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Abstract 

Alternative splicing is an evolutionarily conserved and essential cellular process that is catalyzed by a 
multi-complex spliceosome. Dysregulation of this process has been implicated in various tumors over the 
recent years. SF3a1 is a critical subunit of U2 small nuclear ribonucleoprotein (snRNP) in the 
spliceosome, which has been found to be aberrant in several human diseases. Recent reports suggest that 
SF3a1 might be a novel therapeutic target. However, a comprehensive description of SF3a1 is lacking. In 
this review, we present the findings of SF3a1 from protein structure, biological function to strong 
associations with human diseases including cancer. Studies have reported that SF3a1 dysregulation and 
associated alternative splicing events mediate tumorigenesis and other immune-related disorders. 
However, further functional and mechanistic studies are needed to fully understand the regulatory 
network of SF3a1 in human diseases. In conclusion, SF3a1 could serve as a promising prognostic 
biomarker and therapeutic target for specific cancer types, including prostate cancer, colorectal cancer 
and hepatocellular carcinoma. 
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Introduction 
Pre-mRNA alternative splicing (AS) is an 

essential process that ensures proteome diversity 
from a limited number of protein-coding genes in 
eukaryotic genomes. This process is carried out by a 
dynamic ribonucleoprotein complex, also known as 
the spliceosome. Five snRNPs and over 100 
non-snRNP proteins assemble sequentially to form 
the spliceosome during the process [1, 2]. Abnormal 
status of these proteins cause aberrant AS and lead to 
disease including tumor [3]. U2 snRNP is one of the 
snRNPs that assembles the E and A complexes at the 
early stage of AS [4]. It recognizes branchpoint 
sequence (BPS) of the intron through SF3a and SF3b 
complexes [5, 6]. Binding of SF3a and SF3b complexes 
to a 20-nucleotide region upstream of the BPS anchors 
U2 snRNP to pre-mRNA and formed A complex in an 
ATP-dependent manner [4-6]. As one of the main 
components of U2 snRNP, the SF3a complex contains 

three subunits: SF3a1/SF3a120, SF3a2/SF3a66 and 
SF3a3/SF3a60 [7, 8]. Each subunit of SF3a is essential 
for human cell viability and pre-mRNA splicing [9, 
10]. Aberrant expression of these proteins has been 
found in several malignant tumors, suggesting their 
involvement in tumor development and progression 
[11-13]. 

Given the key functions of SF3a1 in spliceosome 
and the extensive regulatory effects of other U2 
snRNP components on tumor biology [12], we present 
a comprehensive overview of SF3a1's structure and 
biological function, particularly in the context of 
tumorigenesis. The correlation between SF3a1 and 
cancers, as well as other immune-related diseases, 
including autoimmune disorders and infections, 
suggests that it could serve as a promising prognostic 
marker and therapeutic target. However, there 
remains a significant gap in functional and 
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mechanistic research that needs to be addressed. 

The structure of SF3a1 and its role in 
spliceosome 
The structure of the SF3a1 gene and protein 

Human SF3a1 gene is located on chromosome 
22q12.2, which containing 16 exons and 15 introns 
[14]. It is transcribed into three transcript variants 
with 3.2, 3.8 and 5.7 kilobases respectively, and 
produces a 793-amino acid protein rich in prolines 
and charged amino acids. SF3a1 has been identified to 
be homologous to splicing factor PRP21p in 
Saccharomyces cerevisiae [15]. The N-terminal of SF3a1 
contains two suppressor-of-white-apricot and 
prp21/spp91 (SURP) domains, and the C-terminal 
contains a nuclear localization signal (NLS) and a 
ubiquitin-like (UBL) domain [15, 16] (Fig. 1). The 
SURP2 domain mediates the interaction of SF3a1 with 
SF3a3, while the 130-amino acid region between 
SURP2 and Pro-rich domains mediates the interaction 
of SF3a1 with SF3a2 [15]. Nuclear magnetic resonance 
(NMR) spectroscopy revealed that Leu169 in SURP2 
domain of SF3a1 was indispensable for the SF3a 
complex formation (Fig. 1). It was proposed that 
SF3a1 functioned as the scaffold and nuclear import 
determinant of SF3a complex, because no direct 
interaction between SF3a2 and SF3a3 was found [10, 
17, 18]. 

The interplay between SF3a1 and various 
molecules 

As one of the core components of spliceosome, 
SF3a1 participates in multiple physiological activities 
by interacting with various molecules including 
proteins and RNAs. 

