and NFU1 may be related to different N stages 
that influence clinical outcomes (Figure S9). Further 
analysis revealed that CARS2 knockdown decreased 
its expression in Cal27 and HN6 cells (Figure 8A). The 
CCK-8, EdU, colony formation, and transwell 
experiments presented that Cal27 and HN6 cell 
proliferation, migration, and invasion were inhibited 
by CARS2 knockdown (Figures 8B–E). These results 
demonstrate that CARS2 promotes proliferation, 
invasion, and proliferation. 
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Figure 3. Establishment of lactate-related consensus signature. (A) The Kaplan-Meier curves of OS for high or low LRGS based on the LASSO analysis (left). The ROC analysis 
of 1 year, 3 years, and 5 years (median). The ROC analysis of LRGS and clinical features (right). (B) The variable importance plot for RFS model based on cluster_A and cluster_B 
(left). The Kaplan-Meier curves of OS for high or low LRGS based on the RSF analysis (median). The ROC analysis of 1 year, 3 years, and 5 years (right). (C) The variable 
importance plot for RFS model based on survival status (left). The Kaplan-Meier curves of OS for high or low LRGS based on the RSF analysis (median). The ROC analysis of 1 
year, 3 years, and 5 years (right). (D) The possitive or negative interaction of lactate-related genes. (E) The univariate Cox analysis for clinical features and risk score. (F) The 
multivariate Cox analysis for clinical features and risk score. (G) The nomogram of risk model containing LRGS score and other clinicopathological features. (H) The ROC analysis 
of risk model from nomogram in 1 year, 3 years, and 5 years. (I) The calibration curve for validating the predictive efficacy of nomogram. 
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Figure 4. Evaluation the drug and PD1/PD-L1 sensitivity based on LRGS. (A) The drug sensitivity in low or high LRGS using the OncoPredict algorithm. (B) The correlation of 
hub lactate-related genes and drugs from OncoPredict. (C) The relationship between LRGS and PDCD1, CD274, CTLA4 and GZMA. (D) The correlation of hub lactate-related 
genes and immune cell types and immune-related scores from CIBERSORT and ESTIMATE. (E) The response to PD1/PD-L1 in high or low LRGS based on TCIA. 
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Figure 5. Innate mechanism exploration in HNSCC. (A) The volcano plot showing the DEGs based on LRGS. (B) The immune-related pathways from the GSEA enrichment 
analysis based on LRGS. (C) The main pathways from the GSEA enrichment analysis based on LRGS. (D) The raw PCA for GEO immune cell lines (left). The Combat PCA for 
GEO immune cell lines (right). (E) The Kaplan-Meier curves of OS for high or low TIL_score groups. (F) The association between tumor-infiltrating immune-related lncRNAs and 
lactate genes. (G) The innate correlation among lactate genes. 

 

Discussion 
A classical metabolic phenomenon known as 

aerobic glycolysis is intimately related to the rapid 
proliferation of cancer cells, characterized by a high 
lactate production rate from glucose despite the 
availability of oxygen for mitochondrial respiration 
[34]. Lactate accumulation is the first step in initiating 
aerobic glycolysis through four ways, including 
lactate exportion, shuttles, lactate homeostasis, and 
lactylation. In this study, we collected all genes 
related to lactate accumulation and calculated a 

lactate-related risk score, called LRGS, to unravel the 
association with clinical outcomes, such as OS and 
PFS, in patients with HNSCC. However, as 
demonstrated in our results, a single LRGS cannot 
perfectly predict the prognosis of HNSCC, and it does 
not have sufficient advantages over other models. 
This is because many specific subtypes of HNSCC are 
different from each other. Accordingly, our findings 
verify the role of LRGS in HNSCC, and further 
refinement is required. In this study, we also observed 
that LRGS can affect the efficiency of afatinib and 
temozolomide. Similar results have been reported for 
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other cancers. Our findings suggest sensitization to 
afatinib therapy by metformin in TKI-resistant lung 
cancer cells and a reduction in cellular glycolytic 
phenotype [35]. Furthermore, the glycolysis rate was 
accelerated by circKIF4A overexpression, which 
promoted glioma growth and temozolomide 
resistance [36].  

