
Journal of Cancer 2025, Vol. 16 
 

 
https://www.jcancer.org 

1848 

Journal of Cancer 
2025; 16(6): 1848-1859. doi: 10.7150/jca.103247 

Research Paper 

Exploring The Causal Relationship Between Lipid 
Profiles and Colorectal Cancer Through Mendelian 
Randomization: A Multidimensional Plasma Lipid 
Composition Perspective 
Hailan Wu1,2, Jialin Gu3, Yun He4, Yi Ji1, Wen Cao5, Rongrong Li1, Zhancheng Gu6, Guoli Wei1 and Jiege 
Huo1 

1. Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, China. 
2. Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu 210022, Jiangsu, China. 
3. Department of Traditional Chinese medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310013, Zhejiang, China. 
4. Department of Oncology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu 215500, Jiangsu, China. 
5. Jiangsu Cancer Hospital, Nanjing 210009, Jiangsu, China. 
6. Department of Oncology, Kunshan Hospital of Traditional Chinese Medicine, Suzhou 215399, Jiangsu, China.  

Hailan Wu and Jialin Gu are co-first authors. 

 Corresponding author: Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, No. 100, 
Maigaoqiao Cross Street, Nanjing, Jiangsu Province, 210028, China. Guoli Wei; Email: weiguoli1987@163.com. Jiege Huo; Email: Huojiege@jsatcm.com; Tel.: 
+86-15312019156. 

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). 
See https://ivyspring.com/terms for full terms and conditions. 

Received: 2024.09.04; Accepted: 2025.01.29; Published: 2025.02.28 

Abstract 

Background: The causal relationship between blood lipids and colorectal cancer (CRC) risk has been 
preliminarily explored in previous Mendelian randomization (MR) studies, but these investigations were limited 
to conventional or partial metabolic lipid profiles. Recent advancements in genome-wide association studies of 
plasma lipidomics have expanded our understanding of lipid categories, underscoring the need to evaluate the 
causal associations between a broader range of lipid types and CRC risk to enhance risk assessment. 
Methods: This MR study utilized 179 lipid phenotypes across 13 lipid classes to investigate their causal 
associations with CRC risk. Genetic variants significantly associated with lipid traits at the genome-wide level 
(P<5×10-8) were used as instrumental variables for MR analysis. Initial analyses were conducted using a 
discovery dataset (n=321,040), followed by validation in an independent replication dataset (n=185,616). 
Meta-analysis was then employed to determine the strength of causal evidence. The inverse-variance weighted 
(IVW) method and Wald ratio were the primary MR approaches, complemented by up to nine methods for 
multidimensional validation. Sensitivity analyses included tests for pleiotropy, heterogeneity, Steiger 
directionality, and Bayesian colocalization analysis, among others. 
Results: After Bonferroni correction and rigorous validations, 9 significant causal associations were identified. 
Specifically, genetically predicted levels of sterol ester (27:1/20:5) (ORIVW = 1.214, 95% CI 1.119–1.317), 
phosphatidylcholine (20:4_0:0) (ORIVW = 1.147, 95% CI 1.077–1.222), phosphatidylcholine (16:0_22:4) (ORIVW 
= 1.312, 95% CI 1.170–1.472), phosphatidylcholine (16:0_22:5) (ORIVW =1.181, 95% CI 1.093–1.277), and 
phosphatidylcholine (18:0_20:5) (ORIVW = 1.198, 95% CI 1.104–1.300) were significantly associated with an 
increased risk of CRC. Conversely, levels of phosphatidylcholine (18:1_20:2) (ORIVW = 0.832, 95% CI 0.771–
0.898), phosphatidylethanolamine (18:2_0:0) (ORIVW = 0.804, 95% CI 0.732–0.882), phosphatidylcholine 
(16:0_18:0) (ORWald ratio = 0.611, 95% CI 0.481–0.777), and phosphatidylcholine (O-18:1_18:2) (ORWald ratio = 
0.723, 95% CI 0.620–0.840) were significantly associated with a decreased risk of CRC. Colocalization analysis 
revealed posterior probabilities for hypothesis 4 exceeding 90%, identifying rs174546 and rs28456 as shared 
causal variants. Additionally, 14 suggestive causal associations were observed. 
Conclusions: This study establishes a causal link between specific lipid species and CRC risk. These findings 
suggest new avenues for CRC prevention and treatment strategies. 
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Introduction 
Colorectal cancer (CRC), primarily affecting the 

