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Abstract 

Background: Thyroid cancer (TC) ranks among the most common malignancies globally, with an increasing 
incidence among younger populations. While papillary thyroid carcinoma (PTC) generally has a favorable 
prognosis, other forms of TC, such as anaplastic thyroid carcinoma (ATC), are associated with poor outcomes. 
Although specific mutations, such as BRAFV600E, have been identified in certain types of TC, the underlying 
mechanisms remain largely unclear. Therefore, there is a critical need to further explore therapeutic targets 
associated with malignant tumors to improve treatment outcomes. 
Method: We integrated eQTL data from European populations with RNA-Seq data from TC patients obtained 
from TCGA and multiple GEO databases. Through differential expression analysis, WGCNA, and Mendelian 
randomization (MR) analysis, we sought to identify potential gene therapy targets in TC. Additionally, we 
explored the biological behaviors of these targets using various cellular biology assays, such as MTT, colony 
formation, wound healing, and Transwell assays. Molecular biology techniques, including Western blot, were 
employed to investigate the underlying mechanisms. 
Result: Differential expression analysis across six GEO datasets identified 649 genes associated with TC. 
Subsequent WGCNA analysis of the GSE6339 dataset revealed 2,739 genes, and MR analysis further identified 
189 genes. The intersection of these datasets highlighted four key genes: TIAM1, RAP1GAP, GPX3, and JUN. 
GO analysis linked these genes to "response to oxidative stress" and "regulation of GTPase activity". KEGG 
pathway analysis demonstrated significant enrichment in pathways including "Glutathione metabolism", "cAMP 
signaling pathway", "Rap1 signaling pathway", "Tight junction", and "Thyroid hormone synthesis". Further, 
single-gene GSEA analyses suggested distinct pathways through which each gene may influence TC progression. 
Immune profiling revealed marked differences in immune cell populations, notably CD8+ T cells, monocytic 
lineage cells, neutrophils, NK cells, and T cells, between normal and cancerous thyroid tissues. Notably, 
RAP1GAP, GPX3, and JUN were implicated in the regulation of Treg and follicular helper T cell functions. The 
differential expression of these genes was rigorously validated using TCGA dataset and six additional GEO 
datasets. While the tumor-suppressive roles of TIAM1 and RAP1GAP have been previously established, our 
findings reveal that the overexpression of GPX3 and JUN significantly impairs the proliferative and migratory 
capacities of TC cells, underscoring their potential as therapeutic targets. 
Conclusion: This study identifies GPX3 and JUN as critical tumor suppressor genes in TC, with their function 
closely linked to T regulatory cells and follicular helper T cells. The overexpression of GPX3 and JUN 
demonstrates significant tumor-suppressive activity, highlighting their potential as effective therapeutic targets 
in combating TC. 
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Introduction 
According to the Global Cancer Statistics 2020, 

TC is the ninth most common malignancy worldwide, 
with its incidence continuing to rise [1]. 
Approximately 44,000 individuals are diagnosed with 
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TC in the United States each year [2]. Differentiated 
thyroid cancer (DTC) is the most prevalent subtype, 
and the current treatment strategies include surgery, 
selective radioactive iodine (RAI) therapy, and 
thyroid-stimulating hormone (TSH) suppression [3]. 
Although these treatments are effective for most 
patients, anaplastic thyroid cancer (ATC) remains 
extremely aggressive and one of the deadliest 
malignancies, with cancer-specific mortality rates 
ranging from 98% to 99% [4]. Additionally, TC is the 
most frequently diagnosed cancer in people between 
the ages of 15 and 29 [1]. Given these challenges, there 
is an urgent need to understand the mechanisms 
underlying TC development and progression to 
facilitate the development of novel early diagnostic 
tools, monitoring strategies, and targeted therapies. 

GPX3 encodes a protein that is part of the 
glutathione peroxidase family, which plays a role in 
protecting cells from oxidative damage [5]. Recent 
studies have revealed that promoter 
hypermethylation leads to the downregulation of 
GPX3 expression in a variety of human malignancies, 
such as bladder cancer [6]. lung cancer [7], and 
hepatocellular carcinoma [8]. However, the precise 
mechanisms remain unclear. In ovarian cancer, GPX3 
has been reported to support cancer progression by 
modulating the extracellular redox environment [9]. 
GPX3, in prostate cancer, this gene is either deleted or 
methylated, leading to the suppression of tumor 
growth and metastasis [10]. Despite these findings, 
the biological role of GPX3 in TC has yet to be fully 
explored. 

JUN is a gene that encodes a protein associated 
with diseases such as various malignant tumors 
[11-14]. the AP-1/c-Jun~Fra-2 dimer drives 

c-Myc-induced hepatocarcinogenesis [13]. JUN is 
involved in pathways like Toll-like receptor 3 (TLR3) 
signaling and prolactin signaling and plays a role in 
transcriptional activation of USP28 in colorectal 
cancer [15]. However, the potential functions of JUN 
in TC have not yet been explored. 

Mendelian randomization (MR) is a statistical 
method that uses genetic variants as instrumental 
variables to assess causal relationships between 
exposures and disease outcomes [16]. Since genetic 
variants are randomly assigned at conception, they 
are generally independent of environmental and other 
confounding factors [17]. This reduces the influence of 
confounders and allows for a clearer understanding of 
potential causal relationships, rather than mere 
associations [18]. WGCNA (Weighted Gene 
Co-expression Network Analysis) is a powerful tool 
used to construct gene co-expression networks and 
identify modules of highly correlated genes. By 
applying various biological methodologies, we can 
more accurately and comprehensively investigate the 
factors involved in TC, providing valuable insights for 
the identification of precise gene targets for future 
therapeutic interventions. 

