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Abstract 

Gastric cancer (GC) is one of the most common types of clinically malignant tumors and a global health 
challenge due to its high mortality and poor prognosis. The coagulation cascade is closely related to GC 
and plays a key role in the tumor immune microenvironment. However, the specific mechanisms by 
which coagulation-related genes involved in the occurrence and development of GC remains unclear. 
The data of GC patients and coagulation-related genes were obtained from the TCGA and the GSEA 
databases, respectively. After univariate Cox regression analysis, the non-negative matrix factorization 
method was used to identify coagulation-related molecular subtypes. GC patients were categorized into 
high-risk and low-risk score groups based on median risk scores, which included six genes (PCDHAC1, 
HABP2, GPC3, GFRA1, F5, and DKK1). There was a significant difference in survival between the two 
groups, and the predictive abilities for 1-, 3-, and 5-year survival were valid. Here, we demonstrated that 
coagulation-related gene signatures are valuable in predicting the survival of GC patients. Besides, the 
high- and low-risk grouping also better reflects the status of tumor mutation burden and the 
characteristics of tumor immune infiltration in GC, which provides a theoretical basis for individualized 
chemotherapy and immunotherapy for GC patients. 
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Introduction 
Gastric cancer (GC) is one of the most common 

malignant tumors worldwide, with the fifth highest 
incidence and mortality rate. Although its mortality 
rate has decreased in recent years, the prognosis for 
patients with advanced GC is still not optimistic[1]. In 
recent years, the treatment of GC has been richly 
developed in addition to traditional radical surgery[2, 
3]. Emerging treatments such as neoadjuvant therapy, 
immunotherapy, and targeted therapy have provided 
additional options for patients[4-7]. In particular, the 
rapid development of immunotherapy has enabled 
patients with certain specific subtypes of GC to 
prolong their survival through new treatment 
pathways[8]. However, GC patients with MSI-H only 

account for about 10% of all patients, and the vast 
majority of patients with advanced GC still show 
insensitivity to immunotherapy, suggesting the need 
to explore new therapeutic drugs or targets for GC[9, 
10]. In addition, even for GC patients with the same 
tumor stage, there are still huge differences in 
chemotherapy sensitivity and prognosis[11]. 
Therefore, biomarkers affecting the prognosis of GC 
need to be further explored.  

Coagulation-related genes play important roles 
in cancer and other diseases. In recent years, more and 
more studies have revealed their potential 
mechanisms in tumorigenesis, progression, and 
metastasis, suggesting that these genes are not only 
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involved in the process of blood coagulation. Still, 
they may also affect tumor progression and prognosis 
by regulating the tumor microenvironment[12-14]. In 
hepatocellular carcinoma, there is a significant 
correlation between coagulation-related genes and the 
tumor immune microenvironment (TIME), and the 
risk score can be used as a reliable prognostic 
biomarker[15]. In breast cancer, coagulation-related 
genes play a key role in the regulation of the tumor 
microenvironment, especially in predicting patient 
prognosis and response to chemotherapy[16]. The 
correlation between coagulation-related genes and the 
TIME has also been confirmed in colorectal cancer. 
The risk score can be used as a reliable prognostic 
biomarker for personalized regimens of 
chemotherapy and immunotherapy for colorectal 
cancer[17]. Although research has confirmed the 
correlation of coagulation-related genes with the 
prognosis of various tumors and the TIME, there is 
still a paucity of studies in the field of GC. Therefore, 
how coagulation-related genes contribute to the 
prognosis of GC patients and their correlation with 
the TIME needs to be further explored. This will not 
only help to identify potential prognostic biomarkers 
for GC but also may provide a decision basis for 
chemotherapy and immunotherapy in GC patients. 

In this study, we performed the non-negative 
matrix factorization (NMF) cluster analysis of 
coagulation-related genes affecting the prognosis of 
GC to compare survival between groups, and the two 
groups with the most significant survival were 
compared differently. Prognosis-related differential 
genes were screened using the least absolute 
shrinkage and selection operator (LASSO) regression. 
Prognostic risk scores were calculated, and the 
prognostic prediction model was constructed. Next, 
GC patients were divided into two groups of high and 
low risk by the median of the risk score. The 
coagulation-related differential genes between the 
two groups were compared, and Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment analyses were performed. Then, 
the correlation between risk scores and 
clinicopathological features was analyzed; 
independent risk factors affecting prognosis were 
screened, a nomogram model for predicting 
prognosis was constructed, and model evaluation and 
validation were performed. In addition, the 
differences in tumor mutation burden (TMB) and 
TIME between the low-risk and high-risk groups were 
compared. Finally, the sensitivities of common 
chemotherapeutic drugs were compared between the 
low-risk and high-risk groups to predict the drugs 
that might be effective in treating patients with GC, 
and tumor immune single-cell analysis of prognostic 

genes was performed.  