mucosal layer of the colon or rectum, ranks among the 
most common malignant tumors within the digestive 
system[1]. By 2020, global statistics revealed over 1.9 
million new cases of CRC and more than 930,000 
deaths, accounting for 10.0% of all new cancer cases. 
This ranks CRC as the third most common cancer 
worldwide and the second leading cause of 
cancer-related mortality, trailing only breast and lung 
cancers[2]. The annual incidence and mortality rates 
of CRC remain high, with projections indicating an 
increase to 3.2 million new cases (a 63% increase) and 
1.6 million deaths (a 73% increase) by 2040 [2]. The 
pathogenesis of CRC is complex, involving a 
multitude of factors including genetics, lifestyle, 
socioeconomic status, geographical differences, and a 
variety of modifiable environmental risks[3]. Despite 
some progress in the diagnosis and treatment of CRC 
in recent years, prevention remains challenging, 
partly due to the incomplete understanding of its 
etiology, hindering the implementation of effective 
preventive measures. Most CRC patients are 
diagnosed at advanced stages due to the absence of 
early symptoms or subtle clinical signs[4], imposing 
significant economic burdens on patients, 
complicating treatment, reducing survival rates, and 
severely impacting their quality of life. Therefore, 
understanding in depth the etiopathology of CRC and 
its risk factors becomes of prime importance toward 
improving early diagnosis rates, designing effective 
strategies for prevention, and thereby reducing the 
burden of CRC incidence. 

Lipid biomarkers have significant roles not only 
as indicators of the status of lipid metabolism in the 
body but also as important tools with help in the 
evaluation of the risk of cerebrovascular diseases and 
other metabolic disorders. It has been shown to have a 
significant role in the inflammatory pathways, 
oxidative stress, and insulin resistance that probably 
account for the appearance of CRC[5]. Traditional 
lipid biomarkers have levels of low-density 
lipoprotein cholesterol (LDL-C), high-density 
lipoprotein cholesterol (HDL-C), triglycerides (TG), 
and total cholesterol (TC) and have been used for a 
long time in CRC assessment and management. 
However, due to the inherent limitations of 
observational studies, the results remain 
controversial[6–11]. Mendelian randomization (MR) 
analysis, an epidemiological approach that uses 
genetic variants as instrumental variables (IVs), 
addresses several challenges faced by randomized 
controlled trials (RCTs) and offers a powerful 
alternative for establishing causal relationships. The 

basic core principle of MR analysis lies in the truth 
that there is a random allocation of genetic variants at 
conception. Thus, MR analysis effectively avoids 
confounding and reverse causation. Although 
published MR studies have provided a new 
perspective in addressing these issues, their analyses 
have primarily focused on common lipid phenotypes, 
limiting our understanding of the depth and breadth 
of the relationship between lipids and CRC[12–15]. 

Recently, research conducted by Ottensmann et 
al. has significantly expanded our understanding of 
plasma lipid varieties through a comprehensive 
analysis of a broader range of lipid types[16]. This 
study goes beyond standard lipid measurements, 
elucidating the importance of precisely identifying 
various lipid categories, thereby opening new 
perspectives on the potential of lipids as biomarkers 
for disease risk. Compared to relying solely on 
traditional lipid biomarkers, the investigation of a 
wider array of lipid types offers more detailed and 
comprehensive information for predicting CRC risk. 
This approach facilitates the advancement of 
personalized medicine in CRC risk stratification and 
therapeutic intervention guidance. Therefore, we 
employ MR analysis to explore the causal association 
between multidimensional lipid phenotypes and 
CRC, providing more precise and comprehensive 
information for the risk assessment and management 
of CRC. 

