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Abstract 

Increasing evidence highlights the critical roles of oxidative stress and endoplasmic reticulum (ER) stress 
in tumor initiation and progression. However, the specific functions of related genes in esophageal cancer 
(ESCA) remain poorly understood. To investigate the impact of oxidative and ER stress on ESCA, this 
study analyzed the TCGA and GEO databases to identify 12 oxidative stress- and ER stress-related 
differentially expressed genes (OERDEGs). Pathway analysis revealed significant enrichment in critical 
processes such as PRC2-mediated methylation, oxidative stress-induced senescence, and NOTCH 
signaling. A novel LASSO regression model was developed to link gene expression with clinical prognosis, 
and the model was validated through ROC and Cox regression analyses. Four OERDEGs (CDKN3, 
PINK1, SPP1, and TFRC) were identified as key biomarkers for ESCA prognosis. Notably, TFRC 
expression was significantly upregulated in ESCA cells under both oxidative and ER stress conditions, in 
a dose- and time-dependent manner. Functional assays confirmed that TFRC promotes cell proliferation, 
migration, and invasion by regulating the HIF-1α and NOTCH1 signaling pathways. This study elucidates 
the complex interplay between oxidative/ER stress and ESCA progression and highlights the innovative 
application of bioinformatics to identify potential biomarkers for early diagnosis and therapeutic 
strategies. Targeting TFRC, in particular, may offer a novel approach to improving ESCA treatment and 
enhancing patient prognosis. 
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Introduction 
ESCA is the seventh most prevalent cancer 

globally and ranks sixth in cancer-related mortality 
[1]. It primarily includes two histological subtypes: 
esophageal squamous cell cancer (ESCC) and 
esophageal adenocarcinoma (EAC). Despite advances 
in multimodal treatments, such as surgery and 
chemoradiotherapy, ESCA is still associated with 
poor prognosis and low five-year survival rates [2, 3]. 
The limited efficacy of existing targeted therapies 
emphasizes the urgent need for novel biomarkers to 
enhance diagnosis, prognosis, and treatment 
outcomes. 

Oxidative stress and ER stress are key factors in 
various physiological and pathological processes, and 
their roles in carcinogenesis are well established. 
Oxidative stress results from an imbalance between 
reactive oxygen species (ROS) production and the 
cellular antioxidant defense mechanisms, leading to 
DNA, protein, and lipid damage [4]. Excessive ROS 
generation disrupts cellular functions, promotes 
genetic mutations and contributes to tumorigenesis [5, 
6]. Elevated ROS levels in cancer cells have been 
shown to enhance tumor growth and malignancy by 
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further disrupting cellular signaling and promoting 
cancer progression [7-9].  

ER stress occurs when there is an accumulation 
of misfolded or unfolded proteins within the ER, 
activating the unfolded protein response (UPR) to 
restore homeostasis [10]. High levels of ER stress and 
UPR activation have been observed in various 
cancers, including lung, breast, and colorectal cancers, 
which have been linked to tumorigenesis, 
proliferation, metastasis, and treatment resistance 
[11-13]. Recent studies have revealed that oxidative 
stress and ER stress are interconnected and contribute 
to cancer through mechanisms such as 
epithelial-mesenchymal transition (EMT), 
angiogenesis, and modulation of the tumor 
microenvironment [14-17].  

In ESCA, oxidative stress and ER stress are 
recognized as important contributors to 
tumorigenesis and progression [18, 19]. However, the 
specific genes involved in these stress responses and 
their underlying molecular mechanisms in ESCA 
remain largely unexplored. To address this 
knowledge gap, our study employed bioinformatics 
approaches to identify and characterize oxidative 
stress and ER stress-related genes in ESCA.  

By integrating transcriptome data from TCGA 
and GEO databases, we identified 12 OERDEGs that 
play significant roles in ESCA pathogenesis. Our 
comprehensive analyses included Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment, Gene Set Enrichment 
Analysis (GSEA), Gene Set Variation Analysis 
(GSVA), protein-protein interaction (PPI) network 
construction, and transcriptional regulation 
assessments. To develop a prognostic model, we 
applied least absolute shrinkage and selection 
operator (LASSO) regression and validated the model 
through receiver operating characteristic (ROC) curve 
analysis and univariate and multivariate Cox 
regression. Additionally, qRT-PCR was performed to 
validate the expression of these OERDEGs in samples 
from 105 ESCA patients, providing insights into their 
prognostic significance. Among these, TFRC was 
particularly investigated for its potential biological 
functions in ESCA cells, revealing its role in cell 
proliferation, migration, and invasion. 

Materials and methods 
Data Acquisition 

RNA sequencing data in fragments per kilobase 
per million (FPKM) format were obtained from 162 
ESCA tissues and 11 normal tissues from the TCGA 
database using the “TCGAbiolinks” R package. 
Clinical data were sourced from the UCSC Xena 

database. Additionally, the transcriptome data and 
clinical information from the GSE20347 dataset were 
retrieved from the GEO database using the 
“GEOquery” R package. This dataset included micro-
array gene expression profiles for 17 ESCA tissues and 
their corresponding paired paracancer tissues.  

To identify ER stress-related genes (ERGs), we 
initially compiled a list of 342 ERGs from the MSigDB 
database and supplemented it with an additional 785 
ERGs from a previous study [20]. After merging these 
lists and removing duplicates, we identified 871 
ERGs. Similarly, oxidative stress-related genes 
(ORGs) were compiled, starting with 727 ORGs from 
MSigDB and incorporating an additional 1,119 ORGs 
from prior research, resulting in a total of 1,326 ORGs 
[21]. By combining the ERGs and ORGs, we identified 
388 oxidative stress and ER stress-related genes 
(OERGs) (Table S1). 

Analysis of differential expression 
The gene expression profiles of both the cancer 

and normal groups in the TCGA-ESCA dataset were 
subjected to analysis to detect differentially expressed 
genes (DEGs) using the R package “limma”. To 
visualize the differences in expression, we created 
volcano plots using the R package "ggplot2". 
Similarly, in the normalized GSE20347 dataset, we 
compared expression profiles between the cancer and 
normal groups to identify DEGs, employing the 
“limma” package. For visual representation of gene 
expression in the TCGA-ESCA dataset, we utilized the 
R package "pheatmap" to generate heatmaps.  

