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Abstract 

Objective: To investigate the value of a machine learning model that integrates radiomics features and 
peripheral blood inflammatory markers in predicting the prognosis of patients with unresectable 
esophageal squamous cell carcinoma (ESCC) receiving PD-1 inhibitor combined with concurrent 
chemoradiotherapy. 
Methods: A retrospective collection was conducted involving 105 patients with unresectable ESSC who 
received PD-1 inhibitors combined with concurrent chemoradiotherapy at the First Affiliated Hospital of 
the University of Science and Technology of China from January 2020 to August 2023. These patients 
were randomly divided into a training set (n=74) and a validation set (n=31). Radiomics features were 
extracted from arterial phase CT images obtained before initial treatment, with feature selection 
performed using Pearson Correlation and LASSO-COX methods. Baseline clinical characteristics were 
analyzed, and hematological parameters were collected before the start of immunotherapy and within 4-6 
weeks post-treatment to calculate inflammatory markers. Subsequently, independent radiomics features 
influencing patient prognosis were identified using a multivariate Cox proportional hazards model, and 
these features were incorporated into a clinical feature-based multivariate Cox model to derive 
independent prognostic factors combining radiomics and clinical characteristics. Nomograms were 
constructed to predict the 2-year progression-free survival (PFS) of patients based on the results of COX 
analysis involving clinical characteristics, radiomic features, and combined indicators. The models were 
evaluated and assessed using ROC curves and calibration curves. 
Results: In the training cohort, the AUC was 0.705 for the clinical model, 0.573 for the radiomics model, 
and 0.834 for the combined model. In the validation cohort, the AUC was 0.784 for the clinical model, 
0.775 for the radiomics model, and 0.872 for the combined model. 
Conclusion: The combined model integrating the radiomic feature NGTDM-busyness, the inflammatory 
marker ΔNLR, and the clinical characteristic M stage offers the optimal predictive value for the 2-year PFS 
in patients. 
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Introduction 
Esophageal cancer ranks as the seventh most 

common malignancy and the sixth leading cause of 
cancer-related mortality worldwide [1]. In China, 
esophageal squamous cell carcinoma (ESCC) is the 
predominant histological subtype, accounting for 
over 90% of all esophageal cancer cases [2]. Due to the 
typically insidious onset of esophageal cancer, more 
than one-third of patients are already at an advanced 
stage at initial diagnosis, rendering them ineligible for 
curative surgery; these patients are considered 
unresectable [3]. Unresectable ESCC patients can be 
categorized into two groups: locally advanced and 
metastatic, with differing standard treatment 
strategies for each. Concurrent chemoradiotherapy is 
the widely accepted treatment for locally advanced 
ESCC, while platinum-based systemic chemotherapy, 
with or without radiotherapy, is the main first-line 
treatment for metastatic ESCC [4]. In recent years, the 
rapid advancement of immunotherapy has 
significantly altered the treatment landscape for 
unresectable ESCC. Monoclonal antibodies targeting 
programmed death-1 (PD-1) or programmed 
death-ligand 1 (PD-L1) have demonstrated 
compelling responses and clinical benefits across 
various malignancies, including ESCC [5]. Multiple 
studies have confirmed that immunotherapy 
combined with concurrent chemoradiotherapy offers 
a significant survival advantage over definitive 
concurrent chemoradiotherapy alone in prolonging 
overall survival for patients with locally advanced 
ESCC [6-8]. For metastatic esophageal cancer, 
immunotherapy combined with chemoradiotherapy 
has also become the current standard first-line 
treatment [9]. 

However, due to the heterogeneity of 
unresectable ESCC, there is significant variability in 
individual responses to immunotherapy in clinical 
practice [10]. Although PD-L1 expression status, 
tumor mutational burden (TMB), and microsatellite 
instability (MSI) are currently recognized molecular 
markers, they have not yet been deemed ideal 
predictive markers [11]. The selection of optimal 
patient subgroups and the search for effective 
predictive biomarkers have become hot topics in the 
field of immunotherapy. Previous studies have 
indicated that the immune microenvironment, 
through its interaction with immune cells, directly 
influences the efficacy of immunotherapy [12]. In 
recent years, radiomics, a process that converts 
medical images into high-dimensional, minable, and 
quantifiable imaging features through 
high-throughput data extraction algorithms, has 
shown significant value in assessing the immune 

microenvironment and predicting responses to 
immunotherapy [13]. Moreover, neutrophils, 
lymphocytes, monocytes, and platelets, as vital 
components of the immune microenvironment, 
constitute a comprehensive index of peripheral blood 
inflammatory markers derived from the 
aforementioned inflammatory cells, exhibiting 
outstanding efficacy in differentiating patient 
responses to immunotherapy across various solid 
tumors [14-16]. The predictive value of models 
combining radiomics features and peripheral blood 
inflammatory markers for immunotherapy efficacy 
has been validated in non-small cell lung cancer [17]; 
however, such studies have not yet been reported in 
esophageal cancer.  