Materials and methods  
Data acquisition  

The mRNA sequencing (FPKM) data and 
corresponding clinical information of GC patients 
were downloaded from The Cancer Genome Atlas 
(TCGA; https://tcga-data.nci.nih.gov/tcga/). 
Detailed information on GC patients is listed in 
Supplementary Tables S1. The gene set 
“HALLMARK_INTERFERON_GAMMA_RESPONSE
” was extracted from the molecular signature 
database of Gene Set Enrichment Analysis (GSEA) 
(https://www.gseamsigdb.org/). The symbols of 
coagulation-related genes are shown in 
Supplementary Table S2, which includes 293 genes.  

Molecular subtype identification based on the 
NMF algorithm 

The NMF algorithm is a new clustering method. 
It can extricate sample classification from difficult 
positions where gene space is in high dimensionality 
and there are too few samples to further explore by 
using the NMF R package (PMID: 23261450).  

Identification of coagulation-related genes  
Significant differential expression of 

coagulation-related genes was identified by the 
“limma” package in R software with |log2FC|≥1 and 
FDR<0.05. There were 141 genes identified in the 
intersection of the different expression genes shown 
in Supplementary Table S3.  

Construction and validation of the risk model 
based on coagulation-related genes  

First, all GC patients were divided into training 
and validation groups at a 7:3 ratio by “caret” package 
randomly. Then, we used the least absolute shrinkage 
and selection operator (LASSO) analysis by the 
“glmnet” package based on these 141 differentially 
expressed coagulation-related genes. Thirdly, we 
calculated the risk score for every GC patient. All the 
patients were divided into high-risk and low-risk 
subgroups by the median value according to the risk 
score. Kaplan-Meier (KM) analysis was used to 
evaluate the prognostic performance of 
coagulation-related gene signatures. We used the 
“timeROC” package to plot time-dependent receiver 
operating characteristic (ROC) curves.  

Nomogram model construction and validation  
To assess whether the risk score generated from 

the coagulation-related genes could serve as an 
independent prognostic factor, we performed 
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univariate and multivariate Cox regression analyses. 
The results were presented as forest plots. Decision 
Curve Analysis (DCA) was employed to quantify the 
net benefit of using the risk score for clinical 
decision-making across a range of threshold 
probabilities. By comparing the outcomes of patients 
who were stratified based on the risk score with those 
of patients who were not, DCA provides a graphical 
representation of how much benefit a model offers 
when implemented in clinical practice. We also 
plotted a Clinical Impact Curve (CIC), which shows 
the predicted number of high-risk patients and the 
number of true positives at various thresholds. The 
CIC complements the DCA by offering a more 
detailed understanding of how the risk score might 
influence patient management on a population level. 
Next, we constructed a nomogram that integrates the 
risk score along with other key clinical variables such 
as age and cancer stage to predict 1-, 3-, and 5-year 
survival probabilities for GC patients. The calibration 
curves were performed to evaluate the predictive 
accuracy of the nomogram. 

Immune cell infiltration analysis 
We used the CIBERSORT algorithm to evaluate 

the infiltration levels of 22 tumor-infiltrating immune 
cells. We calculated the scores of the immune 
microenvironment by the ESTIMATE algorithm and 
researched the differences in the activity of immune 
infiltrating cells and 30 immune checkpoints of 
subgroups, using the "estimate," "GSVA," and 
“GSEABase” packages. Seven steps that occur in the 
tumor microenvironment are characteristic of 
anticancer immune responses. We analyzed the 
anticancer immune status and the extent of 
tumor-infiltrating immune cells, as well as differences 
in the activity scores across seven steps between the 
high- and low-risk groups through Tracking Tumor 
Immunophenotype (TIP; 
http://biocc.hrbmu.edu.cn/TIP/).  