It is a long-standing paradigm in which tumor 
cells employ aerobic glycolysis, which constitutes a 
target for anti-proliferative chemotherapies. 

Furthermore, metabolism is the basis of imaging by 
positron emission tomography. However, the role of 
these approaches in clinical practice is negligible to 
date [37]. In 1985, the concept of intercellular lactate 
shuttling was proposed and systematically explained 
[38], which summarized the entire process of lactate 
transmembrane migration [39]. Lactate is rapidly 
produced and accumulates in muscle cells at the start 
of exercise, some of which enters tissues and is then 
internalized and oxidized by adjacent cells. 

 
 

 
Figure 6. Identification and verification of the hub genes and LRGS. (A) The Kaplan-Meier curves of OS for high or low risk score groups in IMvigor 210. (B) The ROC analysis 
of 1 year, 3 years, and 5 years in IMvigor 210. (C) The barplot indicated the distribution of overall responses in high or low risk score groups. (D) The box plot displayed the 
expression of risk score in diverse overall responses. (E) The barplot showed the distribution of immune phenotypes in high or low risk score groups. (F) The box plot presented 
the expression of risk score in diverse immune phenotypes. (G) The Kaplan-Meier curves of OS for high or low risk score groups in GSE65858. (H) The ROC analysis of 1 year, 
3 years, and 5 years in GSE65858. (I) The Kaplan-Meier curves of OS for high or low risk score groups in GSE41613. (J) The ROC analysis of 1 year, 3 years, and 5 years in 
GSE41613. (K) The Venn plot of prognostic LRGs of OS in TCGA, GSE65858 and GSE41613. (L) The Protein-protein interaction network of 9 hub genes from GeneMANIA. (M) 
The Venn plot of hub LRGs of OS in TCGA, prognostic LRGs of PFS in GSE65858 and LRGs of PFS in GSE27020. (N) The Kaplan-Meier curves of OS for CARS2, NFU1, and 
SYNJ1 in TCGA. 
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Figure 7. Assessment of the hub genes in pan-cancer analysis. (A) The association of expression of CARS2, NFU1, and SYNJ1 with immune cell infiltrations in HNSCC. (B) The 
correlation of variants frequency and the expression of CARS2, NFU1, and SYNJ in each cancer subtype. (C) The correlation of somatic copy number alterations and the 
expression of CARS2, NFU1, and SYNJ in each cancer subtype. (D) The univariate Cox regression of OS in CARS2 (left), NFU1 (median), and SYNJ1 (right) from the forest plot. 

 
In contrast, the remaining lactate enters the 

blood circulatory system, where it is a substrate for 
oxidative energy production and gluconeogenesis 
[40]. With advances in research, lactate shuttling in 
different cell populations to regulate TME is a new 
phenomenon. Inspired by the discovery of Kac, in 
2019, Zhang et al. first proposed histone K (L-la), a 
new type of PTM, to unravel a new for deeper 
dissection [41]. To date, the roles of lactylation in 

regulating several processes in cancer development 
have been documented. Yu et al. found that increased 
levels of histone lactylation (H3K18la) were associated 
with poor prognosis in melanoma [42]. Additionally, 
lactylation is intimately related to tumor-infiltrating 
immune cells. At the high levels of histone Kla, most 
TAM presented an M2 phenotype to contribute to the 
formation and progression of tumors [43].  
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Figure 8. The validation of behavior of CARS2 on HNSCC (A) qRT-PCR in Cal27 and HN6. The CCK-8 (B), EdU assay (C), colony formation assay (D), and transwell assay, 
including migration ability (E) and invasion ability (F). ***P<0.001. 