In this study, we extracted radiomics features 
from contrast-enhanced CT scans taken before the 
patients received their first treatment and established 
a radiomics model. Additionally, we analyzed the 
baseline clinical characteristics of the patients before 
treatment and extracted hematological parameters 
from before the first immunotherapy session and 
within 4-6 weeks after immunotherapy to calculate 
inflammatory markers. A clinical model was then 
constructed by integrating clinical characteristics and 
inflammatory markers. Finally, a combined model 
was developed by fitting radiomics features with 
inflammatory markers. The aim was to evaluate the 
predictive value of these three models for the 2-year 
progression-free survival of patients with 
unresectable ESCC receiving PD-1 inhibitor combined 
with concurrent chemoradiotherapy. 

Materials and Methods 
Study design and patients 

This study retrospectively collected data from 
105 patients with ESSC who received anti-PD-1 
monoclonal antibody combined with 
chemoradiotherapy at the First Affiliated Hospital of 
the University of Science and Technology of China 
between January 2020 and August 2023. The 
follow-up period extended until March 1, 2024. All 
patients provided informed consent upon enrollment. 
This study complies with the Declaration of Helsinki 
(2013 version) and was approved by the Ethics 
Committee of the First Affiliated Hospital of the 
University of Science and Technology of China 
(approval number: 2024-ZNY-04). Inclusion criteria 
were as follows: (1) Histopathology confirmed 
squamous cell carcinoma; (2) Microsatellite stability 
(MSS) or proficient mismatch repair (pMMR); (3) 
clinical stages cT3-4N0M0/cT1-4N+M0 or cM1 
(non-regional lymph node metastasis, radiotherapy 
during immunotherapy) according to the 8th edition 
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of the AJCC; (4) enhanced CT scan performed within 
one month prior to the initiation of treatment; (5) 
completion of a complete blood count within one 
week before and 4-6 weeks after immunotherapy 
initiation; (6) Eastern Cooperative Oncology Group 
Performance Status (ECOG PS) ≤2; (7) receipt of 
three-dimensional conformal radiotherapy (3D-CRT) 
or intensity-modulated radiotherapy (IMRT), with at 
least two cycles of immunotherapy and at least one 
efficacy evaluation during treatment. Exclusion 
criteria included: (1) patients who underwent surgical 
treatment; (2) CT images in which the primary tumor 
could not be detected or segmented, or poor image 
quality; (3) presence of hematological disorders, 
autoimmune diseases, infections, or other conditions 
that could influence inflammatory markers; (4) loss to 
follow-up or discontinuation of immunotherapy due 
to severe immune-related adverse effects. Based on 
the study design for the predictive model, all patients 
were randomly divided into a training set and a 

validation set in a 7:3 ratio (Figure 1). 

Clinical characteristics 
The clinical characteristics of the patients were 

collected, including age, gender, tumor location, TNM 
stage, treatment modality, radiotherapy technique, 
and chemotherapy regimen. Additionally, the 
absolute neutrophil count (ANC), absolute 
lymphocyte count (ALC), absolute platelet and 
monocyte counts, as well as albumin levels (g/L), 
were recorded within one week prior to the first 
immunotherapy session and 4-6 weeks 
post-immunotherapy. NLR was calculated as the ratio 
of ANC and ALC, PLR as platelet counts to ALC ratio, 
and SII as the absolute platelet count multiplied by 
NLR. MLR was calculated as the absolute monocyte 
count/ALC; albumin level (g/L) + 5 × ALC was 
defined as PNI. Additionally, the relative changes in 
NLR, PLR, SII, MLR, and PNI pre- and post-treatment 
were defined as the ratio between the corresponding 

 

 
Figure 1: Patients enrollment flowchart. 
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time points and the markers pre-treatment, referred to 
as ΔNLR, ΔPLR, ΔSII, ΔMLR, and ΔPNI, respectively. 
The tumor location and clinical TNM staging were 
assessed using pre-treatment imaging modalities such 
as CT, PET-CT, and MRI. All staging was 
independently performed by two radiologists with 
over 15 years of clinical diagnostic experience, and 
any discrepancies were resolved through 
consultation. Patients underwent one of four distinct 
treatment regimens: Immune Checkpoint 
Inhibitor-Induced Chemoradiotherapy (ICI-CCRT), 
Concurrent Chemoradiotherapy with Immune 
Checkpoint Inhibitor (CCRT-ICI), Immune 
Checkpoint Inhibitor-Induced Chemoradiotherapy 
with Consolidation Immune Checkpoint Inhibitor 
(ICI-CCRT-ICI), Immune Checkpoint Inhibitor with 
Sequential Chemoradiotherapy (ICI-SCRT). The 
immunotherapy administered to all patients consisted 
of PD-1 inhibitors (pembrolizumab, nivolumab, 
tislelizumab, camrelizumab, sintilimab, toripalimab), 
and the chemotherapy regimen was platinum-based 
first-line therapy, including platinum combined with 
taxanes (TP), fluorouracil (PF), or docetaxel (DP), with 
dosages administered according to the recommended 
guidelines every three weeks.  