Analysis of somatic mutation  
The VarScan platform data from the 

TCGA-STAD cohort were used to analyze the somatic 
mutation data for each patient. Next, we used the 
“maptools” package to visualize the mutations 
between the two risk groups. Moreover, we analyzed 
the correlation between the TMB and the prognostic 
signature. 

Enrichment analysis of gene set 
Spearman correlation analysis was performed to 

analyze the correlations of the six key prognostic 
genes. The GeneMANIA (http://www.genemania 
.org) website was used to construct a protein-protein 

interaction (PPI) network for the six key prognostic 
genes. GO and KEGG pathway enrichment analyses 
were performed to analyze the different expression 
genes between the high- and low-risk groups.  

Analysis of chemotherapy drug susceptibility  
The Genomics of Drug Sensitivity in Cancer 

(GSDC) database (https://www.cancerrxgene.org/) 
was used to evaluate the chemotherapeutic drug 
response of the STAD patients (PMID: 23180760). We 
used the “pRRophetic” package to calculate the 
half-maximal inhibitory concentration (IC50) and 
assessed the STAD patient response to common 
chemotherapeutic agents. Furthermore, we used the 
Connectivity Map (cMap; https://portals 
.broadinstitute.org/cmap/) database to predict drugs 
based on the prognostic signature. Enrichment scores 
ranged from -1 to 0, and p < 0.05 was considered to 
indicate a potential candidate compound. We 
obtained the 3D structures of these compounds from 
the PubChem database (https://pubchem.ncbi.nlm 
.nih.gov/).  

Tumor immune single cell analysis of 
prognostic coagulation-related genes 

Immune cell type clustering in the TIME of 
gastric cancer patients was analyzed using the Tumor 
Immune Single-cell Hub (TISCH) online website 
(http://tisch.comp-genomics.org). Prognostic 
coagulation-related genes were then compared for 
differences in immune cell content in the immune 
microenvironment.  

Statistical analysis 
All the statistical analyses and plotting were 

performed by R software (version 4.0.5, 
https://www.r-project.org/). Univariate and 
multivariate Cox regression analyses were utilized to 
select independent prognostic factors for STAD 
patients. Spearman’s correlation was used for 
correlation analysis. All P values were two-sided, and 
the results were considered statistically significant 
when P values were less than 0.05.  

Results  
Molecular subtyping of coagulation-related 
genes  

We subjected 293 coagulation-related genes to 
COX regression and found that 36 genes were 
associated with GC prognosis. These 36 
prognosis-related genes were subjected to clustering 
analysis by the NMF algorithm and had an optimal 
classification when the subtype was 4 (Figure 1A). 
Subgroup correlation analysis revealed a high degree 
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of consistency among subgroups (Figure 1B). We 
further performed survival analysis for each 
subgroup and found a significant correlation between 
Cluster 4 and Cluster 1, Cluster 2, and Cluster 3; 
among them, the difference between Cluster 4 and 
Cluster 1 was the most significant for GC patients, 
with a p-value of 0.02 (Figure 1C). Therefore, we 
compared the coagulation-related genes of GC 
patients in cluster 4 and cluster 1 as a subgroup and 
obtained 141 differential genes (Figure 1D).  

Construction and validation of prognostic risk 
models for coagulation-related genes  

The Lasso regression was performed with the 
coagulation-related differential genes in the training 

group, and the regression coefficients of the 
corresponding coagulation-related genes decreased 
with increasing λ values (Figure 2A). Six 
coagulation-related genes affecting prognosis were 
finally screened out, and the risk scores were 
calculated (Figure 2B). Among them, DKK1, F5, 
GPC3, HABP2, and PCDHAC1 prognostic genes were 
highly expressed in the GC tissues, and GFRA1 was 
lowly expressed in GC tissues (Supplementary Figure 
S1). Patients were divided into a high-risk score group 
and a low-risk score group by the median risk score. 
In the training group, the low-risk score group had 
better survival than the high-risk score group; the six 
prognostic genes in the low-risk score group had 
lower expression than those in the high-risk score 

 

 
Figure 1: NMF algorithm for molecular subtype identification and coagulation-related differential genes. (A) Screening of cluster groupings; (B) Subgroup consistency analysis; 
(C) Subgroup survival analysis; (D) Volcano plots. 
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group (Figure 2C). In the validation group, the 
low-risk scoring group still had higher survival, and 
prognostic genes had lower expression (Figure 2D). 
Survival analysis found that patients in the low-score 
group had a better prognosis in the training and 
validation groups, and the difference was statistically 
significant (Figure 3A, B). We further plotted ROC 
curves predicting the overall survival of patients 
using risk scores. In the training group, the AUC 
values for predicting overall survival of GC patients 
at 1, 3, and 5 years were 0.62, 0.69, and 0.65, 
respectively (Figure 3C); in the validation group, the 
AUC values for predicting overall survival of GC 
patients at 1, 3, and 5 years were 0.62, 0.65, and 0.69, 
respectively (Figure 3D).  