Materials and Methods 
Study design 

This study is a comprehensive bioinformatics 
analysis complemented by experimental validation in 
cellular models. The primary objective is to evaluate 
multiple gene expression datasets and identify 
biomarkers associated with TC. The general workflow 
is illustrated in the Figure 1. 

 

 
Figure 1. Flow chart of the study. Identification and experimental validation of genes associated with the occurrence and progression of TC using differential expression 
analysis, WGCNA, and MR approaches. 
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Data sources and preprocessing 
We obtained seven TC datasets (GSE6339 [19], 

GSE27155 [20, 21], GSE33630 [22, 23], GSE35570 [24], 
GSE50901 [25, 26], GSE60542 [27]) from the Gene 
Expression Omnibus (GEO) database as the training 
set, and selected six additional datasets (GSE3467 [28], 
GSE3678 [29], GSE9115 [30], GSE65144 [31], 
GSE104005 [32], GSE129562 [33]) as the validation set. 
Detailed information regarding these datasets can be 
found in Supplementary Table 1. Inclusion Criteria: 
Patients who have been pathologically diagnosed 
with thyroid cancer; Patients must have complete 
genomic data available; participants must provide 
written informed consent to participate in the study 
and to allow the use of their data for analysis. 
Exclusion Criteria: Patients who are clinically 
unassessable; Genomic data that are incomplete, 
missing, or duplicated. Initially, we utilized the 
'Combat' function in the "sva" package in R to 
eliminate batch effects., and combined the six datasets 
using the "sva" function. Additionally, RNA-Seq data 
from normal individuals and tumor patients 
(TCGA-THCA) obtained from The Cancer Genome 
Atlas (TCGA) were included as a validation set. The 
clinical characteristics of thyroid cancer, derived from 
the TCGA database, are presented in Supplementary 
Table 2. All the data were log2-transformed and 
missing values were excluded. 

Identification of DEGs between normal and 
tumor tissues in TC 

We employed the "limma" package in R to 
identify differentially expressed genes (DEGs) in the 
GEO expression datasets, using |log2FC(fold 
change)| > 0.585 and adjusted p-value < 0.05. Next, 
WGCNA was conducted on the GSE6339 dataset, 
which is a method for data reduction and 
unsupervised classification. The co-expression 
network was constructed using the 'WGCNA' 
package in R with the merged matrix expression 
profiles. The parameters for network construction 
were set as follows: MEDissThres = 0.25, 
minModuleSize = 60, corType = "Pearson". Key genes 
associated with clinical traits were identified within 
each co-expression module. Following gene 
clustering, a heatmap was generated to illustrate the 
correlation between modules and phenotypes. 

For MR analysis, expression quantitative trait 
loci (eQTL) data were obtained from the IEU 
OpenGWAS project (https://gwas.mrcieu.ac.uk/), which 
contains 19,942 genes. MR was conducted using the 
"TwoSampleMR" package in R, with conditions set as 
follows: p1 = 5e-08, p2 = 5e-08, clump = T, kb = 10000, 
R2 = 0.001. We further calculated R2 and F-statistics, 

filtering data based on an F-value > 10 to remove 
weak instruments. Outcome data for TC were 
retrieved from the GWAS summary database 
(Thyroid Cancer GWAS ID: ebi-a-GCST90018929) in 
the IEU OpenGWAS project, which includes 1,054 TC 
cases and 490,920 controls, encompassing 24,198,226 
SNPs [34]. Mendelian randomization analysis was 
performed, followed by heterogeneity analysis, 
pleiotropy tests, and leave-one-out analysis. Genes 
whose eQTLs were considered potential DEGs if they 
met the following criteria: consistent odds ratio (OR) 
direction across five methods, IVW p-value < 0.05, and 
pleiotropy p-value > 0.05. Genes that were 
consistently upregulated or downregulated across the 
three methods of differential expression analysis, 
WGCNA, and MR analysis were considered as DEGs. 

GO and KEGG analysis 
The "clusterProfiler" package was utilized for 

Gene Ontology (GO) and KEGG analysis, which were 
considered statistically significant with a p-value < 
0.05 and a false discovery rate (FDR) < 0.05. 

Gene Set Enrichment Analysis (GSEA) 
GSEA was employed to estimate pathway 

alterations and cancer-related changes in gene 
expression datasets. This computational method was 
applied to GEO-TC merge patient gene expression 
data, where samples were grouped into high and low 
expression groups based on the median expression 
values. GSEA was performed using the gene sets 
"c5.go.symbols.gmt" and 
"c2.cp.kegg.Hs.symbols.gmt". 

Immune analysis 
The CIBERSORT algorithm was applied to 

estimate the infiltration levels of 22 immune cell types 
based on the gene expression profiles of GEO-TC 
merge patients. Only results with a p-value < 0.05 
were considered significant, and the infiltration levels 
were visualized using bar plots and boxplots. 
Correlations between the expression levels of the four 
genes and immune cell infiltration were assessed 
using R software. 

Tumor microenvironment analysis 
The tumor samples were scored using the 

"estimate" package in R to obtain StromalScore, 
ImmuneScore, ESTIMATEScore, and TumorPurity 
values, followed by a differential analysis of the 
tumor microenvironment between normal and tumor 
samples. Immune cell infiltration was further 
analyzed using the "MCPcounter" R package, and 
heatmaps were generated to visualize differences in 
immune cell infiltration between normal and tumor 
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tissues. 

Cell lines 
The human TC cell lines CAL-62 and KHM-5M 

were obtained from Lisang Bio (Chongqing, China). 
CAL-62 cells were cultured in DMEM (HyClone), and 
KHM-5M cells were cultured in RPMI-1640 (Gibco). 
All the aforementioned cell lines were maintained in 
medium supplemented with 10% fetal bovine serum 
(FBS) (ExcellBio, FSP500) and were authenticated via 
short tandem repeat (STR) assays. None of the cell 
lines showed any mycoplasma contamination. 