During pre-mRNA AS, SF3a1 interacts 
dynamically with various proteins and RNAs 
throughout spliceosome assembly. The SF3a 
heterotrimer is imported into the nucleus 
independently and targeted to Cajal bodies (CBs), 
where it is incorporated into the U2 snRNP [18-20]. 
Although SF3a was found to be related to the 3' 
portion of the U2 snRNA and SF3b, the precise 
interaction between SF3a1 and U2 snRNA has not yet 
been elucidated, although SF3a3 contacts both the 

bases of stem-loop I and a bulge in stem-loop III of U2 
snRNA [21, 22]. Then SF3a1 binds to splicing factor 1 
(SF1) via SURP1 domain to mediate recruitment of the 
U2 snRNP for efficient complex E assembly [1]. 
During transition from the E to A complex, SF3a1 
interacts with the GCG/CGC RNA stem and the 
apical UUCG tetraloop of U1-SL4 in a 
sequence-specific manner. This interaction mediates 
the connection between U1 and U2 snRNPs, which 
identifies the 5' and 3' splice site of pre-mRNA 
respectively for functional spliceosome assembly and 
intron lariat formation. The RGG motif in the UBL 
domain at the carboxyl terminal of SF3a1 plays a 
pivotal role in the interaction, while mutations at Y772 
and Y773 in the UBL domain of SF3a1 perturb the 
interplay [23-26]. In the B complex, SF3a1 binds to 
prp3 which is indispensable for U4/U6•U5 tri-snRNP 
formation [27] (Fig. 2). 

In addition to spliceosome components, SF3a1 
also interacts with other proteins such as 
chromodomain helicase DNA-binding protein 1 
(CHD1) to regulate pre-mRNA splicing. SF3a1 
bridged with CHD1 to enhance chromatin association 
and pre-mRNA splicing on specific genes by 
recognizing tri-methylation of histone H3 on lysine 4 
(H3K4me3) [28]. SF3a1 activation facilitated proper 
splicing and accumulation of cohesion factor Sororin 
during S phase to maintain functional sister 
chromatid cohesion and subsequent cell cycle 
progression [29]. SF3a1 could also bind the N-terminal 
region of transcription factor SP1 with the function of 
this interaction remained unclear [30]. 

Thus, SF3a1 exhibits complex interactions with 
various proteins and RNA motifs to ensure efficient 
and proper splicing of pre-mRNAs. Further 
exploration is needed to determine the precise role of 
SF3a1 in the spliceosome and its upstream and 
downstream regulators. 

The role of SF3a1 in tumors 
Human tumors are characterized by splicing 

vulnerabilities [31]. Like other core components of 
spliceosome, SF3a1 has been identified as a risk factor 
in both hematologic and solid tumors (Table 1). 

 

 
Figure 1: Schematic representation of SF3a1 protein. The numeric range referred to the amino acids spanning on SF3a1 that interacted with SF3a2 or SF3a3. SURP, 
suppressor-of-white-apricot and prp21/spp91; NLS, nuclear localization signal; UBL, ubiquitin-like. 
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Table 1: The clinical association between SF3a1 mutation and various hematologic and solid malignancies 

Tumor type Sample sizea SNP Genotypesb 
 

P value/ 
OR (95% CI) 

Mutation frequencyc Clinical correlation Ref. 

BPDCN 50 N N N 0.02 no prognostic relation [32] 
Pancreatic cancer 298 rs2074733 (TT+CT)/CC P=1.4E-02 

/0.65(0.48-0.88) 
0.60/0.70 lower risk [33] 

Pancreatic cancer 413 rs2074733 (TT+CT)/CC P=3.0E-04 
/0.54(0.41-0.73) 

0.66/0.78 lower risk [33] 

Familial gastric and rectal cancer 8 N T/C N 0.88 possibly contributing to cancer [34] 
Familial gastric and rectal cancer 98 N G/T N 0.01 possibly contributing to cancer [34] 
CRC 1 rs1370165248 A/G N 1 major clonal mutation [35] 
CRC 801 rs5753073 (AG+GG)/AA P>0.05 0.25/0.28 no risk correlation [36] 
CRC 801 rs2839998 (GA+AA)/GG P>0.05 0.55/0.53 no risk correlation [36] 
CRC 801 rs10376 (AC+AA)/CC P>0.05 0.17/0.20 no risk correlation [36] 
CRC 801 rs2074733 (TC+CC)/TT P>0.05 0.72/0.73 no risk correlation [36] 
HCC 378 rs5994293 (TG+GG)/TT P=5.0E-04 

/0.70(0.58-0.84) 
0.65/0.49 higher risk [37] 

HCC 428 rs5994293 (TG+GG)/TT P=5.0E-04 
/0.70(0.58-0.84) 

0.58/0.55 higher risk [37] 

N: not present. 
a: The size referred to patient number. 
b: The last genotype was used as the reference for OR calculations. 
c: The last number indicated mutation frequency of control group in case-control study. 
BPDCN, blastic plasmacytoid dendritic cell neoplasm; CRC, colorectal cancer; HCC, hepatocellular carcinoma; SNPs, single nucleotide polymorphisms. 