Clinical correlation analysis of risk scores and 
construction of prognostic nomogram  

We performed a clinical correlation analysis of 
risk scores (Figure 4A), and patients over 65 years old 
with advanced GC and a high-risk score had a greater 
fatality rate. There was no significant difference in the 
gender of the two groups. The coagulation-related 
genes of DKK1, F5, GPC3, GFRA1, and HABP2 were 
highly expressed in the high-risk group, whereas 
there was no significant difference between the two 
groups in PCDHAC1. GC patients aged 65 years or 
older had higher risk parity scores than GC patients 
younger than 65 years, and the difference was 
statistically significant (Figure 4B), whereas there was 
no statistically significant difference between the risk 

 

 
Figure 2: LASSO regression feature screening and risk score grouping. (A) LASSO regression coefficients for each feature; (B) Number of LASSO regression features screened; 
(C) Risk scores and survival in the training group; (D) Risk scores and survival in the validation group; (E) Heat map of risk scores and coagulation-related genes in the training 
group; (F) Heat map of risk scores and coagulation-related genes in the validation group. 
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scores of male and female GC patients (Figure 4C). 
The risk scores showed a positive correlation with the 
GC stage, and there was a significant difference 
between the risk scores of patients with stage I GC 
and those with stage III GC (Figure 4D).  

We performed univariate and multivariate COX 
regression of age, gender, tumor stage, and risk score 
and found that age, tumor stage, and risk score were 
independent risk factors affecting prognosis in both 
univariate and multivariate COX regressions 
(Supplementary Figure S2A, B). Therefore, we 
constructed a nomogram for predicting the prognosis 
of GC based on age, tumor stage, and risk score 
(Figure 5A). The calibration curves showed that the 
predictive ability of 1- and 3-year overall survival was 
better fitted to the ideal curve, whereas the predictive 

ability of 5-year overall survival was poorer than that 
of the 1- and 3-year overall survival plots (Figure 5B). 
The nomogram had an AUC value of 0.699 for the 
1-year overall survival prediction model (Figure 5C), 
0.750 for the 3-year overall survival prediction model 
(Figure 5C), and 0.670 for the 5-year overall survival 
prediction model (Figure 5C). The nomogram had 
higher AUC values than the prognostic model 
constructed from age, tumor stage, and risk score 
individually. This suggests that the prognostic model 
constructed from the nomogram constructed from 
age, tumor stage, and risk score has higher accuracy. 
Decision curve analysis showed that the net benefit of 
the nomogram prognostic model was also higher than 
that of the prognostic model constructed from age, 
tumor stage, and risk score each (Supplementary 

 

 
Figure 3: High- and low-risk group survival analyses with ROC curves for survival prediction models. (A) Survival analysis of the high- and low-risk groups in the training group; 
(B) Survival analysis of the high- and low-risk groups in the validation group; (C) ROC curves of the survival prediction model in the training group; (D) ROC curves of the survival 
prediction model in the validation group. 
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Figure S2C). The results of the clinical impact curve 
showed that the predicted GC deaths gradually 
approached and tended to overlap with the actual GC 
deaths when the threshold value exceeded 0.4 
(Supplementary Figure S2D).  

Correlation of risk scores with TMB and TIME  
The prognostic risk score and TMB correlation 

analysis showed that the low-risk group had a higher 
number of base mutations than the high-risk group 
(Figure 6A), and the risk score was significantly 
negatively correlated with the tumor mutation burden 
(Figure 6B). The waterfall plot showed that the 
low-risk group was mainly characterized by 
mutations in TTN, TP53, MUC16, SYNE1, and LRP1B, 

and the mutated base pairs were mainly C-G and T-A 
(Figure 6C). The high-risk group was mainly 
characterized by mutations in TP53, TTN, MUC16, 
LRP1B, and FLG, and the mutated base pairs were 
mainly C-G (Figure 6E). There was a significant 
co-occurrence of mutated genes in the low-risk group, 
which indicated that the number of mutated genes 
was higher in the same GC patients in the low-risk 
group (Figure 6D). There was a weak co-occurrence of 
mutated genes in the high-risk group, which 
indicated that the number of mutated genes in the 
same GC patients in the high-risk group was lower 
(Figure 6F).  