Materials and Methods  
Study design 

This study employs secondary analysis on 
publicly available and shared genome-wide 
association studies (GWAS) data, thus obviating the 
need for ethical approval or clinical registration and 
adhering to Strengthening the Reporting of 
Observational Studies in Epidemiology using 
Mendelian Randomization (STROBE-MR) reporting 
guidelines[17]. It explores the potential causal 
relationships between 179 designated plasma 
lipidome species and CRC via MR analysis. The 
selection of IVs is predicated on the three core 
assumptions of MR: (i) The relevance assumption 
stipulates that genetic variants employed as 
instrumental variables must exhibit a robust 
association with the exposure; (ii) The independence 
assumption demands that genetic variants remain 
uncorrelated with any confounders that influence the 
outcome; (iii) The exclusion restriction assumption 
requires that the impact of genetic variants on the 
outcome be channeled solely through the exposure, 
precluding any alternative pathways[18]. Figure 1 
delineates the specifics of the study design. 
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Figure 1. Study design A) Mendelian Randomization Analysis Three Key Assumptions: Relevance, Exclusion Restriction, and Independence Assumptions B) Detailed 
Instrumental Variable Selection Process C) Utilization of GWAS Data Sources D) Primary MR Analysis and Sensitivity Analysis Methods. PI, Phosphatidylinositol; PEO, 
Phosphatidylethanolamine-ether; PE, Phosphatidylethanolamine; PCO, Phosphatidylcholine-ether; PC, Phosphatidylcholine; LPE, Lysophosphatidylethanolamine; LPC, 
Lysophosphatidylcholine; TAG, Triacylglycerols; DAG, Diacylglycerols; Cer, Ceramide; SM, Sphingomyelin; CE, Cholesteryl ester; Chol, Cholesterol; GWAS, Genome-wide 
association studies; MR, Mendelian randomization; MR-PRESSO, MR Pleiotropy Residual Sum and Outlier; IV, instrumental variable; IVW, inverse-variance-weighted; RAPS, 
robust adjusted profile score; CML, constrained maximum likelihood; dIVW, debiased inverse-variance weighted; ConMix, contamination mixture; SNP, single nucleotide 
polymorphism; EAF, effect allele frequency; MAF, minor allele frequency; BWMR, Bayesian weighted Mendelian randomization. 

 

Instrumental variables selection criteria 
(i) Preliminary screening of single nucleotide 

polymorphism (SNP) within the exposure GWAS 
dataset was conducted at genome-wide significance 

levels (P<5×10-8) and under stringent linkage 
disequilibrium (LD) clumping (Phase 3 of 1,000 
Genomes: r2 < 0.001, clumping distance = 10MB). 
Additionally, we implemented a quality control 
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threshold of a minor allele frequency (MAF) of 0.01 to 
ensure sufficient statistical power and reliability in the 
MR analysis. 

(ii) The F-statistic for each SNP was calculated, 
and any SNP with an F-statistic [F=((n−k−1)/k)( 
R2/(1− R2)) less than 10 was excluded as a weak 
IV[19]. R² [R²=2×minor allele frequency 
(MAF)×(1-MAF)×beta²] quantifies the proportion of 
variance in the exposure attributable to the SNPs, N 
represents the sample size in the GWAS, and k = 1 
indicates analysis based on individual SNPs[20,21]. 

(iii) SNPs were further extracted from the 
outcome GWAS dataset and harmonized. SNPs not 
matched in the outcome dataset were not used as 
proxy SNPs to ensure accuracy. During 
harmonization, alleles with intermediate effect allele 
frequencies (EAF) > 0.42 or ambiguous alleles (e.g., 
C/G vs. C/T) were excluded[22]. 

(iv) The MR-Steiger test was employed to 
remove SNPs where the association with the outcome 
was greater than with the exposure[23], adjusting the 
threshold stringently to 5×10-5. 

Data Source 
The plasma lipidome dataset used in this 

analysis includes 7,174 Finnish participants, 
comprising 4,642 women and 2,624 men, aged 
between 45 and 66 years. The study conducted both 
univariate and multivariate genome-wide analyses 
through shotgun lipidomics, identifying 179 lipid 
species across 13 lipid categories. The research 
uncovered 495 genomic trait associations at 56 genetic 
loci, including 8 novel loci, thus unveiling genetic 
correlations between diseases and specific lipid 
species[16]. The summary-level CRC data were 
sourced from the FinnGen consortium's R10 
release[24], comprising summary-level data of 
European ancestry with 6,847 cases and 314,193 
controls. Controls excluded all other cancers. A total 
of 19,343,950 SNPs were analyzed, and identified 
under the FinnGen code C3_COLORECTAL. CRC 
defined three endpoints: malignant neoplasm of the 
rectosigmoid junction, malignant neoplasm of the 
rectum, and malignant neoplasm of the colon. These 
diagnoses are defined according to the international 
classification of diseases (ICD)-10/9/8 classifications, 
as detailed at https://risteys.finregistry.fi/. 
Additionally, our study incorporated a trans-ancestry 
CRC GWAS by Rozadilla et al. [25], including 
participants of European ancestry with 78,473 cases 
and 107,143 controls. A total of 11,284,768 SNPs were 
examined. Under rigorous IV selection criteria, data 
from the FinnGen consortium allowed for the analysis 
of 161 exposure phenotypes, while the GWAS study 
by Rozadilla identified 151. Consequently, the 

FinnGen consortium's data were utilized as the 
discovery dataset, with the latter serving as the 
replication dataset for further validation. 