Scanning methodology 
All patients underwent contrast-enhanced chest 

and full abdominal CT scans within one month prior 
to treatment, utilizing a 128-slice spiral CT scanner 
(Neusoft Medical NeuViz 128). Patients were required 
to fast for at least 6 hours before the examination, 
which was conducted in the supine position. The 
scanning range extended from the first cervical 
vertebra (C1) to the bilateral anterior superior iliac 
spines. The parameters for the contrast-enhanced CT 
scan were as follows: tube voltage of 120 kVp, tube 
current of 250–350 mAs, slice thickness of 5 mm, 
reconstruction interval of 5 mm, field of view of 35–50 
cm, matrix size of 512×512, rotation time of 0.7 s, and a 
pitch of 1.375, using a standard reconstruction 
algorithm. Following the non-contrast CT scan, 
iopamidol (300 mg I/ml) was intravenously injected 
at a rate of 3.0 ml/s via a high-pressure injector at a 
dosage of 1.2 ml/kg. Arterial, venous, and delayed 
phase images were acquired at 30 seconds, 70 
seconds, and 2 minutes after the initiation of contrast 
injection, respectively. 

Feature extraction and selection 
The enhanced CT images were imported into 

ITK-SNAP (www.itk-snap.org), where the target 
lesion margins were delineated layer by layer on the 
arterial phase images, and subsequently merged into 
a three-dimensional region of interest. Two 

radiologists, each with over 15 years of clinical 
diagnostic experience, independently reviewed the 
images to ensure the reproducibility of the 
segmentation both within and between observers. The 
intra-observer agreement and inter-observer 
agreement of feature extraction were evaluated by 
correlation coefficients (ICCs). To compute the 
intra-observer ICC, 50 CT images were selected 
randomly and segmented twice in 1 month (at least 
10 days apart) by reader A. To compute the 
inter-observer ICC, the selected images were 
segmented by two radiologists independently (reader 
A and reader B). Segmentation was performed to 
further obtain independent feature extraction to 
compute the intra-observer and inter-observer ICCs. 
When the ICC was greater than 0.75, it was 
considered good agreement, and the remaining 
segmentation was performed by reader A. The 
imaging histological features were extracted from the 
liver lesions using the Python-based PyRadiomics 
software package (http://pyradiomics.readthedocs 
.io), following the guidelines set by the Imaging 
Biomarker Standardization Initiative. Detailed 
explanations of these radiomic features can be found 
in the PyRadiomics documentation (https:// 
pyradiomics.readthedocs.io/en/latest/index.html). 
Feature selection was performed using R software v. 
4.3.2 (The R Foundation for Statistical Computing, 
Vienna, Austria). The Z-score normalization method 
was applied to standardize the scales of different 
features, ensuring that outdated feature scales were 
distributed within the range of 0 to 1. The 
"findCorrelation" function from the "caret" package in 
R was utilized to perform pairwise correlation 
analysis, with an absolute correlation cutoff set at 0.9, 
to eliminate redundant radiomic features. 
Subsequently, the Least Absolute Shrinkage and 
Selection Operator (LASSO) Cox regression was 
employed, which is a qualified method for regressing 
high-dimensional predictors by shrinking some 
regression coefficients to zero through penalization, to 
select the most predictive radiomic features from the 
training cohort. The penalty parameter (lambda) was 
determined through ten-fold cross-validation based 
on the minimum error criterion. The radiomics 
workflow is illustrated in Figure 2. 

Efficacy evaluation and study endpoints 
Treatment response was assessed according to 

the [Response Evaluation Criteria in Solid Tumors 
(RECIST) v. 1.1] and categorized based on clinical 
data and imaging findings from electronic medical 
records into progressive disease (PD), stable disease 
(SD), partial response (PR), and complete response 
(CR). The primary endpoint of this study was 
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progression-free survival (PFS), defined as the time 
from the initiation of anti-cancer therapy to the first 
documented progression, death, or the last follow-up. 

Model development and evaluation 
The selected features from the training set were 

weighted according to the coefficients obtained from 
LASSO and were linearly combined to calculate the 
Rad-score. The cutoff value for the Rad-score was 
determined using X-tile software (version 3.6.1; Yale 
University School of Medicine, New Haven, USA), 
and patients were stratified into high-risk and 
low-risk groups based on this cutoff. Survival 
differences between the two groups were compared 
using the Kaplan-Meier method to preliminarily 
assess the association between the radiomics model 
and PFS. Previous studies have demonstrated that the 
predictive performance of radiomic features with high 
potential is significantly diminished when combined 

with an increased number of features, compared to 
when they are used independently [18]. Therefore, 
following previous studies, a multivariate Cox 
proportional hazards model was used to select 
radiomic features (p<0.05) for inclusion in the 
subsequent model development [19, 20]. The selected 
radiomic features were incorporated into a 
multivariate Cox proportional hazards model based 
on clinical characteristics to identify independent 
prognostic factors that include both radiomic and 
clinical features. Nomograms and calibration curves 
were constructed for the clinical model, radiomic 
model, and combined model. The predictive value of 
the three models for patient outcomes was assessed 
using the area under the receiver operating 
characteristic (ROC) curve and concordance index 
(C-index) in both the training and validation cohorts.  