 

 
Figure 4: Risk score and clinical correlation analysis. (A) Heat map of high- and low-risk score subgroups with clinicopathologic features and coagulation-related genes; (B) 
Correlation between age and risk score (C) Correlation between gender and risk score; (D) Correlation between tumor stage and risk score. 
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Figure 5: Construction and evaluation of prognostic prediction models. (A) Nomogram prediction model; (B) Calibration curves; (C) ROC curves for 1-, 3-, and 5-year survival. 

 
We further analyzed the immune 

microenvironment of GC, which was mainly 
composed of B cells, M0/M1/M2 macrophages, CD4 
T cells, and CD8 T cells (Figure 7A). The composition 
ratio of immune cells had large differences among 
different GC patients. The content of naive B cells, 
plasma cells, and mast cells resting were significantly 
higher in the high-risk group than in the low-risk 
group, whereas the content of T cells follicular helper 
and T cells CD4 memory activated were significantly 
lower in the high-risk group than in the low-risk 
group (Figure 7B). The TIME score and stroma score 
of patients in the high-risk group were significantly 
higher than those in the low-score group. The tumor 
purity of GC patients in the high-risk group was 
significantly lower than that of the low-risk group, 
which indicated that GC patients in the low-risk 
group might have more immune cell infiltration 
(Figure 7C). Immune checkpoint difference analysis 
showed significant differences in checkpoints such as 
ADORA2A, CD200, CD28, and CD40 in the high-risk 
and low-risk groups, which may predict different 
responses to immunotherapy in the high- and 
low-risk groups (Figure 7D). Human leukocyte 

antigen analysis showed that the expression of 
HLA.DOA and HLA.G was significantly higher in the 
high-risk group than in the low-scoring group (Figure 
7E).  

GO and KEGG enrichment analysis of 
coagulation-related genes 

We analyzed the interrelationships among six 
coagulation-related genes affecting prognosis and 
found significant interactions among DKK1, F5, 
GPC3, HABP2, PCDHAC1, and GFRA1 (Figure 8A). 
The six prognostic genes were further analyzed for 
possible other interacting genes; the results showed 
that MEOX2, APOD, STARD13, PLCB1, and FZD1 
had interactions, co-expression, and co-localization 
with the prognostic genes (Figure 8B). Expression of 
the genes, such as MEOX2, APOD, and other genes, 
may activate the Wnt signaling pathway, the 
regulation of cell migration, the regulation of blood 
vessel endothelial cell migration, the regulation of cell 
motility, and other signaling pathways to promote the 
development of GC. The 86 differential genes were 
screened according to the high- and low-risk scores; 
among them, GPC3 and F5 were significantly 
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overexpressed in the high-risk group, and FGFBP1 
was significantly overexpressed in the low-risk group 
(Figure 8C). GO enrichment analysis showed that 
prognostic coagulation-related genes might influence 
the chylomicrons, very-low-density lipoprotein 
particle, and high-density lipoprotein particle in 
exerting their biological functions (Figure 8D). KEGG 
enrichment analysis showed that prognostic 
coagulation-related genes might be involved in the 
regulation of pathways such as cholesterol 
metabolism, complement and coagulation cascades, 
fat digestion and absorption, vitamin digestion and 
absorption, and thyroid hormone synthesis (Figure 
8E).  

Chemotherapy drug screening and tumor 
immune single cell analysis  

Chemotherapy drug sensitivity analysis showed 
significant differences in the half-maximal inhibitory 
concentrations (IC50) of 15 common chemotherapy 
drugs, including Bleomycin, Camptothecin, Cisplatin, 
and Dasatinib, in the high- and low-risk groups 
(Figure 9A). We used cMap to screen potential 
pharmacological targets affecting prognostic genes, 
and the results showed that Huperzine-A, 
KIN001-055, parthenolide, SB-206553, and 
tyrphostin-AG-1295 might be effective drugs affecting 
the prognosis of GC patients in the high- and low-risk 
groups (Figure 9B). 