The GWAS summary data used in this study 
were adjusted for quality control based on age, 
gender, and up to 20 principal components (PCs). 
Additionally, the dataset exhibited only a 2% sample 
overlap with the exposure, thus minimizing the risk 
of bias due to the winner's curse. 

Statistical analyses  
For individual IVs, the primary analytical 

method employed is the Wald ratio, which calculates 
causal effects by dividing the SNP-exposure 
association (β_X) by the SNP-outcome association 
(β_Y). This approach provides an estimate of causality 
for each genetic variant, assuming that the IV 
significantly influences the exposure, operates 
independently of confounders, and affects the 
outcome solely through the exposure[26]. For 
multiple IVs (≥2), the primary method used is the 
random-effects inverse-variance weighted (IVW), 
where the weighting of the IVW method is based on 
the inverse of the variance of the Wald ratio estimates 
for each SNP[27]. This method is effective when all 
genetic variants are valid IVs. Additionally, this study 
incorporates MR-Egger and the weighted median 
method. The weighted median method is applicable 
when at least half of the genetic variants are invalid, 
whereas MR-Egger is suitable when all genetic 
variants might be invalid[28]. Given the stringent IV 
selection criteria in this research, the number of IVs 
ultimately available for analysis is limited. The use of 
online tools such as LDtrait or PhenoScanner to 
identify SNP traits and subjectively exclude them 
could result in no usable IVs or lead to "blind noise 
reduction," which diminishes statistical power and 
weakens the robustness of causal inference. To 
mitigate potential biases from confounding factors, 
heterogeneity, or horizontal pleiotropy, this study 
also employs advanced methods such as Bayesian 
weighted Mendelian randomization (BWMR)[29], 
robust adjusted profile score (RAPS)[30], constrained 
maximum likelihood (cML)[31], contamination 
mixture (ConMix)[32], and debiased inverse-variance 
weighted (dIVW)[33], ensuring the robustness of the 
causal evidence. 

In the MR analysis, a suite of methodological 
evaluations was conducted to ensure the robustness 
and validity of the findings. Cochran's Q test was 
employed to detect heterogeneity across genetic 
variants, with significance established at a P -value 
less than 0.05, indicating notable variability among 
SNPs[34]. MR-Egger regression was utilized to assess 
the presence of directional pleiotropy[35], with an 



 Journal of Cancer 2025, Vol. 16 

 
https://www.jcancer.org 

1852 

intercept P-value below 0.05 signaling significant 
directional pleiotropy[36]. The MR Pleiotropy 
Residual Sum and Outlier (MR-PRESSO) approach 
was applied to identify potential outliers and examine 
horizontal pleiotropy, with a global P -value under 
0.05 confirming its presence[37]. Identified outliers 
were subsequently removed, and a leave-one-out 
sensitivity analysis was performed to evaluate the 
impact of individual SNPs on the overall results[38]. 
The mRnd website[39] (https://shiny.cnsgenomics 
.com/mRnd/) was utilized to determine the statistical 
power of our analyses. To account for multiple 
comparisons, the Bonferroni correction was applied, 
setting a significance threshold for causal associations 
at P < 0.00016 [0.05/(151+161)], with values between 
0.00016 and 0.05 indicating suggestive causal 
evidence. 

Bayesian colocalization analysis 
Bayesian colocalization analysis was employed 

to verify whether the exposure and outcome traits 
shared a common causal variant within the same 
genomic region, thereby reducing potential bias from 
unaccounted confounding SNPs[40]. This method 
evaluates the causal relationship between two traits 
using five distinct hypotheses (H0 to H4). H0 assumes 
no genetic association between the traits; H1 suggests 
the variant is associated only with the exposure; H2 
implies the variant is linked exclusively to the 
outcome; H3 reflects genetic association between the 
traits due to separate causal variants; and H4 indicates 
that both traits are influenced by a shared causal 
variant. A posterior probability for hypothesis 4 
(PPH4) exceeding 0.8 signifies a significant shared 
causal relationship. 