 
 

 
Figure 2: Radiomics workflow diagram. 
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Figure 3: Heatmap of patient inflammatory marker distribution and clustering. 

 

Statistical analysis 
Statistical analyses were conducted using R 4.3.2 

and SPSS v. 27 (IBM Corp, Armonk, NY, USA). 
Descriptive statistics were performed for all variables. 
Normality tests were conducted for continuous 
variables. Data that followed a normal distribution 
were expressed as 𝑥𝑥±s and compared between groups 
using independent samples t-tests. Non-normally 
distributed data were presented as M (Q1, Q3) and 
compared between groups using Mann-Whitney U 
tests. chi-square tests were used for categorical 
variables. A p-value of less than 0.05 was considered 
statistically significant. We used the “glmnet” 
package to perform the LASSOCox regression. The 
“rms” package was used for multivariable Cox 
regression analysis, nomogram construction and 
calibration. The “DynNom” package was used to 
build nomograms on the web. The R function cox.zph 
was employed to test the proportional hazards 
assumption for a Cox regression model fit. The 
C-index was calculated and compared using function 
concordance.index and C-index. comp in the 
“survcomp” package. Prediction error curves were 
generated using “pec” package. 

Results 
Baseline clinical characteristics 

A total of 105 patients were included in this 
study, The median PFS for all patients was 12.30 
months. The patients' ages ranged from 46 to 95 years, 
with a mean age of 67.34 ± 9.17 years. Among them, 4 
patients (3.8%) achieved complete response (CR), 36 
patients (34.3%) had partial response (PR), 54 patients 
(51.4%) experienced stable disease (SD), and 11 
patients (10.5%) had progressive disease (PD). The 
disease control rate (DCR) was 89.5%, and the 

objective response rate (ORR) was 38.1%. The patients 
were randomly divided into a training set (n=74) and 
a validation set (n=31) in a 7:3 ratio. Baseline clinical 
characteristics of patients in the training and 
validation sets are shown in Table 1. Inflammatory 
markers for all patients are presented in Table 2, and 
their distribution is illustrated in Figure 3. Results 
indicated that, except for pre-treatment NLR and 
post-treatment NLR, no other clinical characteristics 
showed statistically significant differences between 
the training and validation sets. 

Reproducibility of radiomic features 
Based on observer agreement both within and 

between observers, the ICCs for Reader A's two 
measurements ranged from 0.831 to 0.922. The 
interobserver ICCs between the two readers ranged 
from 0.736 to 0.907. These results indicate good 
reproducibility of feature extraction both within and 
between observers. Ultimately, all results were based 
on measurements by Reader A. 

Radiomic feature extraction 
A total of 1,874 radiomic features were extracted 

from the three-dimensional ROIs of esophageal cancer 
images (Figure 4). The original features included 14 
shape features, 18 first-order features, and 75 
second-order (texture) features (24 gray level 
co-occurrence matrix [GLCM] features, 14 gray level 
dependence matrix features, 16 gray level run length 
matrix [GLRLM] features, 16 gray level size zone 
matrix features, 5 neighborhood gray tone difference 
matrix [NGTDM] features). The original CT images 
were filtered using wavelet, Laplacian-of-Gaussian, 
square, square root, logarithm, exponential, gradient 
filters, Local Binary Pattern 2D/3D to generate 
higher-order statistics. Wavelet filters were applied 
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using high (H) or low (L) pass filters to decompose the 
three-dimensional images, resulting in eight 
decompositions: HHH, LLL, HHL, HLL, LHH, LHL, 
LLH, and HLH. Local Binary Pattern 3D was 
employed to resample the images in three directions 
(Lbp-3D-k, Lbp-3D-m1, Lbp-3D-m2). Thus, the total 
number of radiomic features was 1,874 [(18 + 75) × 19 
+ 18 + 75 + 14 = 1874]. After excluding features with 
an absolute Pearson correlation coefficient ≥0.9, 363 
features remained. Following dimensionality 
reduction using LASSO COX, a total of 6 radiomic 
features were identified (Figure 5, Table 3). 