 

 
Figure 6: Correlation between risk score and tumor mutation burden. (A) Differences in TMB between high- and low-risk groups; (B) Correlation between risk scores and TMB; 
(C, D) Waterfall plots of TMB and co-occurrence of mutated genes in low-risk groups; (E, F) Waterfall plots of TMB and co-occurrence of mutated genes in high-risk groups. 
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Figure 7: Comparison of the tumor immune microenvironment in high- and low-risk groups. (A) Proportion of immune cells constituting the tumor microenvironment; (B) 
Comparison of differences in immune cell content between high- and low-risk groups; (C) Comparison of differences in tumor microenvironment scores between high- and 
low-risk groups; (D) Comparison of differences in immune checkpoints between high- and low-risk groups; (E) Comparison of differences in human leukocyte antigens between 
high- and low-risk groups. 

 
Immune cell type clustering and annotation 

analysis of the GSE134520 dataset of GC patients were 
performed using the TISCH online data site. The 
tumor microenvironment of the GSE134520 dataset 
was dominated by nine cellular components, 
including pit mucous, gland mucous, plasma, 
fibroblasts, and CD8 T cells (Figure 10A). We further 
analyzed the distribution and expression of 
prognostic genes in different cell types. DKK1 was 
significantly expressed in pit mucous mainly in GC 
tissues; in GC tissues and normal tissues, the 
expression of DKK1 in gland mucous, malignant, 
mast, and pit mucous was significantly different; in 
Helicobacter pylori (H. pylori) infected and non-infected 
GC tissues, the expression of DKK1 in pit mucous 
showed significant differences (Figure 10B). F5 was 
also significantly expressed in pit mucous, mainly in 

GC tissues; in GC tissues and normal tissues, there 
was a significant difference in the expression of F5 in 
pit mucous; in H. pylori-infected and non-infected GC 
tissues, there was a significant difference in the 
expression of F5 in pit mucous (Figure 10C). GFRA1 
was significantly expressed in GC tissues, mainly in 
fibroblasts, whereas there was no statistically 
significant difference in the expression of GFRA1 in 
nine cellular components, including pit mucous, 
gland mucous, and plasma, between H. pylori-infected 
and non-infected GC tissues in GC tissues and normal 
tissues (Fig. 10D). GPC3 was significantly expressed 
in pit mucous, mainly in GC tissues, and there was no 
statistically significant difference in the expression of 
GPC3 in pit mucous in GC tissues and normal tissues 
(Fig. 10D). In GC tissues and normal tissues, there was 
no statistically significant difference in the expression 
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of GPC3 in pit mucous, gland mucous, plasma, and 
other 9 cellular components; in H. pylori-infected and 
non-infected GC tissues, there was a significant 
difference in the expression of GPC3 in pit mucous 
(Figure 10E). HABP2 was significantly expressed in 
pit mucous, mainly in GC tissues; in GC tissues and 

normal tissues, there was no statistically significant 
difference in the expression of HABP2 in pit mucous 
and plasma (Figure 10E). The expression of HABP2 in 
pit mucous was significantly different in both GC 
tissues and normal tissues, H. pylori-infected and 
non-infected GC tissues (Figure 10F).  

 

 
Figure 8: GO and KEGG enrichment analysis of coagulation-related differential genes. (A) Circle plot of prognostic coagulation-related genes; (B) Volcano plot comparing the 
differences in coagulation-related genes between high- and low-risk groups; (C) Protein interactions analysis of prognostic coagulation-related genes; (D) Circle plot of GO 
enrichment analysis; (E) Circle plot of KEGG enrichment analysis. 
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Figure 9: Sensitivity analysis of chemotherapeutic drugs in GC patients of high- and low-risk groups. (A) Comparison of IC50 values of chemotherapeutic drugs in GC patients 
of high- and low-risk groups; (B-F) Potential drug molecular structures and pharmacological targets affecting the prognosis of GC. 