Cell transfection 
Plasmids for GPX3 and JUN were purchased 

from Miaoling Bio (Wuhan, China) and transfected 
into CAL-62 and KHM-5M cells using Lipofectamine 
3000 (Invitrogen; Waltham, MA, USA) according to 
the manufacturer's recommended protocol. The 
transfection was carried out in serum-free medium, 
and after 6 hrs, the medium was containing 10% FBS. 
Cells were then incubated for an additional 24-48 hrs 
before being harvested for subsequent experiments. 

MTT assay 
Following transfection, 3 × 10³ TC cells were 

seeded into 96-well plates and cultured for five days. 
After 48 hrs, 20 μL of MTT solution was added to each 
well and incubated for 4 hrs. The resulting formazan 
crystals were dissolved in 200 μL of DMSO, and 
absorbance was measured using a spectrophotometer. 

Clonogenic assay 
Approximately 1000 cells from each group were 

seeded into six-well plates. After 9–12 days of 
incubation, the cells were fixed and subsequently 
stained for analysis. 

Transwell assay 
Cells from different experimental groups were 

seeded at a density of 2–10 × 10⁴ cells/200 μL into the 
upper chambers of a 24–well Transwell plate, which 
contained a polycarbonate membrane with 
appropriate pore size (Corning). After an incubation 
period of 16–24 hrs, the cells that had migrated 
through the pores to the lower surface of the 
membrane were fixed to maintain their structure. 
These cells were then stained to facilitate visualization 
and counting. 

Wound healing assay 
Cells from different experimental groups were 

seeded into six-well plates and allowed to grow until 
they reached full confluence. Once the cell monolayer 
was 100% confluent, a straight scratch was carefully 

made through the cell layer using a pipette tip to 
simulate a wound. The cells were then cultivated in a 
medium without FBS for 0 or 16–20 hrs to prevent cell 
proliferation during the assay. The wound area was 
photographed at the beginning (0 hr) and after the 
incubation period (16–20 hrs) using a microscope to 
monitor the migration of cells into the scratched area. 

Western blot 
The procedure followed established protocols. 

Cells were lysed on ice for 30 mins in a buffer 
containing RIPA, phosphatase inhibitors, and 
protease inhibitors. After high-speed centrifugation, 
the supernatant was gathered. Protein samples were 
separated by SDS-PAGE and then transferred onto 
PVDF membranes. The membranes were blocked 
using 5% skim milk in TBST buffer and subsequently 
incubated with primary and secondary antibodies. 
Protein detection was carried out using the Imaging 
System. The primary and secondary antibodies 
utilized are detailed in Supplementary Table 3, with 
GAPDH serving as the only internal control. 

Human tissue samples 
The tissue microarray (TMA) consisted of 120 

diagnosed thyroid cancer patients, including 58 cases 
of cancer and adjacent tissues, as well as 4 normal 
thyroid tissues. Immunohistochemical (IHC) staining 
was performed using an anti-GPX3 antibody. The 
analysis process did not take into account clinical 
outcomes, clinical characteristics, or pathological 
staging. Tissue section scanning and imaging were 
performed using a slide scanner. Positive scoring was 
conducted using the Densito quantification module in 
the Quant Center 2.3 analysis software: negative was 
scored as "0", weak positive as light yellow ("1"), 
moderate positive as light yellow ("2"), and strong 
positive as brown ("3"). The number of weak, 
moderate, and strong positive cells, as well as the total 
number of cells, were counted in the measured region. 
The positive cell percentage and the final positive 
score per point were calculated as follows: percentage: 
1 < 25%, 2 = 25-50%, 3 = 50-75%, 4 > 75%. The staining 
signal of tumor cells was quantified using a 0 to 12 
scoring system. The final score was obtained by 
multiplying the positivity level by the percentage of 
positive cells. Low and high expression were defined 
as scores < the average and ≥ the average, 
respectively. 

Statistical analysis 
The data were analyzed using GraphPad Prism 9 

and are presented as the mean ± standard deviation 
(SD). An unpaired two-tailed Student’s t-test, 
one-way ANOVA, and two-way ANOVA were 
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employed. Chi-square test was used to analyze the 
association between clinical characteristics and gene 
expression levels in high and low groups. The p-value 
< 0.05 was deemed statistically significant. 

Results 
Identification of DEGs 

To identify key molecules potentially involved in 
the progression of TC, we conducted differential 
expression analysis on six datasets (GSE27155, 
GSE29315, GSE33630, GSE35570, GSE50901, 
GSE60542) obtained from the GEO database. The data 
were log2-transformed and batch effects were 
removed using the sva package. PCA demonstrated 
that the batch effects had been effectively mitigated in 
the corrected data (Figure 2A-B), and heatmaps (top 
50; Figure 2C) and volcano plots (Figure 2D) were 
generated. This analysis identified 369 upregulated 
and 280 downregulated DEGs. 

Identification of TC-related module via 
WGCNA network 

To investigate the relationship between potential 
gene modules and TC, we performed WGCNA on the 
TC dataset (GSE6339) (Figure 3A). Through this 
analysis, we identified four distinct modules (Figure 
3B). Subsequently, by examining the positive 
correlation coefficients, the black module showed the 
strongest correlation with cancer versus normal status 
(p = 0.004, R² = 0.22). Therefore, the black module was 
selected as the focus of this study. Further analysis 
revealed that the black module contained a total of 
2739 genes (Figure 3C), with 1526 genes being 
upregulated and 1213 genes downregulated. 