GO/KEGG enrichment analysis 
We used the R package “clusterProfiler” to 

conduct GO annotation analysis of the 12 OERDEGs. 
Significance was assigned to categories with a p-value 
below 0.05 and a false discovery rate (FDR) q-value 
below 0.2. The Benjamini-Hochberg (BH) procedure 
was utilized to control FDR by adjusting P values. 

GSEA 
We performed GSEA on both the cancer and 

normal groups within the TCGA-ESCA dataset, 
employing the R package “clusterProfiler”. Each 
analysis included 1,000 gene set permutations, 
utilizing “c2.cp.v7.2.symbols” from MSigDB 
Collections as the reference gene collection. The 
threshold value of statistical significance was set as 
P.adj < 0.05 and FDR q-value < 0.2. The BH procedure 
was used to adjust P values and control FDR. 

GSVA 
To conduct GSVA between the cancer and 

normal groups in the TCGA-ESCA dataset, we 
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obtained the “h.all.v7.4.symbols.gmt” gene set 
collection from the MSigDB database. A significance 
level of P < 0.05 was used to identify significantly 
associated genes.  

PPI analysis 
To elucidate interactions among OERDEGs, we 

created a PPI network using the STRING database 
with interactions having a score greater than 0.4 and 
visualized it using Cytoscape software. Furthermore, 
GeneMANIA was employed to predict genes with 
similar functions related to the OERDEGs and to 
create an interaction network. 

Regulation Network 
We used the DGIdb database to predict potential 

small molecule compounds or drugs that interact with 
OERDEGs, and we visualized the interaction network 
using Cytoscape software. To identify transcription 
factors (TFs) binding to OERDEGs, we utilized the 
CHIPBase and hTFtarget databases and then 
visualized the resulting mRNA-TF interaction 
network with Cytoscape software.  

Construction of prognostic model 
We utilized LASSO regression analysis to 

construct a prognostic model for OERDEGs in ESCA, 
and determined the penalty regularization parameter 
lambda through a 10-fold cross-validation procedure. 
The risk score was calculated using the following 
formula. 

Risk Score =  �𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (ℎ𝑢𝑢𝑢𝑢 𝑔𝑔𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖) ∗ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐶𝐶𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 (ℎ𝑢𝑢𝑢𝑢 𝑔𝑔𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖)
𝑖𝑖

 

ROC curve  
We generated ROC curves using the 

“survivalROC” package and subsequently calculated 
the area under the curve (AUC) to assess the 
predictive capacity of OERDEGs’ expression for the 
survival of ESCA patients. In time-dependent ROC 
curves, an AUC above 0.5 indicates that the gene 
expression promotes the event, while an AUC below 
0.5 suggests inhibition. A greater deviation from the 
line of equality corresponds to higher diagnostic 
accuracy in the respective direction. By plotting 
time-dependent ROC curves, we explored the 
relationship between the expression of OERDEGs and 
the prognosis of ESCA patients. 

Cox analysis 
We evaluated the impact of OERDEGs 

expression on ESCA prognosis through multivariate 
Cox regression analysis and presented the results 
using forest plots. The threshold for the P value was 
set at 0.1. Nomograms were constructed using the 

independent prognostic factors to provide 
personalized survival probability estimates for 1, 3, 
and 5 years. To further evaluate the predictive 
accuracy and discrimination ability of the 
nomograms, we used calibration curves. The RMS 
package was employed to generate nomograms and 
calibration curves. Decision curve analysis (DCA) was 
conducted using the “ggDCA” package to assess the 
predictive accuracy of the nomogram. 

Patients and tissue specimens 
This study used tissue samples from 105 patients 

with ESCA, diagnosed based on histopathological 
examination. These patients underwent surgical 
resection at the Fourth Hospital of Hebei Medical 
University between 2015 and 2019. Exclusion criteria 
included patients who had received neoadjuvant 
chemotherapy or radiotherapy prior to surgery, those 
with a history of other malignancies, severe infections, 
autoimmune diseases, or other chronic conditions, as 
well as those with incomplete clinical data. Cancer 
tissues and matched adjacent normal tissues were 
collected during surgery and immediately frozen in 
liquid nitrogen after resection. 

RNA isolation and quantitative real-time 
polymerase chain reaction (qRT-PCR) assay 

Total RNA was extracted from tissue samples or 
cells utilizing the TRIzol reagent (Invitrogen, 
Carlsbad, CA, USA). The extracted RNA was reverse 
transcribed into cDNA with the Transcriptor First 
Strand cDNA Synthesis Kit (Roche, Basel, 
Switzerland) following the manufacturer’s protocol. 
The StepOnePlus Real-Time PCR System (Applied 
Biosystems) was used for qRT-PCR assays with SYBR 
Green Real-Time PCR Master Mix (Solarbio, Beijing, 
China). Expression levels were normalized using 
GAPDH as an endogenous control, and relative 
expression was determined using the 2−ΔΔCt method. 
The primer sequences utilized in the qRT-PCR 
analysis can be found in Table S2.  

Cell culture 

   Human ESCC cell lines (KYSE150 and TE1), an 
EAC cell line (OE33), and a human normal esophageal 
epithelial cell line (HEEC) were obtained from the 
China Center for Type Culture Collection (CCTCC, 
Wuhan, China). The ESCC and EAC cell lines were 
cultured in RPMI 1640 medium (Gibco, Invitrogen, 
Life Technologies, Germany) supplemented with 10% 
heat-inactivated fetal bovine serum (FBS) (Invitrogen, 
Carlsbad, CA, USA), at 37°C in a humidified 
atmosphere containing 5% CO2. HEEC cells were 
cultured according to the manufacturer’s instructions.  
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Cell transfection 
GenePharma (Shanghai, China) prepared the 

TFRC plasmid, while small interfering RNAs 
(siRNAs) targeting TFRC were also obtained from the 
same supplier. Transfection of cells with plasmids or 
siRNAs was carried out using Lipofectamine 2000 
(Invitrogen) following the manufacturer's 
instructions.  