 

Table 1: Baseline clinical characteristics of patients 

 Training set (n=74) Verification set (n=31) P value 
Gender   0.363 
Male 57 (77.0%) 27 (87.1%)  
Female 17 (23.0%) 4 (12.9%)  
Age    0.795 
<60 58 (78.4%) 25 (80.6%)  
≥60 16 (21.6%) 6 (19.4%)  
Tumor location    0.208 
Cervical 1 (1.4%) 0 (0.0%)  
Upper 6 (8.1%) 7 (22.6%)  
Middle 27 (36.5%) 10 (32.3%)  
Lower 40 (54.1%) 14 (45.2%)  
Differentiation   0.874 
Well 7 (9.5%) 2 (6.5%)  
middle 43 (58.1%) 19 (61.3%)  
Poorly  24 (32.4%) 10 (32.2%)  
ECOG PS   0.953 
0 22 (29.7%) 9 (29.0%)  
1 36 (48.6%) 16 (51.6%)  
2 16 (21.6%) 6 (19.4%)  
Combined positive score   0.351 
CPS<10 48 (64.9%) 23 (74.2%)  
CPS≥10 26 (35.1%) 8 (25.8%)  
Therapeutic model     0.457 
ICI-CCRT 11 (14.9%) 7 (22.6%)  
CCRT-ICI 11 (14.9%) 7 (22.6%)  
ICI-CCRT-ICI 16 (21.6%) 4 (12.9%)  
ICI-SCRT 36 (48.6%) 13 (41.9%)  
Radiotherapy technology     0.406 
IMRT 40 (54.1%) 14 (45.2%)  
3D-CRT 34 (45.9%) 17 (54.8%)  
Chemotherapy plan    0.890 
TP 65 (87.8%) 28 (90.3%)  
DP 5 (6.8%) 1 (3.2%)  
PF 4 (5.4%) 2 (6.5%)  
T stage   0.066 
T2 2 (2.7%) 4 (29.1%)  
T3 48 (64.9%) 21 (67.7%)  
T4 24 (32.4%) 6 (3.2%)  
N stage   0.462 
N1 16 (21.6%) 7 (23.3%)  
N2 30 (40.5%) 16 (51.6%)  
N3 28 (37.8%) 8 (25.8%)  
M stage   0.541 
M0 43 (58.1%) 16 (51.6%)  
M1 31 (41.9%) 15 48.4%)  

Abbreviations: ICI-CCRT: Immune Checkpoint Inhibitor-Induced 

Chemoradiotherapy; CCRT-ICI: Concurrent Chemoradiotherapy with Immune 
Checkpoint Inhibitor; ICI-CCRT-ICI: Immune Checkpoint Inhibitor-Induced 
Chemoradiotherapy with Consolidation Immune Checkpoint Inhibitor; ICI-SCRT: 
Immune Checkpoint Inhibitor with Sequential Chemoradiotherapy 

 

Calculation of Rad-score 
The Rad-score was calculated by weighting the 

selected features from the training set according to 
their respective coefficients obtained from LASSO. 
The formula for calculating the Rad-score is as 
follows: 

Rad-score = 
-2099.693104633284*A_lbp-2D_firstorder_90Percentile 
+1674.37581167117771*A_log-sigma-1-0-3D_glszm_S

mallAreaLowGrayLevelEmphasis 
+1790.137956984716*A_log-sigma-1-0-mm-3D_ngtdm

_Busyness 
-1827.292786384293*A_wavelet-HHH_glrlm_GrayLev

elNonUniformityNormalized 
+1914.8264558730364*A_wavelet-LHL_firstorder_Ske

wness 
-1991.3853589220475*A_wavelet-LHL_glszm_HighGr

ayLevelZone 

The cutoff value for Rad-score obtained using 
X-tile software was -561.77429933223. Based on this 
cutoff, patients were stratified into high-risk and 
low-risk groups (Figure 6a). Kaplan-Meier survival 
analysis revealed that the PFS in the low-risk group 
was significantly higher than that in the high-risk 
group (18.60 vs. 9.17, p=0.021) (Figure 6b). 

 

Table 2: Analysis of differences in inflammatory markers between 
training and validation sets 

 Training set (n=74) Verification set (n=31) P value 
Pre-NLR 2.84(1.90,3.84) 3.75(2.42,4.91) 0.047 
Pre-PLR 139.20(104.64,184.35) 153.69(118.60,190.32) 0.246 
Pre-MLR 0.34(0.25,0.46) 0.37±0.17 0.883 
Pre-SII 598.25(366.93,830.12) 730.60(465.68,936.64) 0.106 
Pre-PNI 68.31(54.82,82.35) 68.03±25.91 0.560 
Post-NLR 2.52(1.60,4.07) 3.95±1.79 0.005 
Post-PLR 127.85(97.11,177.88) 156.91(117.17,216.41) 0.092 
Post-MLR 0.35(0.25,0.53) 0.36(0.28,0.59) 0.723 
Post-SII 468.31(274.27,841.98) 657.82±327.19 0.126 
Post-PNI 65.01±26.48 55.69±25.45 0.100 
ΔNLR 1.07(0.55,1.40) 1.16±0.46 0.415 
ΔPLR 0.96(0.72,1.20) 0.92(0.65,1.32) 0.911 
ΔMLR 1.13(0.78,1.72) 1.30±0.72 0.850 
ΔSII 0.85(0.54,1.35) 0.89±0.45 0.741 
ΔPNI 0.94(0.68,1.22) 0.86(0.56,1.11) 0.279 

Note: pre-: before treatment, post-: after treatment. Δ: the ratio between the 
corresponding time points and the markers pre-treatment. 
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Figure 4: Correlation analysis of radiomic features. 