Results 
In the analyzed dataset, 161 lipidomic exposure 

phenotypes were identified, while the replication 
dataset contained 151. The IVs utilized ranged from 1 
to 10 SNPs, with all IVs exhibiting F-statistics greater 
than 10. This significantly reduced the bias associated 
with weak IVs. Additionally, all IVs passed the Steiger 
filtering test, minimizing the potential for reverse 
causality. A total of 58 outliers were removed to 
decrease the bias from horizontal pleiotropy. 

The results of all analyses are presented in 
Tables S1-S2, and specific details on all SNPs used for 
analysis are found in Tables S3-S4. This study 
ultimately identified 10 pieces of significant causal 
evidence and 13 suggestive causal evidence. 
Specifically, within the discovery dataset, 24 
lipidomic phenotypes showed significant causal 
evidence after a rigorous Bonferroni correction 
(P<0.05/312) and 15 suggestive causal evidence 

(Table S5). Further analysis of the replication dataset 
and meta-analysis (Table S6) indicated that 10 
lipidomic exposure phenotypes could not be extracted 
and analyzed in the replication cohort, and thus were 
conservatively classified as suggestive evidence. After 
the meta-analysis, 16 lipidomic data lost statistical 
significance, leading to the exclusion of these 
phenotypes and resulting in 10 significant and 13 
suggestive causal evidence. Moreover, the study had 
sufficient statistical power (> 85%) to detect 
associations for all causal evidence, further 
strengthening the causal inference. 

For analyses involving multiple IVs (≥2), the 
primary method employed was IVW, resulting in 8 
significant causal pieces of evidence and 2 suggestive 
pieces of evidence (Fig. 2). Specifically, genetically 
predicted levels of sterol ester (27:1/20:4) (OR = 1.119, 
95% CI 1.067–1.173, P = 3.97×10-6), sterol ester 
(27:1/20:5) (OR = 1.214, 95% CI 1.119–1.317, P = 
3.07×10-6), phosphatidylcholine (PC) (20:4_0:0) (OR = 
1.147, 95% CI 1.077–1.222, P = 1.94×10-5), PC 
(16:0_22:4) (OR = 1.312, 95% CI 1.170–1.472, P = 
3.37×10-6), PC (16:0_22:5) (OR = 1.181, 95% CI 1.093–
1.277, P = 2.78×10-5), and PC (18:0_20:5) (OR = 1.198, 
95% CI 1.104–1.300, P = 1.44×10-5) were found to have 
a significant causal association with an increased risk 
of CRC. Conversely, genetically predicted levels of PC 
(18:1_20:2) (OR = 0.832, 95% CI 0.771–0.898, P = 
2.13×10-6) and phosphatidylethanolamine (PE) 
(18:2_0:0) (OR = 0.804, 95% CI 0.732–0.882, P = 
4.23×10-6) were significantly associated with a 
decreased risk of CRC. PE (O-18:1_20:4) and PC 
(14:0_18:2) provided suggestive evidence of an 
association with CRC. Supplementary methods 
including cML, ConMix, RAPS, dLVW, and BWMR 
all provided consistent causal association evidence. 

In the case of analyses with a single IV, the Wald 
ratio was the primary method used, yielding 2 
significant causal pieces of evidence and 11 suggestive 
ones (Fig. 3). Specifically, genetically predicted levels 
of PC (16:0_18:0) (OR = 0.611, 95% CI 0.481–0.777, P = 
5.78×10-5) and PE (O-18:1_18:2) (OR = 0.723, 95% CI 
0.620–0.843, P = 3.45×10-5) were significantly 
associated with a decreased risk of CRC. Additionally, 
suggestive evidence of an association with CRC was 
found for genetically predicted levels of PC 
(16:0_20:1), PC (18:0_20:2), PC (18:2_20:3), PC 
(O-18:2_18:1), PE (O-16:1_18:2), PE (O-18:1_18:2), and 
PE (O-18:2_18:2). Multidimensional validation using 
supplementary methods such as cML, RAPS, and 
dLVW provided consistent evidence of causal 
associations. Sensitivity analyses found no evidence 
of horizontal pleiotropy (P>0.05) or heterogeneity 
(P>0.05) among these 23 pieces of causal evidence, 
ensuring the robustness of the results (Table S7). 
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Figure 2. Summary of all positive results with instrumental variables greater than or equal to 2, presented by IVW analysis. Red markers represent significant 
causal associations after passing Bonferroni correction (P < 0.00016 (0.05/312)). IVW, inverse-variance-weighted; SNP, single nucleotide polymorphism; OR, odds ratio; CI, 
confidence interval. 