Identification of risk genes associated with TC 
by MR analysis 

To identify eQTLs associated with TC, we 
downloaded the eQTL data and performed 
preprocessing steps to ensure data quality. After 
clumping, 5,428 genes were retained for MR analysis. 
Using the IVW method, we applied three selection 
criteria: concordant odds ratio (OR) values across five 
MR methods, heterogeneity p-value > 0.05, and other 
relevant parameters. Through this rigorous filtering 
process, we identified 189 genes with significant 
genetic associations with TC. Specifically, increased 
expression of 83 genes was significantly associated 
with higher TC risk, whereas increased expression of 
106 genes was significantly associated with reduced 
TC risk. By integrating the results from the three 
aforementioned analyses (Figure 4A) and taking their 
intersection, we identified four key DEGs: TIAM1, 
RAP1GAP, JUN, and GPX3. Among these, three genes 

(RAP1GAP, JUN, GPX3) were downregulated, while 
TIAM1 was upregulated. This process culminated in 
the creation of forest plots summarizing the results 
from the five MR analysis methods (Figure 4B).  

Next, we conducted a detailed MR analysis to 
visualize the causal effects between genetic variants 
associated with GPX3 (Supplementary Figure 1A,E), 
JUN (Supplementary Figure 1B,F), RAP1GAP 
(Supplementary Figure 1C,G), and TIAM1 
(Supplementary Figure 1D,H) and TC. We assessed 
the causal relationships between GPX3, JUN, 
RAP1GAP, TIAM1, and TC. Using the IVW method, 
we identified significant associations between GPX3 
and TC risk with an OR of 0.848 (95% CI 0.721−0.998, 
p = 0.047), JUN and TC risk with an OR of 0.795 (95% 
CI 0.653—0.967, p = 0.022), RAP1GAP and TC risk 
with an OR of 0.895 (95% CI 0.810—0.989, p = 0.029), 
and TIAM1 and TC risk with an OR of 1.270 (95% CI 
1.001—1.611, p = 0.049). MR-Egger tests indicated no 
heterogeneity in the analyses for GPX3 (p = 0.989, 
Supplementary Figure 1I), JUN (p = 0.235, 
Supplementary Figure 1J), RAP1GAP (p = 0.470, 
Supplementary Figure 1K), and TIAM1 (p = 0.103, 
Supplementary Figure 1L). The MR-Egger regression 
intercepts, which assess pleiotropy, showed no 
evidence of pleiotropy for GPX3 (p = 0.890), JUN (p = 
0.081), RAP1GAP (p = 0.550), and TIAM1 (p = 0.809), 
further supporting the robustness of our results. The 
leave-one-out sensitivity analysis revealed no 
significant impact of any single SNP on the outcomes, 
confirming the reliability of the causal effect estimates 
(Supplementary Figure 1M-P). 

GO and KEGG analysis 
To further explore the hypothesized cellular 

functions and pathways associated with normal 
thyroid tissue and TC, GO and KEGG analyses were 
conducted on the four identified genes. First, GO and 
KEGG analysis was visualized through bar graphs 
(Figure 5A,B) and bubble charts (Figure 5C,D). The 
Biological Process (BP) analysis revealed enrichment 
in terms such as "regulation of modification of 
synaptic structure", "positive regulation of glial cell 
migration", and "regulation of microvillus 
organization". KEGG pathway analysis highlighted 
the top five enriched pathways: "Tight junction", 
"Sulfur metabolism", "Rap1 signaling pathway", 
"AMP signaling pathway", and "Selenocompound 
metabolism". 

Gene Set Enrichment Analysis (GSEA) 
GSEA was employed to uncover the distinct 

molecular functions associated with high and low risk 
of individual genes in TC. For high-risk GPX3 
expression, the top enriched Gene Ontology 
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Biological Processes were several metabolic processes, 
and "Oxidoreductase Activity" (Figure 6A). 
Conversely, low-risk GPX3 expression was 
significantly enriched in several immune response 
pathways (Figure 6B). For TIAM1, the high-risk group 
was significantly related to "cell junction 
organization", "positive regulation of locomotion", 
and "response to wounding" (Figure 6C). Conversely, 
the low-risk group showed enrichment in "aerobic 
respiration" and "cellular respiration" (Figure 6D). For 
JUN, the high-risk group was enriched in 
development processes of muscle organ, structure, 
and tissue (Figure 6E), while the low-risk group was 
enriched in "adaptive immune response", "cell 
killing", and "leukocyte-mediated immunity" (Figure 
6F). Regarding RAP1GAP, the high-risk group 
demonstrated enrichment in catabolic proces of 
organic acid and small molecule (Figure 6G), while 
the low-risk group was enriched in "adaptive immune 
response", "granulocyte migration", and "neutrophil 
chemotaxis" (Figure 6H). 

Additionally, we performed single-gene GSEA 
analysis based on KEGG pathways. The results 
indicated that the high-risk TIAM1 group was 
associated with processes such as "cell molecules 
(CAMs)", "complement and coagulation casc", 
"ECM-receptor interaction", and "focal adhesion" 
(Supplementary Figure 2A). In the low-risk group 
was linked to "fatty acid metabolism" and "oxidative 
phosphorylation" (Supplementary Figure 2B). For 
JUN, the high-risk group was enriched in the 
"Hedgehog signaling pathway", "selenium amino acid 
metabolism", "TGF-beta signaling pathway", and 
"tyrosine metabolism" (Supplementary Figure 2C), 
whereas the low-risk group was enriched in "allograft 
rejection" and "systemic lupus erythematosus" 
(Supplementary Figure 2D). The high-risk RAP1GAP 
group was associated with metabolism of butanoate, 
fatty acid, glycine, serine, and threonine 
(Supplementary Figure 2E). On the other hand, the 
low-risk group was enriched in pathways such as 
"allograft rejection" and "systemic lupus 

 

 
Figure 2. Differential expression analysis of TC and normal thyroid tissue across six datasets. (A) PCA before batch correction. (B) PCA after batch correction. (C) 
Volcano plot of differential expression analysis from the merged six datasets. (D) Heatmap of the top 50 DEGs in the merged datasets. Blue denotes downregulated genes, red 
signifies upregulated genes, and gray indicates genes with no significant change. 
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erythematosus" (Supplementary Figure 2F). For 
GPX3, the high-risk group showed significant 
enrichment in several amino acid metabolism and 
degradation pathways, including "arginine and 
proline metabolism", "butanoate metabolism", 
"Hedgehog signaling pathway", and "tyrosine 
metabolism" (Supplementary Figure 2G). In contrast, 
the low-risk group was associated with 
endocrine-related diseases, such as systemic lupus 
erythematosus and diabetes mellitus (Supplementary 
Figure 2H). 