 
Figure 5: LASSO-based radiomic feature selection process. Note: (a) LASSO model accuracy score plot; (b) LASSO path diagram; (c) LASSO model feature weight plot. 
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Figure 6: Preliminary evaluation of the radiomics model. Note: (a) Radiomics scores for each patient in the training group; (b) Kaplan-Meier survival analysis between 
low-risk and high-risk groups. 

 
Table 3: Six radiomic features selected by LASSO-Cox 

 Training set  Verification set  P value 
LFOP 0.167(n=72), -6(n=2) 0.167(n=27), -6(n=4) 0.111 
LSGS -0.17(-0.72,0.67) 0.13(-1.12,0.65) 0.883 
LSNB -0.38(-0.57,0.19) -0.25(-0.49,0.20) 0.354 
WHGG -0.37(-0.49, -0.02) -0.39(-0.53, -0.24) 0.325 
WLFS 0.00±1.01 0.21±1.07 0.331 
WLGH 0.00±1.01 -0.21(-0.71,0.52) 0.650 

Note: LFOP, A_lbp-2D_firstorder_90Percentile; LSGS, A_log-sigma-1-0-3D_ 
glszm_SmallAreaLowGrayLevelEmphasis; LSNB, A_log-sigma-1-0-mm-3D_ 
ngtdm_Busyness; WHGG, A_wavelet-HHH_glrlm_GrayLevelNonUniformity 
Normalized; WLFS, A_wavelet-LHL_firstorder_Skewness; WLGH, A_wavelet- 
LHL_glszm_HighGrayLevelZoneEmphasis 

 

Selection of clinical and radiomic features 
Univariate and multivariate Cox proportional 

hazards models were used to select clinical and 
radiomic features. Multivariate analysis of clinical 
features identified M stage (P=0.008, HR: 2.166, 95% 
CI: 1.222–3.840) and ΔNLR (P=0.024, HR: 0.176, 95% 
CI: 1.090–3.431) as independent risk factors affecting 
patient prognosis (Table 4, Figure 7a) (Figure s1). 
Multivariate analysis of radiomic features revealed 
that A_lbp-2D_firstorder_90Percentile (P=0.010, HR: 
0.717, 95% CI: 0.557–0.924), A_log-sigma-1-0- 
mm-3D_ngtdm_Busyness (P=0.010, HR: 1.418, 95% 
CI: 1.089–1.848), and A_wavelet-LHL_firstorder_ 
Skewness (P=0.039, HR: 1.377, 95% CI: 1.016–1.867) 
were significantly associated with patient prognosis 
(Figure 7b) (Figure s2). When incorporating both the 
selected radiomic and clinical features into a Cox 
multivariate analysis, the optimal predictive factors 
were identified as the radiomic feature 
A_log-sigma-1-0-mm-3D_ngtdm_Busyness (P=0.002, 
HR: 1.551, 95% CI: 1.174–2.048), the inflammatory 
marker ΔNLR (P=0.040, HR: 1.809, 95% CI: 1.026–

3.188), and the clinical feature M stage (P=0.004, HR: 
2.453, 95% CI: 1.335–4.508) (Figure 7c) (Figure s3). 

 
 

Table 4: Univariate and multivariate COX analysis for the clinical 
model  

 Univariate analysis Multiplicity analysis 
 P value HR 95%CI P value HR 95%CI 
Gender 0.238 1.545 0.750~3.186  
Age 0.701 0.994 0.967~1.023 
Tumor location 0.179 0.969 0.337~2.783 
Differentiation 0.826 1.052 0.669~1.656 
ECOG PS 0.095 0.711 0.476~1.061 
Combined positive 
score 

0.078 0.574 0.309~1.065 

Therapeutic model 0.358 1.141 0.861~1.510 
Radiotherapy 
technology 

0.108 0.626 0.354~1.109 

Chemotherapy plan 0.342 0.500 0.196~1.278 
T stage 0.066 1.872 0.253~13.834 
N stage 0.057 2.649 1.121~6.261 
M stage 0.005 2.224 1.277~3.943 0.008 2.166 1.222~3.840 
Pre-NLR 0.057 0.853 0.724~1.005  
Pre-PLR 0.805 0.999 0.995~1.004 
Pre-MLR 0.525 0.572 0.102~3.204 
Pre-SII 0.104 1.000 0.999~1.000 
Pre-PNI 0.192 1.008 0.996~1.021 
Post-NLR 0.145 1.099 0.968~1.247 
Post-PLR 0.509 1.001 0.998~1.004 
Post-MLR 0.809 1.073 0.605~1.904 
Post-SII 0.094 1.000 1.000~1.001 
Post-PNI 0.301 0.994 0.984~1.005 
ΔNLR 0.001 1.500 1.176~1.913 0.024 1.934 1.090~3.431 
ΔPLR 0.027 1.311 1.031~1.667 0.904 1.033 0.617~1.730 
ΔMLR 0.642 1.046 0.867~1.261    
ΔSII 0.012 1.319 1.063~1.638 0.394 0.751 0.390~1.448 
ΔPNI 0.228 0.682 0.365~1.271    