 
This study conducted a reverse MR analysis 

using CRC as the exposure and 179 lipid phenotypes 
as the outcome to assess potential reverse causal 
relationships. The results revealed no causal effect of 
CRC on the lipid phenotypes (Table S8), which further 
strengthened the robustness of the causal evidence. 
Additionally, among the 10 significant causal 
associations identified, Bayesian colocalization 
analysis was performed. The results showed that, 
with the exception of Sterol ester (27:1/20:4), the 
PPH4 of the remaining 9 lipid phenotypes was greater 
than 90%, confirming them as significant causal 
evidence (Table S9). Notably, rs28456 was identified 
as the shared causal variant for PC (16:0_18:0) and 
CRC, while rs174546 was the shared causal variant for 
the other 8 lipid phenotypes and CRC (Fig.4). 

Discussion 
To our knowledge, this is the first two-sample 

MR analysis to investigate the association between 
179 multidimensional lipid phenotypes and the risk of 
CRC. This study has identified 9 significant causal 
associations, indicating that genetically predicted 
levels of sterol ester (27:1/20:5), PC (20:4_0:0), PC 
(16:0_22:4), PC (16:0_22:5), and PC (18:0_20:5) are 
significantly associated with an increased risk of CRC. 
Conversely, genetically predicted levels of PC 
(18:1_20:2), PE (18:2_0:0), PC (16:0_18:0), and PC 
(O-18:1_18:2) are significantly associated with a 
decreased risk of CRC. Additionally, 14 other causal 
associations were identified. We will elaborate on our 
findings by discussing both risk-enhancing and 
protective lipid phenotypes. 

Previous MR studies have preliminarily 
explored the causal associations between blood lipids 
and CRC risk. Shu et al. [41] evaluated the associations 
of 217 predicted metabolites, including 113 polar 
analytes and 104 lipid analytes, with CRC risk in 

different populations. Their analysis focused on lipid 
phenotypes such as PC, LPE, LPC, TAG, DAG, SM, 
and CE, some of which overlap with our study. 
However, our study includes a broader range of lipid 
phenotypes, such as PI, PEO, PE, and PCO. 
Furthermore, Shu et al. employed logistic regression 
models for their analysis, which may have been 
susceptible to confounding bias. Bull et al. [42] 
conducted an MR study examining causal 
relationships between 231 metabolites and CRC, 
similar to investigations by Bull et al. [43] and Yang et 
al. [44], which emphasized integrated measurements 
of lipoprotein subclasses and lipid content. In 
contrast, our research investigated a broader and 
more detailed set of 179 lipid phenotypes, including 
specific subtypes of sphingomyelins, 
phosphatidylcholines, and triacylglycerols. Yang et al. 
[44] assessed causal relationships between 1,400 
metabolites and CRC, but their dataset focused on 
broader biochemical features with insufficient lipid 
representation. Although overlapping metabolites 
included ceramides, sphingomyelins, and cholesterol, 
their study lacked detailed subcategories to 
differentiate various lipid types and did not extract 
SNPs at genome-wide significance levels. Yuan et al. 
[45] primarily examined traditional lipid phenotypes, 
such as HDL-C and TG, in relation to CRC risk. Thus, 
previous studies offered limited depth and breadth in 
understanding the associations between lipids and 
CRC. Our study addresses these gaps by 
incorporating unique lipid subtypes and providing a 
highly detailed evaluation of causal relationships 
between lipid phenotypes and CRC. By employing a 
targeted lipidomics approach, we elucidate specific 
lipid-related mechanisms, avoiding the confounding 
effects of irrelevant metabolites commonly present in 
broad metabolomics datasets used in earlier studies. 
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Figure 3. Summary of positive results from the analysis of individual instrumental variables using four different methods. Red markers represent significant 
causal associations after passing Bonferroni correction (P < 0.00016 (0.05/312)). RAPS, robust adjusted profile score; CML, constrained maximum likelihood; dIVW, debiased 
inverse-variance weighted; OR, odds ratio; CI, confidence interval. 
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Figure 4. Colocalization analysis of genetically proxied plasma lipidome and CRC (significant causal evidence). Points were color-coded according to the LD (r2) 
of each variant relative to the variant with the highest posterior probability of colocalization within the gene region. In the left panel, －log10 P values for associations with plasma 
lipidome are on the x-axes, and －log10 P values for associations with the CRC on the y-axes. In the right panels, genomic positions are on the x-axes, and the y-axes show-log10 
P values for plasma lipidome on the upper panel and －log10 P values with the CRC on the lower panel for the corresponding region. The genetic variants represented by the 
purple diamond-shaped squares in the figure are causal variants shared by the exposure and the ending. (A) Sterol ester (27:1/20:5) on CRC; (B) Phosphatidylcholine (20:4_0:0) 
on CRC; (C) Phosphatidylcholine (16:0_18:0) on CRC; (D) Phosphatidylcholine (16:0_22:4) on CRC; (E) Phosphatidylcholine (16:0_22:5) on CRC; (F) Phosphatidylcholine 
(18:0_20:5) on CRC; (G) Phosphatidylcholine (18:1_20:2) on CRC; (H) Phosphatidylcholine (O-18:1_18:2) on CRC; (I) Phosphatidylethanolamine (18:2_0:0) on CRC. 