 
In our study, LRGS was verified as a novel and 

superior indicator for explaining the heterogeneity in 
the immune landscape compared to other clustering 
methods based on lactate metabolism. We observed 
the remarkably negative association between LRGS 
and PDCD1 and CTLA4 and unraveled the 
relationship with significant immune cell types, such 

as CD8+ T cells, CD4+ T cells, macrophages M1 and 
M2. Previous literature has validated that lactic acid 
suppresses inflammatory macrophage (M1) function. 
Contrarily, it also enhances regulatory, or 
anti-inflammatory, M2 polarization [44,45]. A 
mechanistic link between lactate, CD8+ T cell 
stemness, and improved cancer immunotherapy 
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outcomes has been reported. In a prostate cancer 
model, lactate released by glycolytic CAFs acts on 
CD4+ T cells, shaping T-cell polarization and 
sustaining cancer malignancy [46]. Therefore, lactate 
accumulation may lead to an abnormal distribution of 
immune cells, thereby altering the TME. For this 
reason, this study used TILSig to effectively analyze 
the immune microenvironment based on the TCGA 
public dataset. It is recognized that TILSig is a 
common algorithm that integrates a large amount of 
public database data from and verification of vitro 
experiments. Using this algorithm, we screened 
representative genes related to immunotherapy in 
HNSCC, evaluated the relationship between lactation 
genes and the genes above, and selected highly 
related HUB genes for follow-up research.  

Through multi-omics and pan-cancer analyses, 
CARS2, NFU1, and SYNJ1 were identified as hub 
genes to construct LRGS and regulate the 
lactate-related TME in HNSCC. CARS2, also known 
as cysteinyl-tRNA synthetase 2, is a putative member 
of the class I family of aminoacyl-tRNA synthetases. 
Reportedly, CARS2 may produce cysteine persulfide 
(Cys-SSH) and maintain a stable level in vitro, thus 
stimulating mitochondrial ETC [47]. Intriguingly, 
CARS2 mutation has exhibited neurological 
regression and mitochondrial dysfunction in epileptic 
encephalopathy [48]. However, few studies have 
focused on the role of CARS2 in cancer development. 
In pan-cancer analysis, CARS2 acted as an oncogene 
in HNSCC, kidney renal clear cell carcinoma, liver 
hepatocellular carcinoma, and SKCM. In contrast, it 
was regarded as a suppressor gene in UCEC and 
uveal melanoma. NFU1, an iron-sulfur cluster 
scaffold, encodes a protein localized to the 
mitochondria and is critical in iron-sulfur cluster 
biogenesis. The abnormal function of NFU1 often 
causes a larger amount of mitochondrial dysfunction 
syndrome-1 [49]. According to a genome-wide 
CRISPR-Cas9 cell viability screen under physiological 
and acidic conditions, some researchers have 
systematically identified the important NFU1 gene 
associated with pH-related fitness defects in colorectal 
cancer cells [50]. Moreover, the effect of different pH 
values, particularly at pH 5.2, may result in lactate 
accumulation [51]. Consequently, we hypothesized 
that NFU1 participates in the mediation of pH 
concentration to regulate lactate accumulation, 
thereby interfering with HNSCC development. 
Synaptojanin 1 (SYNJ1) is a protein-coding gene 
related to developmental and epileptic 
encephalopathy and Parkinson's disease. In 
triple-negative breast cancer, mechanistic 
investigations demonstrated that LINC01234 might 
act as a competing endogenous RNA for miR-429 to 

upregulate SYNJ1 expression to induce cell 
proliferation and migration and impair cell apoptosis 
[52]. However, no previous studies have focused on 
these hub genes in HNSCC.  

This study has many shortcomings, including 
the lack of external verification of the model's 
reliability and stability. Second, basic in vitro and in 
vivo experiments are crucial for verifying many 
hypotheses. In this study, we comprehensively 
investigated LRG in the context of clinical 
characteristics and immune infiltration landscape in 
patients with HNSCC, guiding clinicians in proposing 
therapeutic strategies. Prospective research is 
essential to evaluate the clinical utility of the signature 
in patients with HNSCC. 
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