Abbreviations: CI: confidence interval; HR: hazard ratio. 
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Model development and evaluation 
Three predictive models were constructed based 

on clinical features, radiomic features, and a 
combination of clinical and radiomic features from 
Cox multivariate analysis to predict the 2-year PFS 
rate for inoperable ESCC patients receiving PD-1 
inhibitors combined with concurrent 
chemoradiotherapy (Figure 8) (Figure s4, Figure s5, 
Figure s6). The C-index for the three models was 
calculated to evaluate the consistency between 
nomogram predictions and recorded survival 
outcomes. Results indicated that in the training 
cohort, the C-indexes for the clinical model, radiomic 
model, and combined model were 0.649, 0.646, and 
0.648, respectively (Figure 9a, 9b, 9c). In the validation 
cohort, the C-indexes for these models were 0.803, 

0.656, and 0.864, respectively (Figure 9d, 9e, 9f). The 
prediction results of all three models showed high 
consistency with the recorded actual survival 
outcomes in both cohorts. ROC curve analysis 
revealed that in the training cohort, the clinical model 
had an AUC of 0.705 (95% CI: 0.521–0.888), the 
radiomic model had an AUC of 0.573 (95% CI: 0.500–
0.767), and the combined model had an AUC of 0.834 
(95% CI: 0.702–0.965) (Figure 10a). In the validation 
cohort, the clinical model had an AUC of 0.784 (95% 
CI: 0.566–1.000), the radiomic model had an AUC of 
0.775 (95% CI: 0.560–0.991), and the combined model 
had an AUC of 0.872 (95% CI: 0.676–1.000) (Figure 
10b). The combined model demonstrated the best 
predictive value for the 2-year PFS rate in both the 
training and validation cohorts. 

 
 
 

 
Figure 7: forest plot of cox multivariate analysis. Note: (a) Forest plot of Cox multivariate analysis for the clinical model; (b) Forest plot of Cox multivariate analysis for 
the radiomics model; (c) Forest plot of Cox multivariate analysis for the combined model  

 
 

 
Figure 8: Nomogram. Note: (a) Nomogram for the clinical model; (b) Nomogram for the radiomics model; (c) Nomogram for the combined model. 
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Figure 9: Calibration curves for the training and validation sets. Note: (a) Calibration curve for the clinical model in the training Set; (b) Calibration curve for the 
radiomics model in the training set; (c) Calibration curve for the combined model in the training set; (d) Calibration curve for the clinical model in the validation set; (e) 
Calibration curve for the radiomics model in the validation set; (f) Calibration curve for the combined model in the validation set.  

 
Figure 10: ROC curves for the training and validation sets. Note: (a) ROC curves for the training set; (b) ROC curves for the validation set. Model 1: clinical model; 
Model 2: radiomics model; Model 3: combined model. 

 

Discussion 
In recent years, radiomics has provided a 

significant complement to traditional biomarkers by 
identifying subtle differences in the tumor 
microenvironment and genomic heterogeneity, which 

aid in distinguishing patient responses to 
immunotherapy and assist in clinical decision-making 
[10]. Additionally, various cellular components in 
peripheral blood play crucial roles in tumor cell 
proliferation, metastasis, and immune evasion [21, 
22]. Inflammatory markers based on peripheral blood 
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cell components are vital biomarkers linking the 
tumor stroma microenvironment with immune 
response to therapy, and they are also important in 
differentiating patient responses to immunotherapy 
[23]. However, at this stage, most radiomics studies 
focus on fitting analyses of extracted features, 
specifically calculating Rad-score values to predict 
disease outcomes or response to treatment. While 
these results support the potential of radiomics in 
improving patient stratification, they often lack 
biological interpretability. Therefore, this study 
established a combined predictive model by 
integrating radiomic features with peripheral blood 
inflammatory markers, aiming to provide a more 
interpretable basis for risk stratification in ESCC 
patients undergoing PD-1 inhibitor combined with 
concurrent chemoradiotherapy.  