 
In the context of CRC, persistent low-grade 

inflammation is considered one of the key factors 
promoting tumorigenesis[3]. This MR analysis 
identified two specific fatty acid chains in sterol 
esters, 20:4 (arachidonic acid) and 20:5 
[Eicosapentaenoic acid (EPA), an omega-3 fatty acid], 
as having significant causal associations with an 
increased risk of CRC. On one hand, a review by 
Wang et al. systematically highlighted that 

arachidonic acid is metabolized via the 
cyclooxygenase (COX) pathway to produce 
prostaglandin E2 (PGE2), a known pro-inflammatory 
lipid mediator that plays a crucial role in promoting 
immune evasion in colorectal cancer[46]. Moreover, 
research by Neoptolemos et al. found that the 
concentration of arachidonic acid and its metabolites 
in human CRC tissue, compared to unaffected 
mucosa, is elevated, a rise potentially linked to a 
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reduction in lipid peroxidation in rapidly growing 
cells or an increase in enzyme activity[47]. In terms of 
pharmacology, indomethacin has been demonstrated 
to reduce the intake of arachidonic acid and decrease 
the expression of fatty acid transport proteins/CD36 
and peroxisome proliferator-activated receptor 
gamma, thereby potentially inhibiting the malignant 
behavior of colorectal cancer[48]. On the other hand, 
the specific role of EPA (20:5) within sterol esters may 
depend on its balance with other fatty acid types and 
its integration into cellular metabolism. The excessive 
accumulation of sterol esters containing EPA may 
reflect a dysregulated state of lipid metabolism, 
thereby affecting the tumor microenvironment and 
disease progression. Research by Courtney et al. 
indicates that dietary supplementation of EPA 
significantly reduces crypt cell proliferation while 
increasing apoptosis in the normal colonic mucosa of 
subjects with a history of colorectal adenomas[49]. 
Similarly, a study by Weng et al. suggests that the 
combination of EPA, epigallocatechin-3-gallate 
(EGCG), and proanthocyanidins significantly inhibits 
the mTOR signaling pathway in CRC cells, indicating 
that EPA may suppress cancer progression by 
modulating key signaling pathways[50]. 
Additionally, Gaszewska et al. noted that EPA could 
influence the survival and proliferation of CRC cells 
by regulating enzymes such as SCD1[51]. The 
accumulation of sterol esters might lead to alterations 
in intracellular signaling pathways, such as activating 
certain growth factor signaling pathways or inhibiting 
apoptotic pathways, thus promoting the proliferation 
and survival of tumor cells. Therefore, sterol esters 
containing 27:1/20:4 and 27:1/20:5 may play a role in 
developing CRC through multiple mechanisms, 
offering potential pathways for revealing new 
therapeutic targets and preventive strategies. 

PC, a major phospholipid component of cell 
membranes, has been identified through this MR 
analysis as having significant causal associations with 
an increased risk of CRC for specific fatty acid chains 
(20:4_0:0, 16:0_22:4, 16:0_22:5, 18:0_20:5). Kurabe et al. 
utilized imaging mass spectrometry to identify PC 
(16:0/16:1) as a novel biomarker in CRC[52], although 
this MR analysis did not establish it as significant 
causal evidence, it was validated in the replication 
cohort (Table S2). Kühn et al. focused on metabolic 
changes preceding CRC diagnosis, highlighting 
alterations in lipid composition, including PC, years 
before the diagnosis of common malignancies[53]. As 
mentioned earlier, these PC molecules, enriched with 
polyunsaturated fatty acids (PUFAs) such as 
arachidonic acid (20:4), docosatetraenoic acid (22:4), 
and docosapentaenoic acid (22:5), can serve as 
precursors to inflammatory mediators, promoting a 