Cell proliferation assay 
Cellular proliferation capacity was assessed 

using MTS assays and colony formation assays. The 
CellTiter 96® Aqueous One Solution Cell Proliferation 
Assay kit (Promega, Madison, WI, USA) was used to 
perform MTS assays. Transfected cells were seeded in 
96-well plates at a density of 1×103 cells per well, with 
each group replicated six times. Cell viability was 
determined by measuring the absorbance of each well 
at 490nm using a microplate reader after adding 20μL 
of MTS reagent (500 μg/mL) to each well at various 
time intervals and incubating for 2 hours. For colony 
formation assays, 3×103 transfected cells were plated 
in each well of 6-well plates and incubated for 5–7 
days until visible colonies formed. Colonies 
containing 50 or more cells were counted after fixation 
with 4% paraformaldehyde and staining with 0.1% 
crystal violet.  

Transwell migration and invasion assays 
For transwell migration assays, we seeded 1×105 

cells suspended in 200μL of serum-free RPMI 1640 
medium into the top chamber (Corning Costar, 
Corning, NY, USA), while the bottom chamber 
contained 600μL of medium with 10% FBS. After an 
incubation of 12–24 hours, cells that had migrated to 
the lower surface of the membrane were fixed with 
4% paraformaldehyde and stained with crystal violet. 
The migration rate was determined by manually 
counting the number of cells in at least five different 
fields using an inverted microscope at 20× 
magnification. For cell invasion assays, we followed a 
similar protocol to the cell migration assay, with the 
exception that the top chamber was coated with 50 µL 
Matrigel (Corning) and incubated for 2 hours.  

Western Blot assay 
Total protein was extracted following the 

manufacturer's protocol using RIPA lysis buffer 
containing PMSF (Solarbio). Protein concentrations 
were measured using the BCA Protein Assay Kit 
(Multi-Science, Hangzhou, China). Equal amounts of 
protein were subjected to 10% polyacrylamide gel 
electrophoresis and transferred onto PVDF 
membranes (Millipore, Sigma, Burlington, MA, USA). 
After blocking with 5% skim milk, the membranes 

were incubated overnight at 4°C with specific primary 
antibodies, followed by a one-hour incubation with 
secondary antibodies at room temperature. Protein 
bands were visualized using an enhanced 
chemiluminescence reagent (Multi Sciences) and 
detected with the Chemi XT4 system (Syngene). The 
primary antibodies used are listed in Table S3. 

Statistical analysis 
We conducted all statistical analyses using two 

software programs, R-4.1.2 and SPSS 25.0. Continuous 
variables were presented as the mean ± standard 
deviation. To compare continuous variables between 
two groups, we used the Wilcoxon rank sum test, 
while the independent Student t-test was employed 
for normally distributed variables. For comparisons 
among three or more groups, we used the 
Kruskal-Wallis test. Categorical variables were 
assessed for statistical significance in pairwise 
comparisons using either the chi-square test or 
Fisher's exact test. LASSO regression analysis was 
performed using the R package “glmnet”. 
Kaplan-Meier analyses were used to generate overall 
survival curves, with statistical significance 
determined by the log-rank test for P values. Unless 
otherwise indicated, correlation coefficients between 
different molecules were calculated using Spearman 
correlation analysis. All P-values were two-sided, and 
statistical significance was set at a level less than 0.05. 

Results 
Differential expression analysis 

From the differential expression analysis of the 
TCGA-ESCA dataset, we identified 6,136 DEGs that 
met the criteria of |logFC| > 1 and P.adj < 0.05 from a 
total of 56,494 genes. Among these, 3,190 genes were 
upregulated in the cancer group, and 2,946 genes 
were downregulated. The DEGs were visualized 
using a volcano map (Fig. 1A). We further conducted 
intersections between the upregulated DEGs and 
OERGs, resulting in 49 genes shown in the Venn 
diagram (Fig. 1B). Similarly, for the downregulated 
DEGs, the intersection with OERGs yielded 34 genes, 
as depicted in the Venn diagram (Fig. 1C). Comparing 
the cancer and normal groups in the GSE20347 
dataset, we created a volcano plot to visualize the 
results of the differential expression analysis (Fig. 1D). 
In the ESCA tissues, we identified 453 upregulated 
(logFC > 1 and P.adj < 0.05) and 554 downregulated 
DEGs (logFC < -1 and P.adj < 0.05). We then 
intersected the upregulated OERDEGs identified from 
the TCGA dataset with the upregulated DEGs from 
GSE20347, as well as the downregulated DEGs, 
resulting in 13 OERDEGs that exhibited consistent 
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differential expression patterns in both datasets (Fig. 
1E, 1F). Detailed information regarding the names 
and expression differences of these 13 OERDEGs can 
be found in Table S4 and S5. Subsequently, the 
expression patterns of the 13 OERDEGs were 
analyzed in the TCGA-ESCA and GSE 20347 datasets, 
respectively, using grouped comparison plots (Fig. 

1G, 1H). Remarkably, a total of 12 genes (CDK1, 
CDKN3, COL1A1, CXCL8, MMP9, PINK1, 
SERPINE1, SERPINH1, SLC2A1, SPP1, TFRC, and 
VCAM1) exhibited consistent results in both the 
TCGA-ESCA dataset and the GSE20347 dataset, 
highlighting their potential significance as key 
OERDEGs. 