 

Discussion  
Patients with malignant tumors often suffer from 

dysregulation of the coagulation system and systemic 
hypercoagulability, which is closely related to the 
aggressiveness and metastasis of the tumor[18-20]. 
Patients with malignant tumors often have an 
increased risk of thrombosis, especially venous 
thromboembolism, and venous thrombosis is one of 
the important causes of death in cancer patients. In 
patients with high-risk tumors such as GC, the 
incidence of venous thromboembolism (VTE) is as 
high as 20%, which not only affects the quality of life 
of patients but also becomes one of the important 
causes of death in cancer patients[21, 22]. Studies have 
shown that some coagulation indices are closely 
related to the prognosis of patients. D-dimer levels in 
breast cancer patients were closely related to tumor 
metastasis and prognosis, and breast cancer patients 
with hypercoagulable states had higher mortality 
rates[23, 24]. In addition, with the spread of 
immunotherapy, more and more patients have 
developed abnormalities in the coagulation system, 
and such abnormalities were closely associated with 
treatment effects and prognosis[25, 26].  

Because of this, our study confirmed that some 
coagulation-related factors can be used as biomarkers 
for the prognosis of GC patients and we further 
explored the effects of these factors on the 
microenvironment of immune infiltration in GC. Our 
findings will provide new ideas and rationale for 
improving the prognostic assessment and 
personalized immunotherapy for GC patients.  

In our study, by Lasso regression analysis, we 
screened six coagulation factors associated with the 
prognosis of GC patients and constructed a 
prognostic prediction model. The results of ROC 
curve analysis showed that these screened 
coagulation-related genes had certain predictive 
abilities and could effectively distinguish GC patients 
at different prognostic risks. In addition, existing 
studies have provided support for the clinical 
application of coagulation factors. For example, Li et 
al.[14] constructed a prognostic prediction model for 
coagulation-related genes in lung cancer patients 
based on the TCGA database, and the results showed 
that their AUC values for 1, 3, and 5 years were 0.601, 
0.597, and 0.615, respectively, suggesting that the 
model has some practical value in predicting the 
prognosis of lung cancer. Similarly, Jin et al.[17] 
constructed a prognostic prediction model for 
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colorectal cancer in the TCGA database, with AUC 
values of 0.754, 0.756, and 0.755 at 1, 3, and 5 years, 
respectively, which further confirmed the importance 
of coagulation factors in tumor prognostic 
assessment. Although these findings support the 

potential role of coagulation-related genes in 
predicting tumor prognosis, further studies are 
needed to validate coagulation factors as biomarkers 
of GC prognosis.  

 

 
Figure 10: Cell clustering typing of tumor microenvironment and comparison of differences between high- and low-risk groups. (A) Cell clustering typing of tumor 
microenvironment; (B-F) Comparison of cell type differences in tumor microenvironment between high- and low-risk groups for DKK1, F5, GFRA1, GPC3, GPC3 in GC tissues 
versus normal tissues, and H. pylori-infected versus non-infected GC tissues. 
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We performed GO and KEGG enrichment 
analysis of coagulation-related differential genes and 
showed that the enriched pathways were mainly 
focused on lipid metabolism, especially cholesterol 
metabolism, fat digestion and absorption, and thyroid 
hormone synthesis. Among them, cholesterol 
metabolism plays a key role in tumorigenesis and 
tumor development[27-29]. Previous studies have 
shown that pancreatic cancer growth was closely 
associated with aberrant cholesterol metabolism. 
Zheng et al.'s[30] study pointed out that in 
Wnt-dependent pancreatic ductal adenocarcinoma, 
cholesterol promotes tumor growth through the 
fzd5-mediated Wnt/β-catenin signaling pathway. In 
addition, the results of Tang et al.[31] showed that 
cholesterol metabolism-related genes were effective in 
predicting the prognosis and immunotherapy 
response of GC. The results of Yue et al.[32] further 
suggested that the long-chain non-coding RNA 
Linc01711 was involved in the progression of GC 
through histone modification-mediated 
reprogramming of cholesterol metabolism. Therefore, 
future evaluation of cholesterol metabolism genes and 
cholesterol metabolism patterns have the potential to 
predict the outcome of immunotherapy and guide 
therapeutic strategies.  

TMB analysis showed that the number of base 
mutations was significantly higher in patients in the 
low-risk group than in the high-risk group, an 
observation that was strongly associated with a better 
prognosis for patients in the low-risk group. This 
finding was associated with advantages in 
chemotherapy response and immune response in 
patients with high TMB. A study by Park et al.[33] 
noted that small-cell lung cancer patients with higher 
than median TMB had significantly prolonged 
progression-free survival and overall survival after 
concurrent radiotherapy. In the field of GC, the results 
of Li et al.[34] similarly showed that patients with high 
TMB were positively associated with the efficacy of 
neoadjuvant chemotherapy, and the disease-free 
survival of these patients was significantly higher 
than that of patients with low TMB. In addition, we 
analyzed the sensitivity of chemotherapy drugs and 
found that patients in the low-risk group had lower 
drug-sensitive concentrations of chemotherapy drugs 
such as bleomycin, camptothecin, cisplatin, and 
doxorubicin. This result suggests that we should pay 
extra attention to the response of gastric cancer 
patients in the high- and low-risk groups to different 
chemotherapy regimens, which can be used as a basis 
for the development of individualized treatment 
strategies.  