These findings indicate that each gene plays a 
distinct role in the biological pathways implicated in 

the development and progression of TC. For instance, 
high GPX3 expression is linked to metabolic and 
detoxification processes, suggesting a role in cellular 
redox balance and metabolism. In contrast, low GPX3 
expression is associated with immune response 
pathways, highlighting its potential involvement in 
immune evasion or modulation within the tumor 
microenvironment. These insights provide a deeper 
understanding of the molecular mechanisms by 
which these genes may contribute to TC pathology 
and offer potential avenues for targeted therapeutic 
strategies. 

 

 
Figure 3. Identification of TC-related gene modules using WGCNA in the GSE6339 Dataset. (A) Dendrogram of all genes in the GSE6339 dataset, clustered based 
on the Topological Overlap Matrix (1-TOM). Each branch of the dendrogram represents a gene, and the co-expression modules are indicated by different colors. (B) Module-trait 
heatmap showing the correlation between clustered gene modules and TC in the GSE6339 dataset. Each module includes the corresponding correlation coefficient and p-value. 
(C) Scatter plot of the module eigengene from the black module, showing the strongest positive correlation with TC in the GSE6339 dataset. 
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Figure 4. Identification of four overlapping genes using three analytical methods. (A) Venn diagram revealing four overlapping candidate genes, with one gene 
upregulated and three downregulated. (B) MR analysis shows that GPX3, JUN, and RAP1GAP offer protective effects against TC, while TIAM1 has an adverse influence on TC. 

 

Immune infiltration analysis 
We employed the MCPcounter algorithm to 

assess immune infiltration in both tumor-adjacent 
tissues and TC across six GSE datasets. The analysis 
revealed that, compared to TC tissues, the adjacent 
normal tissues exhibited higher proportions of "Mast 
cells resting", "Mast cells activated", "Eosinophils", 
and "Neutrophils". Conversely, the proportions of "B 
cells naive", "B cells memory", and "Plasma cells" were 
lower in the adjacent tissues relative to TC (Figure 
7A). Regrettably, under this algorithm, we did not 
observe any significant differences among the 22 
types of immune cells between adjacent 
non-cancerous tissues and tumor tissues (Figure 7B). 
Further analysis integrating the expression of four key 
genes highlighted potential immune-related 
mechanisms through which these genes may 
contribute to TC progression. TIAM1 gene may 
influence TC progression by modulating the activity 
of "Dendritic cells resting" and "Mast cells resting". 
RAP1GAP gene appears to positively regulate TC 
progression by affecting "B cells naive", "T cells CD8", 

"T cells follicular helper", and "T cells regulatory". 
Additionally, it may negatively influence TC by 
affecting "T cells CD4 memory activated", "T cells 
gamma delta", "Dendritic cells resting", and 
"Neutrophils". JUN gene may contribute positively to 
TC progression through its impact on "B cells naive", 
"T cells follicular helper", and "Mast cells activated", 
while inversely affecting "Mast cells resting". GPX3 
gene seems to play a role in TC by influencing "T cells 
follicular helper", "T cells regulatory", and 
"Macrophages M0". "Neutrophils" are the primary 
immune cells negatively regulated by GPX3 (Figure 
7C). In summary, these findings suggest that the 
identified genes might exert their effects on TC by 
modulating specific immune cell populations, 
particularly "T cells regulatory" and "T cells follicular 
helper". To assess the immune cell infiltration patterns 
in TC patients, we applied the "estimate" function to 
score all adjacent normal and cancerous samples, 
obtaining StromalScore, ImmuneScore, and 
ESTIMATEScore. Notably, the ImmuneScore differed 
between adjacent normal tissues and cancerous 
tissues (Figure 7D). Further analysis using the 
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"MCPcounter" package quantified the abundance of 
various immune cell types. The results revealed 
significant differences in the abundance of CD8 T 
cells, monocytic lineage cells, myeloid dendritic cells, 
neutrophils, NK cells, and T cells between adjacent 
normal and cancerous tissues. Specifically, with the 
exception of neutrophils, which were scored lower in 
adjacent normal tissues, the other cell types were 
likely more abundant in the adjacent normal tissues 
than in the cancerous tissues (Figure 7E). 
Subsequently, we utilized a heatmap to illustrate the 
differences in three scoring metrics and 10 types of 
cells between adjacent non-cancerous tissues and 
cancerous tissues (Figure 7F). This finding suggests 
that the depletion of immune cells, which play a 
crucial role in the anti-tumor response, may be an 
important factor in promoting cancer development 
and progression in TC. 

External dataset validation 
To further validate the expression patterns of the 

four identified genes, we conducted an analysis using 
6 GEO datasets (GSE3678, GSE9115, GSE129562, 
GSE3467, GSE104005, and GSE65144), as well as data 
from TCGA. The results showed consistent expression 
trends across these datasets (Figure 8A-G). For 
TIAM1, all seven datasets indicated higher expression 
in cancerous tissues compared to normal tissues, 
although one dataset did not reach statistical 
significance. In the case of RAP1GAP, all seven 
datasets consistently demonstrated lower expression 
in cancerous tissues, with all results being statistically 
significant. For JUN, the seven datasets showed lower 
expression in cancerous tissues, though two of the 
datasets did not achieve statistical significance. 
Similarly, GPX3 was found to have lower expression 
in cancerous tissues across all seven datasets, with one 

 

 
Figure 5. Validation of candidate genes. (A, B) Bubble plot and bar chart of the GO enrichment analysis for the candidate hub genes, respectively. (C, D) Bubble plot and 
bar chart of the KEGG pathway analysis for the candidate hub genes, respectively. 
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dataset lacking statistical significance. Overall, the 
seven datasets corroborated the differential 
expression of these four genes, consistently reflecting 
differences in expression levels across all datasets. 