 

 
Figure 1. Analysis of differentially expressed genes. A The volcano plot illustrates the results of the differential expression analysis conducted between the cancer group 
(ESCA) and normal group (Normal) using the dataset from The Cancer Genome Atlas (TCGA-ESCA). B The Venn diagram shows the overlap between the upregulated 
differentially expressed genes (DEGs) and oxidative stress and ER stress-related genes (OERGs) obtained from the TCGA-ESCA dataset. C The Venn diagram presents the 
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intersection between the downregulated DEGs and OERGs obtained from the TCGA-ESCA dataset. D The Volcano plot represents the findings of the differential expression 
analysis between the cancer group (ESCA) and normal group (Normal) in the Gene Expression Omnibus (GEO) dataset GSE20347. E The Venn diagram displays the overlap 
between the upregulated oxidative stress and ER stress-related differentially expressed genes (OERDEGs) obtained from the TCGA-ESCA dataset and the upregulated DEGs 
obtained from the GSE20347 dataset. F The Venn diagram shows the intersection between the downregulated OERDEGs obtained from the TCGA-ESCA dataset and the 
downregulated DEGs obtained from the GSE20347 dataset. G-H Comparative graphical presentations depict the grouping of OERDEGs in both the TCGA-ESCA and GSE20347 
datasets. ns represents P > 0.05, * P < 0.05, ** P < 0.01, *** P < 0.001. 

 
Heat map and GO/KEGG analysis 

To start, we generated a heatmap illustrating the 
expression levels of the 12 OERDEGs (CDK1, CDKN3, 
COL1A1, CXCL8, MMP9, PINK1, SERPINE1, 
SERPINH1, SLC2A1, SPP1, TFRC, VCAM1) in the 
TCGA-ESCA dataset (Fig. 2A). To understand the 
potential functions of these OERDEGs, we conducted 
KEGG enrichment analysis to reveal their 
involvement in various biological processes (BPs), 
cellular components (CCs), and molecular functions 
(MFs). These functions included extracellular matrix 
organization (GO: 0030198), extracellular structure 
organization (GO: 0043062), response to reactive 
oxygen species (GO: 0000302), collagen-containing 
extracellular matrix (GO: 006202), endoplasmic 
reticulum lumen (GO: 000578), melanosome (GO: 
0042470), protease binding (GO: 0002020), peptidase 
regulator activity (GO: 0061134), and collagen binding 
(GO: 0005518) (Table S6). KEGG pathway analysis, 
shown in Fig. 2B and 2C, highlighted significant 
signaling pathways, including the AGE-RAGE 
signaling pathway in diabetic complications 
(hsa04933), HIF-1 signaling pathway (hsa04066), and 
Cellular senescence (hsa04218). To provide additional 
insights, we integrated the results of GO/KEGG 
analysis with the logFC values for enrichment 
analysis. Specifically, we computed the Z-score for 
each OERDEG based on its logFC value obtained from 
the differential analysis between cancer and normal 
groups in the TCGA-ESCA dataset. The findings 
suggested that extracellular matrix organization (GO: 
0030198) and extracellular structure organization 
(GO: 0043062) were significantly upregulated BPs. 
Additionally, the AGE-RAGE signaling pathway in 
diabetic complications (hsa04933) was a significantly 
upregulated KEGG pathway (Fig. 2D, 2E).  

GSEA and GSVA 
To examine the differential effects of these genes 

on cancer and normal groups, we conducted GSEA to 
investigate the association between OERDEG 
expression levels and corresponding BPs, CCs, and 
MFs in the TCGA-ESCA dataset. As illustrated in Fig. 
3A–H and detailed in Table S7, these genes exhibited 
significant enrichment in pathways, including 
PRC2-mediated methylation of histones and DNA, 
HDACs deacetylate histones, Oxidative Stress 
Induced Senescence, Cellular Senescence, 

Interleukin-10 signaling, IL-23 pathway, pre-NOTCH 
expression and processing, among others.  

To explore the differences in hallmark gene sets 
between the cancer and normal groups in ESCA, we 
conducted GSVA to assess the expression of 
OERDEGs in the TCGA-ESCA dataset. As shown in 
Fig. 4A and Table S8, there were 31 hallmark gene sets 
that showed significant differences (P < 0.05) between 
cancer and normal groups in ESCA. We specifically 
selected 10 hallmark gene sets that showed highly 
significant differences (P < 0.001) or played crucial 
roles in tumor progression, presenting group 
comparisons in Fig. 4B. Our examination of the 
TCGA-ESCA dataset demonstrated significant 
enrichment of genes associated with various 
pathways, including hallmark apoptosis, 
PI3K-AKT-mTOR signaling, fatty acid metabolism, 
glycolysis, and NOTCH signaling pathways, among 
others.  

PPI network 
To explore potential protein-protein interactions 

among OERDEGs, we created a PPI network with a 
minimum interaction score of 0.4, indicating medium 
confidence. As shown in Fig. 5A, all 11 OERDEGs, 
except PINK1, interacted with at least one other 
OERDEG, with VCAM1 exhibiting the highest 
number of interactions. Additionally, we applied the 
Maximal Clique Centrality (MCC) algorithm to 
calculate scores for each gene node. OERDEGs were 
color-coded from red to yellow according to their 
scores, with VCAM1 having the highest MCC score 
(Fig. 5B). Detailed gene score levels can be found in 
Table S9. Furthermore, we constructed an association 
network between the 12 OERDEGs and other genes 
sharing similar biological functions using 
GeneMANIA to predict interactions, co-expression, 
and co-localization (Fig. 5C).  

Regulation network 
We employed the DGIdb database to identify 

potential molecular compounds for OERDEGs. A total 
of 155 potential molecular compounds or drugs that 
matched 9 OERDEGs (CDK1, CDKN3, COL1A1, 
CXCL8, MMP9, SERPINE1, SLC2A1, SPP1, VCAM1) 
were found (Fig. 6A, Table S10). These compounds 
offer promising therapeutic options for ESCA and 
valuable insights into novel therapeutic strategies. 
Next, the CHIPBase and hTFtarget databases were 
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utilized to identify TFs that bind to hub genes. The 
interaction results were intersected to gather data on 
the connections between the 12 OERDEGs and 142 
TFs, forming the mRNA-TF interaction network (Fig. 

6B, Table S11). These TF interactions with OERDEGs 
may play crucial regulatory roles in the pathogenesis 
of ESCA. 