In this study, we utilized machine learning 
techniques to integrate radiomic features with blood 
inflammatory markers to construct predictive models. 
The final combined model's Cox analysis revealed 
that the texture feature NGTDM-busyness, the 
inflammatory marker ΔNLR, and the clinical feature 
M stage were significantly associated with patient 
prognosis. The combined model demonstrated 
optimal predictive value for 2-year progression-free 
survival in both the training and validation cohorts, 
with AUC values of 0.834 and 0.872, respectively. The 
C-index indicated a good consistency between the 
predicted results and the recorded survival outcomes. 
With the widespread application of machine learning 
and deep learning in clinical research, previous 
studies have combined radiomics with clinical 
features to establish several well-performing models. 
Wang et al. [24] utilized machine learning to predict 
pathological complete response in resectable ESCC 
patients receiving neoadjuvant immunotherapy, and 
the combined model demonstrated the best predictive 
value. Jiang et al. [25] employed deep learning to 
investigate the relationship between radiomics and 
immune therapy response in 321 patients with 
advanced gastric cancer. The combined model, after 
fitting pathological features and radiomic data, 
showed good predictive value for patient PFS. These 
findings align with our study, indicating that 
integrating radiomic and clinical features can provide 
a more precise basis for patient prognostic 
stratification. Deep learning, which combines feature 
extraction and model evaluation, can automate 
repetitive learning and training processes, 
significantly reducing manual effort. However, it 
carries the risk of overfitting and has issues with 
model interpretability, necessitating optimized 
evaluation systems to enhance its clinical 
applicability. In our study, the machine learning 

method LASSO COX utilized a penalty function to 
shrink the regression coefficients of the selected 
radiomic features. The core mechanism involves 
introducing an L1 norm penalty term, which 
constrains the regression coefficients based on 
traditional least squares regression, compressing 
some coefficients to zero. This process enables feature 
selection and model simplification. Subsequently, we 
conducted Pearson correlation analyses among these 
features. For feature pairs with an absolute correlation 
coefficient exceeding 0.9, one feature was randomly 
eliminated. This process was repeated iteratively until 
all feature correlations were below 0.9. This approach 
effectively reduced multicollinearity among features, 
enhancing the model's generalization ability and 
predictive performance. Furthermore, we employed a 
10-fold cross-validation method during model 
construction. This method divided the dataset into 10 
randomly selected, approximately equal-sized 
subsets, using one subset as the test set and the 
remaining nine as the training set in each iteration. 
This validated the model's generalizability and 
minimized overfitting. Therefore, the model 
established in this study can serve as a decision 
support tool for prognosis prediction and treatment 
planning, aiding in identifying patients likely to 
achieve sustained clinical benefit from 
immunotherapy and preventing premature 
discontinuation or delayed modification of ineffective 
immunotherapy regimens.  

NGTDM features quantify the difference 
between the gray level of a voxel and the average gray 
level of its neighboring voxels within a specified 
distance. The primary features calculated from 
NGTDM include coarseness, busyness, contrast, 
complexity, and texture strength [26]. In this study, 
NGTDM-busyness was identified as an independent 
risk factor for ESCC patients undergoing PD-1 
inhibitor combined with concurrent 
chemoradiotherapy. Patients with favorable 
prognoses exhibited lower busyness in NGTDM 
texture features before treatment. Busyness reflects 
the spatial frequency of intensity variations; high 
busyness indicates a higher spatial frequency of 
intensity changes within the lesion [27].  

This feature is indicative of tumor heterogeneity 
and aggressiveness, with higher busyness suggesting 
greater heterogeneity and invasiveness of the tumor 
[28, 29]. leading to a diminished ability to sustain 
benefits from immunotherapy. Additionally, in our 
study cohort, an increase in post-treatment NLR was a 
predictor of poor prognosis. NLR is calculated by the 
ratio of circulating neutrophils to lymphocytes. A 
high neutrophil count is associated with extracellular 
matrix remodeling, promotion of angiogenesis, and 
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tumor progression [30-32]. Lymphocyte infiltration 
into tumors is considered an anti-tumor immune 
response associated with improved survival [33]. 
Lymphopenia, commonly observed in advanced 
cancer, may result in weakened and insufficient 
immune responses [34]. Early reports indicate that a 
reduction in serum lymphocyte count can accelerate 
the progression of tumor cells [35, 36]. Consequently, 
the increase in neutrophils and the decrease in 
lymphocytes after treatment ultimately lead to a 
poorer prognosis for patients. 

However, as a single-center study, this research 
is limited by a small sample size, lack of external 
validation, and inconsistencies in immunotherapy 
regimens due to its retrospective design, which may 
affect the application and generalizability of our 
model. To optimize our model and develop more 
robust and clinically applicable predictive tools, 
multicenter, large-sample, prospective, randomized 
controlled trials are needed. 

In conclusion, this study confirms the 
importance of radiomic assessment and the detection 
of changes in inflammatory markers in the diagnosis 
and follow-up of cancer patients. The effectiveness of 
antitumor therapy is not solely reflected in changes in 
tumor size. More specifically, radiomics and 
inflammatory markers can reveal early changes in the 
internal structural characteristics of tumors, thereby 
evaluating the efficacy of immunotherapy and 
providing critical information for adjusting treatment 
plans, which is essential for prolonging survival. 

Conclusion 
The texture feature NGTDM-busyness, the 

inflammatory marker ΔNLR, and the clinical 
characteristic M stage are independent prognostic 
factors for patients with unresectable ESCC receiving 
PD-1 inhibitor combined with concurrent 
chemoradiotherapy. The combined model, integrating 
radiomic features and peripheral blood inflammatory 
markers, demonstrated good performance in 
predicting the 2-year PFS rate in these patients. 
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