This suggests that TIAM1 may function as an 
oncogene, while RAP1GAP, JUN, and GPX3 might act 
as tumor suppressors. However, further experimental 
validation is required to confirm these roles.  

 

 
Figure 6. Single-gene GSEA analysis for each of the four candidate genes using "c5.go.symbols.gmt" gene sets. (A, B) Top five enriched GO terms for high- and 
low-risk groups in GPX3. (C, D) Top enriched GO terms for high- and low-risk groups in TIAM1. (E, F) Top five enriched GO terms for high- and low-risk groups in JUN. (G, 
H) Top five enriched GO terms for high- and low-risk groups in RAP1GAP. 
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Figure 7. The relationship between the four genes and immune infiltration in TC using different algorithms. (A) Proportion of immune cell infiltration across 
different samples. (B) Differences in immune cell infiltration between TC tissues and normal tissues. (C) Correlation analysis between the four genes and 22 types of immune cells 
in TC. (D) Comparison of stromal score, immune score, and overall ESTIMATE score between TC and adjacent non-cancerous tissues. (E) Differences in 10 types of immune cells 
between TC and adjacent non-cancerous tissues, as determined by the MCPcounter algorithm. (F) Heatmap showing the levels of 10 immune cell types in each sample. 

 
To further validate our findings, we performed 

immunohistochemical staining for GPX3 on 58 paired 
thyroid cancer (TC) and adjacent normal tissue 
samples, followed by scoring (Figure 8H-I). 
Compared to adjacent normal tissues, GPX3 
expression was significantly lower in the clinical 

thyroid cancer samples. Additionally, survival 
analysis using TCGA prognostic data revealed that 
low expression of JUN was significantly associated 
with disease-free survival (DFS) in thyroid cancer 
patients (P = 0.0058) (Figure 8J-K). Although GPX3 
expression did not reach statistical significance in 
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relation to overall survival (OS) or DFS, a noticeable 
difference in OS was observed between patients with 
high and low GPX3 expression. Furthermore, by 
stratifying GPX3 and JUN into high and low 
expression groups based on the median, clinical 
characteristic analysis revealed a significant 

correlation between the expression levels of GPX3 and 
pathologic stage, stage T, and stage N. These findings 
suggest that GPX3 may serve as a potential predictor 
for the staging and lymph node metastasis of thyroid 
cancer. 

 

 
Figure 8. External validation of the identified four genes across multiple datasets. (A-G) Expression differences of GPX3, JUN, TIAM1, and RAP1GAP between 
normal tissues and TC tissues in the following datasets: TCGA (A), GSE3678 (B), GSE9115 (C), GSE129562 (D), GSE3467 (E), GSE104005 (F), and GSE65144 (G). (H) and (I) 
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indicate that immunohistochemical staining images showing the expression levels of GPX3 in cancerous and adjacent normal tissues from 58 TC patients, with corresponding 
expression scores, scale bars: 0.5 mm, 100 μm (enlarged). (J) Survival analysis was performed to assess the relationship between GPX3 expression levels and overall survival (OS) 
as well as disease-free survival (DFS) in thyroid cancer prognosis. (K) Survival analysis was conducted to evaluate the association between JUN expression levels and OS and DFS 
in thyroid cancer prognosis. 

 
Figure 9. Overexpression of GPX3 and JUN inhibits proliferation of TC cells. MTT assay showing the proliferation of CAL-62 cells (A) and KHM-5M cells (B) after 
GPX3 overexpression. MTT assay showing the proliferation of CAL-62 cells (C) and KHM-5M cells (D) after JUN overexpression. MTT assay showing the proliferation of TPC-1 
cells after JUN (E) and GPX3 (F) overexpression. Colony formation assay showing the proliferation of CAL-62 cells (G) and KHM-5M cells (H) after GPX3 overexpression. 
Colony formation assay showing the proliferation of CAL-62 cells (I) and KHM-5M cells (J) after JUN overexpression. Colony formation assay showing the proliferation of TPC-1 
cells after JUN (I) and GPX3 (J) overexpression. 

 

Cellular functional assay 
Upon further literature review, we found that 

TIAM1 and RAP1GAP have already been reported as 
an oncogene and a tumor suppressor gene, 
respectively, in TC, with their roles validated through 

cellular biology experiments [35-37]. Therefore, we 
focused our attention on the two key molecules, GPX3 
and JUN , for functional validation in TC cells. Given 
their observed low expression in TC, we acquired 
plasmids for these genes and conducted ectopic 
overexpression experiments in TC cell lines. Initially, 
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we confirmed successful overexpression of GPX3 and 
JUN in CAL-62 and KHM-5M cells (Supplementary 
Figure 4A-B).  

Subsequent functional assays revealed 
significant findings. In CAL-62 cells, overexpression 
of GPX3 resulted in markedly lower optical density 
(OD) values and fewer colony formations in the 
experimental groups compared to the control groups 
(Figure 9A,G), and the similar trend was observed in 
KHM-5M cells (Figure 9B,H). Overexpression of JUN 

resulted in markedly lower optical density (OD) 
values and fewer colony formations in CAL-62 cells 
compared to the control groups (Figure 9C,I), and the 
similar trend was observed in KHM-5M cells (Figure 
9D,J). Overexpression of JUN resulted in markedly 
lower optical density (OD) values and fewer colony 
formations in TPC-1 cells compared to the control 
groups (Figure 9E,K), and the similar trend was 
observed in TPC-1 cells when GPX3 was 
overexpressed (Figure 9F,L).  