 

 
Figure 2. Heat map and GO/KEGG analysis of OERDEGs. A The heat map illustrates the expression of OERDEGs in the TCGA-ESCA dataset. B The histogram depicts 
the results of the GO/KEGG enrichment analysis for OERDEGs. C The network divergence plot displays the results of the GO/KEGG enrichment analysis for OERDEGs. D The 
chord plot visualizes the results of the joint logFC GO/KEGG enrichment analysis for OERDEGs. E The circular plot provides an overview of the GO/KEGG enrichment analysis 
results for OERDEGs. The screening criteria for inclusion in the GO/KEGG enrichment entries were P < 0.05 and FDR value (q.value) < 0.2. 
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Figure 3. GSEA. A The main biological features derived from GSEA of the TCGA-ESCA dataset. B-H In the TCGA-ESCA dataset, genes exhibited significant enrichment in 
several pathways, including PRC2 methylates histones and DNA (B), HDACs deacetylate histones (C), Oxidative Stress Induced Senescence (D), Cellular Senescence (E), 
Interleukin-10 signaling (F), IL-23 pathway (G), Pre-NOTCH Expression and Processing (H), and others. The criteria for significant enrichment in the GSEA analysis were P.adj 
< 0.05 and FDR value (q.value) < 0.2. 

 

LASSO model 
We utilized the LASSO model to assess the 

prognostic value of the OERDEGs. The LASSO 
algorithm applies penalty terms to encourage sparse 
solutions, effectively reducing the coefficients of 
irrelevant or less important variables to zero. 
Consequently, some initially identified OERDEGs 

were excluded, resulting in a final model that 
comprises five OERDEGs (CDKN3, PINK1, 
SERPINE1, SPP1, TFRC). The results of the LASSO 
analysis for constructing prognostic models for these 
five OERDEGs are presented in Fig. 7A and 7B. Using 
the risk score formula, we determined the median 
value to divide the cancer group into two equal 
subgroups: the low-risk group and the high-risk 
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group, as shown in Fig. 7C. To validate the LASSO 
prognostic model, we analyzed clinical data obtained 
from the TCGA-ESCA dataset (Table S12). 
Subsequently, the coefficients of the variables in the 
LASSO model were used to compute risk scores for 
the cancer group from the GSE20347 dataset. The 
cancer group was divided into high-risk and low-risk 
subgroups based on the risk score. Group 

comparisons were plotted based on the expression of 
each OERDEG between these subgroups in both the 
TCGA-ESCA dataset and the GSE20347 dataset. A 
statistically significant difference in expression was 
indicated by P < 0.05. As illustrated in Fig. 7D and 7E, 
the validation confirmed consistent results for four 
genes, namely CDKN3, PINK1, SPP1, and TFRC.  

 

 
Figure 4. GSVA. A The heat map represents functional scores generated through GSVA in the TCGA-ESCA dataset. B Grouped comparison plots displays enriched pathways 
with notably significant differences derived identified through GSVA in the TCGA-ESCA dataset. * P < 0.05, ** P < 0.01, *** P < 0.001. 
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Figure 5. PPI network. A The PPI network of OERDEGs. B The MCC algorithm was used to identify hub genes in the PPI network. The color spectrum, ranging from yellow 
to red, signifies the gradual increase in scores. C The association network of functionally similar genes among OERDEGs predicted by GeneMANIA. The black circles with white 
slashes represent input OERDEGs, while other solid black circles denote predicted functionally similar genes. 

 
ROC and clinical correlation analysis 

To explore the association between OERDEGs 
(CDKN3, PINK1, SPP1, TFRC) and ESCA 
development, we generated ROC curves for these 
OERDEGs in the TCGA-ESCA dataset, with clinical 
status (ESCA vs. Normal) as the outcome variable 
(Fig. 8A-D). Among these, the AUCs for CDKN3, 
SPP1, and TFRC were greater than 0.9, demonstrating 
outstanding sensitivity and specificity for predicting 
ESCA. The AUC for PINK1 was greater than 0.8 and 
less than 0.9, indicating high sensitivity and specificity 
for predicting ESCA. Furthermore, ESCA patients 

were stratified into N0 & N1 and N2 & N3 subgroups 
based on N-stage, and ROC curves for OERDEGs 
were generated using this grouping as the outcome 
variable (Fig. 8E). The AUC for CDKN3 was between 
0.6 and 0.7, suggesting relatively lower accuracy in 
predicting N-stage. Similarly, patients with ESCA 
were grouped into T1 & T2 and T3 & T4 subgroups 
based on T-stage, and ROC curves were constructed 
accordingly (Fig. 8F). SPP1's AUC was above 0.6 but 
below 0.7, signifying a relatively lower level of 
accuracy in predicting T-stage. Additionally, we 
performed time-dependent ROC analysis to evaluate 
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the predictive capability of OERDEGs for survival in 
ESCA patients (Fig. 8G, 8H). The AUCs exceeded 0.5 
for 1-, 2-, and 3-year survival, indicating that CDKN3 
and SPP1 could effectively predict the outcome of 
ESCA patients. Finally, we analyzed OERDEGs in 
subgroups based on progression-free interval (PFI) 
and clinical T-stage, respectively. The results 
indicated that the expression of CDKN3 was 
associated with PFI (P < 0.05), while the expression of 

SPP1 correlated with T-stage (P < 0.05) (Fig. 8I, 8J). 

Cox analysis 
To validate the established LASSO model, we 

investigated the association between the expression of 
OERDEGs (CDKN3, PINK1, SPP1, TFRC) and 
prognosis using univariate and multivariate Cox 
regression analysis in the TCGA-ESCA dataset. The 
Cox regression model incorporated T-stage and 

 

 
Figure 6. mRNA-drug and mRNA-TF networks. A The mRNA-drug regulatory network of OERDEGs, where the green diamond squares representing mRNAs and the 
blue dots symbolizing drugs. B The mRNA-TF regulatory network of OERDEGs, where the green diamond squares representing mRNA and the blue ovals denoting TFs. 
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M-stage, and the forest plots illustrated a significant 
association between the expression of CDKN3 and 
SPP1 and prognosis (Fig. 9A, Table S13). Next, we 
conducted nomogram analysis to evaluate the 
predictive performance of the multivariate Cox 
regression model (Fig. 9B). We performed calibration 
analysis on the nomogram plots for 1-, 2-, and 3-year 
predictions (Fig. 9C-E). According to the calibration 
plots, the blue curves for 2- and 3-year predictions 
closely matched the grey ideal curve, suggesting that 

the prediction accuracy of the 2- and 3-year models 
was superior to that of the 1-year model. Furthermore, 
we evaluated the clinical utility of the LASSO-Cox 
regression prognostic model for 1-, 2-, and 3-year 
predictions through DCA (Fig. 9F-H). The blue line 
representing the model consistently outperformed the 
red line for all positive cases and the grey line for all 
negative cases. The range of x values was the widest 
for 2-year predictions, indicating that the results for 
2-year predictions were more reliable. 