Through single-cell analysis, we examined the 
differences in cell types within the tumor 

microenvironment between high-risk and low-risk 
groups, comparing DKK1, F5, GFRA1, GPC3, and 
HABP2 expression in gastric cancer (GC) tissues with 
normal tissues, as well as between Helicobacter 
pylori-infected and uninfected GC tissues. DKK1 may 
influence the immune system's ability to recognize 
and eliminate tumor cells by regulating the activity of 
immunosuppressive cells, such as Treg cells and 
tumor-associated macrophages (TAMs)[35]. GFRA1 
plays a role in the growth and repair of the nervous 
system, and its aberrant expression may be associated 
with cancer cell proliferation and migration, 
indicating its potential as an immunotherapy 
target[36]. Furthermore, single-cell analysis revealed 
distinct expression patterns of coagulation-related 
genes in different immune cells, which could help 
identify molecular markers associated with patient 
prognosis in a clinical setting. High F5 gene 
expression, for instance, may indicate an increased 
risk of thrombosis, a critical prognostic factor in 
cancer patients[37]. GPC3, known as a tumor marker 
in certain cancers (e.g., hepatocellular carcinoma), 
may serve a similar role in gastric cancer, suggesting 
that high expression in specific cell types could aid in 
disease prognosis[38]. Additionally, tumor immune 
single-cell analysis can identify immune cell 
subpopulations responsive to immunotherapy. For 
example, HABP2 expression in certain immune cells 
may be related to immune evasion or anti-tumor 
immune responses. In-depth analysis of these genes' 
expression in various immune cell types could 
provide valuable insights into optimizing immuno-
therapy strategies, such as immune checkpoint 
inhibitors (e.g., PD-1 inhibitors)[39]. In conclusion, 
tumor immune single-cell analysis not only uncovers 
the expression patterns of coagulation-related genes 
across different cell types in gastric cancer tissues but 
also offers valuable information for clinical 
applications such as personalized therapy, prognosis 
evaluation, and the optimization of immunotherapy.  

Increased tumor mutation burden may promote 
the expression of tumor antigens, thereby enhancing 
the body's immune response and thus improving the 
prognosis of patients[40-42]. In the present study, we 
compared the differences in the immune 
microenvironment between GC patients in the 
high-score group and the low-score group, and the 
results showed that the content of T-cell follicular 
helper cells and activated CD4+ memory T cells in the 
low-score group was significantly higher than that in 
the high-score group. This suggests that the number 
of critical CD4+ T cells was higher in the low-score 
group, and CD4+ T cells play an important role in GC 
immunotherapy. The study by Gao et al.[43] noted 
that the percentage of peripheral blood CD4+ T cells 
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expressing PD-1 was significantly higher in 
treatment-effective advanced GC patients than in 
treatment-ineffective patients, further emphasizing 
the key role of CD4+ T cells in immunotherapy 
efficacy. Our high- and low-risk groupings were 
effective in differentiating immunotherapy-sensitive 
patients and augur well for a more personalized 
immunotherapy regimen based on the patient's 
immune microenvironmental status.  

Our study showed that prognostic 
coagulation-related genes screened by Lasso 
regression could predict the prognosis of GC patients 
more accurately. Based on the risk score calculated 
from prognostic coagulation-related genes, GC 
patients could be significantly divided into two 
groups: high TMB and low TMB. In addition to this, 
we further analyzed the characteristics of tumor 
immune infiltration in patients in the high- and 
low-risk groups. The differences in TMB and immune 
infiltration characteristics between the high and 
low-risk groups can help the selection of 
chemotherapy and immunotherapy regimens for 
patients. Therefore, in addition to screening new 
prognostic biomarkers for GC, our study also 
provides a theoretical basis for individualized 
chemotherapy and immunotherapy for GC patients.  
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