 
 

 
Figure 10. Overexpression of GPX3 and JUN inhibits migration of TC cells. Transwell assay showing the reduced ability of CAL-62 (A-B) cells to migrate through the 
chamber after GPX3 overexpression. Wound healing assay demonstrating the decreased migration ability of CAL-62 (C-D) cells after GPX3 overexpression. Transwell assay 
showing the reduced ability of TPC-1 (E-F) cells to migrate through the chamber after GPX3 overexpression. Transwell assay demonstrating the decreased migration ability of 
CAL-62 (G-H) cells after JUN overexpression. Wound healing assay showing the reduced ability of CAL-62 (I-J) cells to migrate through the chamber after JUN overexpression. 
All scale bars in this figure represent 200 μm. 
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Given that distant metastasis is also a hallmark 
of advanced-stage thyroid malignancies, we further 
investigated the migratory capabilities of TC cells. 
Further analysis using the Transwell assay 
demonstrated that the number of cells migrating 
through the membrane was significantly reduced in 
the GPX3 overexpression groups compared to 
controls in CAL-62 (Figure 10A-B) and KHM-5M 
(Supplementary Figure 3A-B) cells. Similarly, wound 
healing assays indicated that the area of migration 
after 24 hrs was substantially smaller in the GPX3 
overexpression groups than in the control groups in 
CAL-62 (Figure 10C-D) and KHM-5M 
(Supplementary Figure 3C-D) cells, implying reduced 
migratory capabilities of the TC cells. Additionally, 
Transwell assay demonstrated that the number of 
cells migrating through the membrane was 
significantly reduced in the JUN overexpression 
groups compared to controls in CAL-62 (Figure 
10G-H) and KHM-5M (Supplementary Figure 3G-H) 
cells. Similarly, wound healing assays indicated that 
the area of migration after 24 hrs was substantially 
smaller in the JUN overexpression groups than in the 
control groups in CAL-62 (Figure 10I-J) and KHM-5M 
(Supplementary Figure 3I-J) cells, implying reduced 
migratory capabilities of the TC cells. Transwell assay 
demonstrated that the number of cells migrating 
through the membrane was significantly reduced in 
the GPX3 (Figure 10E-F) and JUN (Supplementary 
Figure 3E-F) overexpression groups compared to 
controls in TPC-1 cells. We then conducted a 
preliminary investigation into the underlying 
mechanisms. Western blot analysis revealed that 
overexpression of GPX3 and JUN significantly 
increased the levels of mesenchymal markers such as 
N-cadherin, Vimentin, and Snail (Supplementary 
Figure 4A-B). 

Discussion 
In recent years, a growing body of research has 

highlighted the critical roles of various molecules, 
such as BARF, in the initiation, progression, and 
metastasis of thyroid malignancies. While substantial 
evidence suggests that patients with differentiated 
TCs, such as papillary and follicular TCs, generally 
have favorable prognoses, anaplastic TC remains 
highly aggressive, with a notably poor prognosis. 
Although some studies have identified biomarkers 
associated with TC, the methodologies and sample 
types employed have often been limited, hindering 
deeper insights into the biological impact of these 
markers on TC. To comprehensively investigate the 
regulatory molecules influencing TC, we employed 
multiple bioinformatics approaches, identifying four 
genes closely associated with TC. Subsequent cellular 

biology experiments revealed that molecules such as 
GPX4 and JUN function as tumor suppressor genes, 
exerting significant effects on the progression and 
metastasis of TC. 

Initially, we preprocessed and batch-corrected 
TC datasets from six different regions. Differential 
expression analysis was performed using the limma 
package, leading to the preliminary identification of 
several genes potentially associated with TC. We then 
selected the GSE6339 dataset for WGCNA to identify 
molecules significantly correlated with clinical 
features (cancerous vs. adjacent normal tissues). 
Finally, we analyzed gene-related expression 
quantitative trait loci (eQTL) in a large cohort of TC 
patients and healthy controls, uncovering genes 
linked to disease-related genetic variations. By 
integrating the results from these three analyses, we 
identified four candidate genes: TIAM1, RAP1GAP, 
GPX3, and JUN. 

Next, we conducted functional and pathway 
analyses for these four genes. Initially, GO and KEGG 
analyses identified potential biological functions and 
pathways these genes might be involved in. 
Subsequently, single-gene GSEA revealed that GPX3 
and JUN are primarily associated with metabolic and 
redox functions. This suggests that GPX3 and JUN 
may exert their anti-cancer effects in TC by regulating 
amino acid metabolism and influencing intracellular 
redox balance. Given the well-established link 
between TC progression and factors such as immune 
cells and the tumor microenvironment, we further 
performed immune cell composition analysis. The 
results indicated that these genes might exert their 
effects through the modulation of regulatory T cells 
and follicular helper T cells. Finally, we validated the 
expression levels of these four genes across seven 
GEO datasets and the TCGA dataset, confirming their 
differential expression. 

We further reviewed existing studies on these 
four genes in TC, and the results aligned with our 
findings. TIAM1 has been identified as an oncogene in 
TC [35], a role that has been validated through cellular 
functional experiments. Similarly, RAP1GAP has been 
recognized as a tumor suppressor in TC and has been 
validated [36, 37],. Consequently, our subsequent 
research primarily focused on exploring GPX3 and 
JUN through cellular experiments. We conducted 
ectopic overexpression experiments to elevate the 
levels of GPX3 and JUN in cancer cells. First, we 
confirmed the successful expression of GPX3 and JUN 
via Western blot. Given that proliferative behavior is 
fundamental to the progression of malignant tumors, 
we used MTT and colony formation assays to 
demonstrate that upregulation of GPX3 and JUN 
significantly inhibits the proliferation of TC cells. 
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Additionally, considering that thyroid malignancies 
often metastasize, we employed Transwell and 
wound healing assays, which revealed that 
upregulation of GPX3 and JUN significantly impairs 
the migratory capacity of TC cells. 