 
 

 
Figure 7. Construction of a prognostic model for OERDEGs and differential genetic analysis of LASSO high- and low-risk groups. A The plot of the LASSO 
regression prognostic model for OERDEGs. B-C The trajectory plots of variables for the LASSO regression diagnostic model (B), and risk factor plots (C). D-E The group 
comparison plots for OERDEGs in the TCGA-ESCA dataset (D), and the GSE20347 dataset (E). 
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Figure 8. ROC curves and clinical correlation analysis. A-D ROC curves assessing CDKN3 (A), SPP1 (B), TFRC (C), and PINK1 (D) as predictors for ESCA versus 
Normal. E ROC curve examining CDKN3 as a predictor for N0 & N1 versus N2 & N3. F ROC curves evaluating SPP1 as a predictor for T1&T2 versus T3&T4. G 1-year, 2-year, 
and 3-year time-dependent ROC curves for CDKN3. H 1-year, 2-year, and 3-year time-dependent ROC curves for SPP1. I Subgroup comparison plots of CDKN3 in clinical 
correlation analysis of PFI. J Subgroup comparison plots for clinical correlation analysis of SPP1 at different clinical T-stages. *P < 0.05. 

 
Detection of OERDEGs in ESCA tissues and 
their prognostic implications 

To evaluate the expression patterns of the 
OERDEGs (CDKN3, SPP1, TFRC, and PINK1) in 
ESCA tissues, qRT-PCR assays were performed. The 
analysis demonstrated significant upregulation of 
CDKN3, SPP1, and TFRC in ESCA tissues compared 
to those in corresponding normal tissues (Fig. 10A-C). 
Conversely, PINK1 expression was notably 
downregulated in ESCA tissues (Fig. 10D). Based on 
the median expression levels of these genes, ESCA 
tissues were stratified into high-expression and 
low-expression groups. As shown in Fig. 10E-H, 
elevated levels of CDKN3, SPP1, and TFRC were 
associated with poorer prognosis, whereas reduced 
expression of PINK1 was linked to adverse prognostic 
outcomes. Among these OERDEGs, the role of TFRC 
in ESCA has not been previously reported. Therefore, 
TFRC was selected for further investigation to explore 

its biological function in ESCA. By analyzing TFRC 
expression in 105 ESCA tissue samples and 
correlating these levels with clinical pathological 
parameters and patient prognosis, we found that 
higher expression of TFRC was significantly 
associated with TNM stage, tumor invasion depth, 
and lymph node metastasis (P < 0.05) (Table S14).  

The expression of TFRC is elevated in ESCA 
cells under both ROS and ER stress conditions 

To model oxidative stress, ESCC cell lines (TE1, 
KYSE150) and EAC cell lines (OE33) were treated 
with hydrogen peroxide (H2O2). As shown in Fig. 11A 
and 11B, H2O2 treatment resulted in upregulation of 
the ROS-related gene SOD1 in all cell lines, indicating 
that these cells underwent significant oxidative stress. 
Furthermore, the mRNA expression of TFRC was also 
elevated in each cell line following H2O2 exposure 
(Fig. 11C, 11D). Notably, TFRC upregulation 
exhibited both time- and dose-dependent patterns. 
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These findings suggest that ROS stress may induce 
TFRC mRNA expression. To model ER stress, TE1, 
KYSE150, and OE33 were treated with thapsigargin 
(TG). The mRNA expression levels of ER stress 
markers XBP1, ATF4, and ATF6 were quantified using 
qRT-PCR, and all three genes were significantly 

upregulated, confirming the successful establishment 
of the ER stress model (Fig. 11E, 11F). Furthermore, 
qRT-PCR analysis demonstrated a marked increase in 
TFRC expression in ESCA cells following TG-induced 
ER stress, indicating that TFRC acted as a response 
gene to ER stress (Fig. 11G, 11H). 

 

 
Figure 9. Cox regression model. A-B Forest plots (A) and column line plots (B) depicting multifactor Cox regression analysis for OERDEGs. C-E 1-year (C), 2-year (D), and 
3-year (E) calibration plots for the nomogram analysis of the multifactor Cox regression model. F-H 1-year (F), 2-year (G), and 3-year (H) DCA plots for the LASSO-Cox 
regression prognostic model. 
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Figure 10. The expression levels of OERDEGs in ESCA tissues and their correlation with prognosis. A-D The expression levels of CDKN3, SPP1, TFRC and 
PINK1 were determined in 105 pairs of ESCA tissues and adjacent normal tissues using qRT-PCR method. E-H The Kaplan-Meier curves were generated to examine the 
correlation between the expression levels of CDKN3, SPP1, TFRC and PINK1 in ESCA tissues and the prognosis of ESCA patients. * P <0.05. 

 
TFRC enhances ESCA cell proliferation, 
migration, and invasion 

To assess the malignant biological role of TFRC 
in ESCA, a series of functional assays were performed. 
qRT-PCR analysis revealed a marked increase in 
TFRC mRNA expression levels in ESCA cell lines 
compared to the normal esophageal epithelial cell line 
(Fig. 12A). The pcDNA3.1-TFRC plasmid was used to 
overexpress TFRC in TE1 cells, while siRNA was used 
to knock down TFRC in OE33 cells. The efficiency of 
transfection was verified by qRT-PCR (Fig. 12B). MTS 
and colony formation assays showed that TFRC 
significantly enhanced ESCA cell proliferation (Fig. 
12C, 12D). Additionally, transwell migration and 
invasion assays showed that TFRC promoted the 
migration and invasion of ESCA cells (Fig. 12E, 12F). 
These findings indicate that TFRC promotes the 
malignant behaviors of ESCA cells in vitro. 