chronic inflammatory state[46]. Moreover, studies 
have shown that phospholipase C specific to PC 
(PC-PLC) is associated with apoptosis induced by the 
deprivation of survival factors in endothelial cells[54], 
underscoring the vital role of PC in regulating tumor 
cell behavior, particularly through signaling 
pathways related to cell survival and apoptosis. 
Protective effects were also observed for PC 
(18:1_20:2, 16:0_18:0, O-18:1_18:2), with molecules rich 
in monounsaturated fatty acids (MUFAs) and PUFAs, 
such as 18:1_20:2 and O-18:1_18:2, potentially 
increasing membrane fluidity and facilitating the 
normal function of signaling pathways associated 
with cell proliferation, migration, and apoptosis. 
Therefore, by revealing the causal links between 
specific PCs and CRC risk, this study offers new 
insights for future preventive and therapeutic 
strategies against CRC. 

PE constitutes an essential component of cell 
membranes, and this MR analysis has identified a 
protective causal effect of PE (18:2_0:0) against CRC. 
PE (18:2_0:0) contains two linoleic acid (18:2) chains, a 
PUFA belonging to the omega-6 family, whose 
metabolites play complex roles in regulating 
inflammation[55]. Although omega-6 family PUFAs 
are often associated with pro-inflammatory 
responses, research by Kumar et al. highlights that a 
moderate intake of linoleic acid can exert 
anti-inflammatory effects through specific metabolic 
pathways[56]. Furthermore, PE with high linoleic acid 
content may confer protective effects by alleviating 
oxidative stress and reducing the damage free radicals 
cause to cells. Therefore, PE (18:2_0:0) may help 
modulate the gut environment through its 
anti-inflammatory and antioxidant properties, 
reducing DNA damage and the accumulation of 
mutations, thereby lowering the risk of CRC. Future 
research is needed to further explore the mechanisms 
by which PE operates in CRC and how dietary and 
lifestyle adjustments can optimize the body's lipid 
profile, offering practical guidance for the prevention 
and management of CRC. 

This study boasts several strengths. Firstly, the 
MR analysis utilized two CRC datasets, with final 
causal evidence determined through meta-analysis 
and substantiated by stringent Bonferroni correction, 
demonstrating sufficient statistical power to affirm 
the robustness of our causal associations. Secondly, 
nine different supplementary methods were 
employed for multidimensional validation, 
substantially minimizing potential biases from 
pleiotropy and heterogeneity, thereby ensuring more 
robust results. Furthermore, a rigorous screening 
process was executed, with all IVs exhibiting 
F-statistics greater than 10, mitigating the bias from 
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weak IVs, and all passing MR-Steiger filtering. 
Importantly, this research pioneers the causal analysis 
between lipidomics and CRC, laying a foundation for 
future studies. However, the study also has 
limitations. Primarily, the analysis focused on 
populations of European ancestry, thereby reducing 
the generalizability across diverse ethnic groups, 
necessitating further validation in trans-ancestral 
studies. Lastly, the study relies on summary-level 
GWAS data, precluding subgroup analysis by age, 
sex, etc., and the interpretation of nonlinear causal 
effects, a common limitation of two-sample MR 
analyses.  

This study utilized genetic data to investigate the 
causal relationship between multidimensional lipid 
profiles and CRC risk in European populations, 
laying a foundational basis for further research in this 
area. Future studies should employ cell or animal 
models to explore the functional impact of specific 
lipid species on the pathogenesis of colorectal cancer. 
Additionally, integrating multi-omics data should be 
considered to examine the interactions between lipid 
molecules and other metabolic or immune pathways. 
Such an approach could provide new insights into the 
mechanisms underlying CRC development. Further-
more, combining multiple experimental methods with 
MR analysis for triangulation could uncover novel 
therapeutic targets and offer crucial scientific 
evidence for the development of precise prevention 
and treatment strategies for colorectal cancer. 

Conclusions 
This study identifies specific lipid species that 

significantly influence the risk of CRC. Our findings 
reveal novel associations that enhance our 
understanding of lipid-related mechanisms in CRC 
development. These results not only improve CRC 
risk assessment but also highlight potential lipid 
targets for therapeutic intervention. Future research 
should focus on elucidating the biological pathways 
underlying these associations and evaluating the 
clinical utility of lipid-based strategies in CRC 
prevention and treatment. 
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