The human GPX3 gene is located on 
chromosome 5q32, consisting of five exons spanning 
approximately 10 kb and encoding a 23 kDa protein 
that forms a homotetramer [5]. GPX3 is a glutathione 
peroxidase protein that protect cells from oxidative 
damage [5]. In recent years, it has been observed that 
promoter hypermethylation downregulates GPX3 
expression in various human malignancies. However, 
the specific regulatory mechanisms remain unclear. 
GPX3 transcription has been shown to be regulated by 
peroxisome proliferator-activated receptor gamma 
(PPARγ). Additionally, the GPX3 promoter contains 
binding sites of hypoxia-inducible factor 1 (HIF-1) and 
specificity protein 1 (Sp1) [38]. GPX3 typically exhibits 
differential expression patterns across various 
cancers, with promoter hypermethylation commonly 
observed in most tumors, including TC. For instance, 
hypermethylation of the GPX3 promoter is a common 
occurrence in human cancers [6]. In gastric cancer, 
GPX3 hypermethylation has prognostic significance 
[39], [40]. Conversely, in certain cancers, GPX3 
methylation leads to reduced expression, in colorectal 
cancer, GPX3 promoter methylation serves as a 
predictor of sensitivity to platinum-based treatments 
[41]. and serves as a prognostic marker in ovarian 
cancer [9]. However, studies on myeloid leukemia [42, 
43]and clear cell renal cell carcinoma [44, 45] have 
yielded inconsistent conclusions regarding GPX3 
methylation and expression levels. 

The JUN gene is located in the 1p32-p31 
chromosomal region, a locus implicated in 
translocations and deletions associated with various 
human malignancies. JUN encodes a protein that 
directly binds to specific DNA sequences, playing a 
crucial role in regulating gene expression. Recent 
studies have shown that JUN facilitates the 
senescence-associated secretory phenotype and the 
recruitment of immune cells, contributing to the 
prevention of prostate cancer progression [11]. 
Additionally, the AP-1/c-Jun~Fra-2 dimer has been 
implicated in c-Myc-driven hepatocarcinogenesis [13]. 
In colorectal cancer (CRC) cells, JUN is involved in 
USP28 transcriptional activation [15]. GPX3 
suppresses the proliferation, migration, and invasion 
of pancreatic cancer cells by modulating the 
JNK/c-Jun signaling pathway and enhances their 
sensitivity to chemotherapy [46]. In triple-negative 
breast cancer, the JNK/c-Jun/TNF-α signaling axis 
promotes PD-L1 expression [47]. A study on breast 
cancer stem cells revealed that c-Jun/AXL stress 

signaling contributes to chromosomal instability 
tolerance during tumor progression [48]. Moreover, 
targeting c-Jun can overcome tamoxifen resistance in 
estrogen receptor-positive breast cancer by inhibiting 
fatty acid oxidation [49]. Targeting c-Jun is also 
considered a potential therapeutic strategy for bone 
metastasis in luminal breast cancer [50]. As a 
transcription factor, c-Jun regulates GLUT1 during 
glycolysis and metastasis in breast cancer [51]. Jun 
and MLL1 synergistically control H3K4me3 to 
influence colorectal cancer enhancer activity [12]. In 
hepatocellular carcinoma, inhibition of the 
JNK/c-Jun-ATF2 pathway can overcome cisplatin 
resistance by downregulating galectin-1 [52]. 
Furthermore, c-Jun-mediated JMJD6 repair enhances 
radioresistance in hepatocellular carcinoma through 
the IL-4-activated ERK pathway [53]. In gastric cancer, 
c-Jun directly regulates FOXK1, promoting cell 
proliferation, invasion, and metastasis [54]. 

In this study, we integrated multiple 
bioinformatics approaches to identify genes closely 
associated with TC, and further investigated their 
roles in the occurrence, progression, and metastasis of 
TC through clinical samples and cellular functional 
experiments. Although our study employed emerging 
methods such as MR and WGCNA to thoroughly 
evaluate these biomarkers, there are some limitations 
that should be acknowledged. First, the TC cases were 
collected from online databases, and the sample size 
was relatively small, which may introduce some bias. 
Despite correcting for batch effects, population 
differences across datasets may still exist. 
Additionally, the data used for the MR analysis were 
derived from European populations, necessitating 
further validation of our findings in other 
populations. In some parts of the analysis, we referred 
to genotype data from European populations used in 
Mendelian randomization studies. This dataset 
provides crucial support for genetic causal inference. 
However, as it is primarily based on European 
samples, the applicability of the results may vary 
across different populations due to factors such as 
genetic background, environmental influences, and 
cultural differences that could affect disease traits and 
gene expression. For example, Mendelian 
randomization analyses using European data may not 
fully represent other racial groups. We emphasize the 
need for more cross-population validation studies in 
the future, particularly in non-European populations. 
Nonetheless, our experiments and analyses have 
largely demonstrated the specific functions of GPX3 
and JUN in TC, and their impact on TC, along with 
the underlying mechanisms, will be a key focus of our 
future research. 
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Conclusion 
Our study identified and validated the roles of 

GPX3 and JUN as tumor suppressors in the 
progression and metastasis of TC through various 
analytical methods. Specifically, we found that the 
expression of GPX3 and JUN is reduced in TC, and 
their overexpression significantly inhibits the 
proliferation and migration of TC cells. 
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