TFRC affects the HIF-1α and NOTCH1 
signaling pathway in ESCA cells 

To validate the signaling pathways identified 
through bioinformatics analysis, we conducted both 
qRT-PCR and Western blot analyses. Correlation 
analysis of 105 paired ESCA tissue samples revealed a 
positive relationship between TFRC expression and 
the expression levels of HIF-1α and NOTCH1, which 
was further corroborated by data from the GEPIA 
database (Fig. 13A, 13B). qRT-PCR analysis 
demonstrated that upregulation of TFRC in TE1 cells 

led to increased mRNA levels of HIF-1α and 
NOTCH1, while downregulation of TFRC in OE33 
cells resulted in reduced mRNA levels of these genes 
(Fig. 13C, 13D). Consistently, Western blot 
experiments confirmed that TFRC overexpression 
significantly elevated the protein levels of HIF-1α and 
NOTCH1, whereas TFRC knockdown led to 
decreased protein expression of these targets (Fig. 
13E). 

TFRC promotes the proliferation, migration, 
and invasion of ESCA cells by regulating the 
HIF-1α and NOTCH1 signaling pathway 

To verify whether TFRC exerts oncogenic effects 
in ESCA cells by regulating the HIF-1α and NOTCH1 
pathway, rescue experiments were conducted 
through the knockdown of HIF-1α and NOTCH1 in 
TFRC-overexpressing TE1 cells. The transfection 
efficiency of si-HIF-1α and si-NOTCH1 in TE1 cells 
was verified using qRT-PCR (Fig. 14A). As shown in 
Fig. 14B-D, MTS and colony formation assays 
demonstrated that silencing HIF-1α and NOTCH1 
partially reversed the increased cell proliferation 
resulting from TFRC overexpression. Similarly, 
Transwell migration and invasion assays showed that 
knocking down HIF-1α and NOTCH1 also alleviated 
the increased cell migration and invasion resulting 
from TFRC overexpression (Fig. 14E, 14F). 
Collectively, these findings suggest that TFRC exerts 
oncogenic effects in ESCA by regulating the HIF-1α 
and NOTCH1 pathway. 
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Figure 11. Expression of TFRC in ESCA cells under oxidative and ER stress conditions. A TE1, KYSE150 and OE33 cells were treated with H2O2 for 3 hours, and 
SOD1 mRNA levels were measured using qRT-PCR. B After exposure to 0.5 mM H2O2 for varying durations, the expression of SOD1 in TE1, KYSE150, and OE33 cells was 
analyzed by qRT-PCR. C TE1, KYSE150, and OE33 cells were treated with H2O2 for 3 hours, and the mRNA expression of TFRC was assessed via qRT-PCR. D The expression 
levels of TFRC were quantified using qRT-PCR after treating TE1, KYSE150, and OE33 cells with 0.5 mM H2O2 for different periods of time. E TE1, KYSE150 and OE33 cells were 
treated with various concentrations of TG for 12 hours, and the expression levels of genes related to the ER stress pathway were measured using qRT-PCR. F ESCA cells were 
exposed to 100nM TG for different durations, followed by qRT-PCR analysis to evaluate the expression of ER stress-related genes. G The mRNA expression levels of TFRC in 
TE1, KYSE150, and OE33 cells were analyzed after a 12-hour treatment with specific concentrations of TG, using qRT-PCR. H After treating ESCA cells with 100 nM TG for 
varying time intervals, TFRC expression was assessed by qRT-PCR. Data are presented as the mean ± SD from at least three independent experiments. *P < 0.05. 

 

Discussion 
ESCA often presents with subtle symptoms in its 

early stages, leading most patients to be diagnosed at 
an advanced stage, which limits treatment options 
and results in poor prognosis [22]. Despite the 
growing understanding of the biological mechanisms 
underlying ESCA in recent years, the lack of reliable 
early diagnostic biomarkers and therapeutic targets 
continues to present significant challenges for clinical 
management. 

Oxidative stress and ER stress have emerged as 
critical contributors to cancer development and 

progression. Tumors often exhibit elevated levels of 
ROS and activation of the UPR, both of which 
contribute to carcinogenesis through genetic 
mutations and dysregulation of key signaling 
pathways [23-25]. ROS drive tumor progression by 
promoting malignancy-associated traits, including 
enhanced proliferation, resistance to apoptosis, and 
EMT [26, 27]. The UPR also plays a crucial role in 
regulating key processes in tumor biology, including 
cell proliferation, angiogenesis, and therapy resistance 
across various cancer types [28-30]. Moreover, 
oxidative stress and ER stress often coexist and 
interact in pathological conditions [15, 31]. ROS can 
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modulate ER stress and activate the UPR, while the 
UPR can stimulate ROS production within the ER 
lumen, creating a feedback loop that contributes to 
cellular dysfunction [32, 33]. 

Studies have shown that both oxidative stress 
and ER stress play significant roles in the 
development and progression of ESCA. For example, 
ROS upregulate MMP-2/9 through activation of the 
NF-κB pathway, thereby enhancing the invasiveness 
of ESCA cells [34]. Additionally, ROS facilitate the 
methylation of the p16 promoter, leading to reduced 

p16 expression and increased cell proliferation, which 
contributes to the malignant transformation of ESCA 
[35]. Furthermore, TMTC3 activates the PERK 
pathway, leading to the nuclear translocation of 
ATF4, which induces EMT and accelerates tumor cell 
growth and metastasis [36]. However, despite these 
studies highlighting the roles of oxidative stress and 
ER stress in ESCA, many underlying mechanisms 
remain poorly understood, particularly concerning 
how these stress responses interact and drive tumor 
progression. 

 
 

 
Figure 12. TFRC promotes the proliferation, migration, and invasion of ESCA cells. A TFRC expression levels were analyzed in ESCA cells and HEEC using 
qRT-PCR. B The transfection efficiency of TFRC overexpression in TE1 cells and knockdown in OE33 cells was confirmed by qRT-PCR. C-D Cell proliferation was evaluated in 
TFRC-overexpressing TE1 cells and TFRC-knockdown OE33 cells using MTS assays (C) and colony formation assays (D). E-F The migration and invasion capabilities of 
TFRC-overexpressing TE1 cells and TFRC-knockdown OE33 cells were assessed through transwell migration (E) and invasion (F) assays. Data are presented as the mean ± SD 
from at least three independent experiments. *P < 0.05. 
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Figure 13. The impact of TFRC on HIF-1α and NOTCH1 signaling pathways in ESCA cells. A Correlation analysis between TFRC expression and the mRNA levels 
of HIF-1α and NOTCH1 in ESCA tissues (n = 105). B Relative mRNA expression levels of HIF-1α and NOTCH1 in relation to TFRC expression, based on GEPIA database 
analysis. C-D qRT-PCR analysis showing the relative mRNA expression levels of HIF-1α (C) and NOTCH1 (D) in TE1 cells with TFRC upregulation and OE33 cells with TFRC 
downregulation. E Western blot analysis demonstrating the protein levels of HIF-1α and NOTCH1 in response to TFRC overexpression and knockdown. 

 
In this study, 12 OERDEGs were identified 

through bioinformatics analysis of TCGA and GEO 
datasets. Pathway enrichment analyses, including 
GSEA and GSVA, revealed significant associations 
with apoptosis, the PI3K-AKT-mTOR signaling 
pathway, fatty acid metabolism, glycolysis, the 
NOTCH signaling pathway, and the HIF-1 signaling 
pathway. These findings underscore the importance 
of stress responses in ESCA. Such integrative analyses 
can provide valuable insights for future research and 
help elucidate how environmental factors influence 
the biological behavior of ESCA. Additionally, a 
prognostic model was constructed using LASSO 
regression analysis and validated through ROC 
curves and Cox regression analysis. This model 
identified CDKN3, PINK1, SPP1, and TFRC as 
significant prognostic biomarkers for ESCA. The 
strong correlation between the expression levels of 
these genes and patient prognosis suggests that they 
could serve as reliable indicators for assessing ESCA 
progression and treatment response. Incorporating 
these biomarkers into clinical evaluations may 
enhance risk stratification and facilitate the 
development of personalized treatment strategies for 
ESCA patients. 

Among these four biomarkers, TFRC (also 
known as TFR1) has garnered particular attention due 
to its crucial biological role in cancer. TFRC is 

regulated by various stimuli, including intracellular 
iron concentration, inflammation, and oxidative 
stress. For instance, hypoxia induces TFRC gene 
transcription by enabling HIFs to bind to specific 
promoter elements [37]. TFRC is highly expressed in 
multiple cancers and influences cell proliferation, 
migration, invasion, and apoptosis by modulating 
metabolism, inflammation, and iron homeostasis 
[38-40]. Targeting TFRC has shown promising 
antitumor effects, as demonstrated by Shimosaki et 
al., who developed a human IgG monoclonal 
antibody against TFR1, significantly suppressing the 
growth of HTLV-1-associated adult T-cell 
leukemia/lymphoma cells [41]. Thus, TFRC presents 
a compelling molecular target for cancer therapy, yet 
its role in ESCA has not been fully established.  

Our findings reveal that TFRC is upregulated in 
response to oxidative and ER stress, correlating with 
poorer prognosis in ESCA patients. TFRC promotes 
the proliferation, migration, and invasion of ESCA 
cells by regulating HIF-1α and NOTCH1. Both HIF-1α 
and NOTCH1 pathways are known to regulate 
hypoxia responses, angiogenesis, and cancer stem cell 
renewal, making them key drivers of aggressive 
cancer phenotypes [42-44]. Therefore, through the 
synergistic action of these two pathways, TFRC may 
serve as a potential therapeutic target for ESCA. 
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Figure 14. TFRC promotes the proliferation, migration, and invasion of ESCA cells via the HIF-1α and NOTCH1 signaling pathway. A The transfection 
efficiency of HIF-1α and NOTCH1 knockdown in TE1 cells was confirmed by qRT-PCR. B The effect of HIF-1α and NOTCH1 knockdown on the proliferative capacity of 
TFRC-overexpressing TE1 cells was evaluated using MTS assays. C-D Colony formation assays were used to assess the impact of HIF-1α (C) and NOTCH1 (D) knockdown on 
the proliferation of TFRC-overexpressing TE1 cells. E-F Transwell migration and invasion assays were performed to evaluate the effects of silencing HIF-1α (E) and NOTCH1 
(F) on cell migration and invasion in TFRC-overexpressing TE1 cells. Data are presented as the mean ± SD from at least three independent experiments. *P < 0.05. 
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However, this study has several limitations. In 
vitro methods restrict the direct applicability of the 
current findings to clinical practice. Future studies 
should validate these results using animal models or 
culture systems that better mimic the tumor 
microenvironment, to gain a more comprehensive 
understanding of the role of OERDEGs in ESCA 
progression and treatment response. Additionally, the 
interactions and networks among these OERDEGs 
may reveal potential synergistic effects and pathways 
that drive ESCA progression. Further investigation 
into how these genes cooperate or compete could 
provide insights into their collective roles in tumor 
biology, potentially leading to the identification of 
new therapeutic targets. Moreover, potential 
therapies targeting TFRC and other OERDEGs need to 
be further validated in preclinical models. Such 
studies will help assess their safety and efficacy, 
offering potential new treatment options for ESCA. 

In conclusion, this study identified several 
OERDEGs as potential prognostic biomarkers 
through bioinformatics analysis, providing important 
insights into the interplay between oxidative stress, 
ER stress, and ESCA progression. By highlighting the 
interactions between stress responses and key cellular 
signaling pathways, such as HIF-1α and NOTCH1, 
this research underscores the significance of stress 
responses in cancer biology. These findings open up 
new avenues for the early diagnosis and treatment of 
ESCA, with TFRC, in particular, emerging as a 
promising therapeutic target with significant clinical 
translation potential. 
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