 

 
Figure 2: The incorporation of SF3a1 in spliceosome assembly. Firstly, SF1 interacted with SF3a1 to recruit U2 snRNP during complex E assembly, and SF3a1 was 
necessary for anchoring U2 snRNP to pre-mRNA. Then, the interaction between SF3a1 and U1 snRNA facilitated intron lariat formation in an ATP-dependent manner in 
complex A. Finally, before or during the first catalytic step of splicing, SF3a1 was dissociated from the spliceosome. Except for the labels in the Figure, black arrow in the complex: 
transesterification; ss, splice site; gray lines referred to the splicing cycle; oval without black line edge indicated unstable binding. 
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The role of SF3a1 in hematologic malignancies 
Authoritative studies have shown SF3a1's 

involvement in hematologic malignancies. A 
whole-exome sequencing analysis revealed that SF3a1 
was mutated in myelodysplasia (MDS) patients with a 
predisposition to acute myeloid leukemia, which was 
further confirmed in a large series of myeloid 
neoplasms exhibiting features of MDS [38]. Patients 
with blastic plasmacytoid dendritic cell neoplasm 
(BPDCN) were found to harbor somatic mutations in 
SF3a1 and other RNA splicing components, however, 
SF3a1 mutation status did not show statistically 
significant correlation with overall survival in this 
malignancy [32]. In addition to tumorigenesis, SF3a1 
might also play a role in drug resistance. Recurrent 
SF3a1 mutations were only present in non-responders 
to azacitidine (Aza) and erythropoietin (Epo) in 
transfusion-dependent, growth factor-resistant, low- 
and Int-1-risk MDS patients, although they were not 
able to predict therapeutic response [39]. 
Dysregulated epigenetic modulation of SF3a1 has also 
been found. DNA methylation analysis revealed that 
SF3a1 was not downregulated by promoter 
hypermethylation in leukemia cells [40]. The above 
studies demonstrated that SF3a1 mutations occurred 
in specific types and subsets of hematologic 
malignancies. Although less frequently studied 
compared to SF3b1, SF3a1 could be used as a 
complementary molecule to predict prognosis and 
treatment response in specific patients. 

The role of SF3a1 in solid cancers 
Research on SF3a1 has been more abundant and 

in-depth in cancers compared to hematologic 
malignancies. A two-stage case-control study 
demonstrated a consistent association between two C 
alleles at rs2074733 in the SF3a1 gene and an increased 
risk of pancreatic cancer. In addition, smoking or 
drinking cooperated with the harmful genotype of 
SF3a1 to increase pancreatic cancer risk [33]. SF3a1 
was also among the 12 mutated genes with novel but 
not penetrant non-synonymous SNPs in a family with 
gastric and rectal cancer [34]. However, another 
hospital-based case-control study in a Chinese 
population indicated that four selected SNPs (rs10376, 
rs5753073, rs2839998, and rs2074733) of SF3a1 were not 
significantly associated with colorectal cancer (CRC) 
risk, even after normalizing for smoking and alcohol 
use status [36]. Limitations, including a small number 
of SNPs, samples, and environmental factors in the 
latter study, probably led to the contradictory results, 
which require further research for validation. Blood 
plasma cell-free DNA sequencing revealed major 
clonal mutations of SF3a1 and others were found in all 

samples from one advanced CRC patient who showed 
rapid but not sustained response to chemotherapy, 
implying SF3a1 might contribute to chemotherapy 
resistance and the pathogenesis of CRC [35]. In a 
two-stage case-control study in China, TT alleles at 
rs5994293 in SF3a1 gene also exhibited a significant 
correlation with higher hepatocellular carcinoma 
(HCC) risk, which additively interacted with smoking 
and alcohol consumption to increase HCC risk in 
HBsAg-negative participants in both the screened and 
combined cohorts [37]. After applying multiple 
bioinformatic methods on the TCGA cohort, SF3a1 
was identified as one of the hub genes in the gene 
network of the top 800 OS-related AS events in HCC 
patients [41]. Furthermore, SF3a1 was among the 20 
lactylation-related genes with prognostic grouping 
value in HCC. The low-risk group exhibited a more 
active immune response [42]. In endometrial cancer, 
SF3a was among the up-regulated proteins in the 
human cell line Ishikawa after megestrol acetate 
treatment, implying a potential function of SF3a in 
predicting the response of gynecologic malignancy to 
hormonotherapy [43]. In conclusion, SF3a1 mutations 
are significantly correlated with the risk and 
prognosis of various cancers, particularly those of the 
digestive system, although some discordance exists, 
and further functional experiments are needed. 

Several aberrantly expressed proteins in various 
cancers have been found to be regulated by SF3a1. 
Different isoforms of muscleblind-like 1 (MBNL1) 
were found to exert opposing functions in prostate 
cancer (PC). MBNL1 lacking exon 7, which tumor 
preferentially abandoned, led to DNA damage and 
subsequent inhibition of cell viability and migration 
[44]. While the overall expression of MBNL1 was 
downregulated, exon 7 in the MBNL1 transcript was 
the most differentially included exon in several 
cancers including PC, and was essential for the 
homodimerization of the MBNL1 protein. SF3a1 was 
necessary for the retention of exon 7 to exert 
pro-tumor effects [44]. When PC3 cells were treated 
with novel and specific PolyPurine Reverse 
Hoogsteen (PPRH) hairpins for gene silencing against 
anti-apoptotic Survivin, SF3a1 was identified among 
the important interactive gene nodes in the STRING 
network analysis and gene sets in GSEA of 
differentially expressed genes, indicating that SF3a1 
participated in the apoptosis-related pathway of PC 
[45]. The axis of SF3a1/ MBNL1 or Survivin isoforms 
might provide a promising subset of therapeutic 
targets and prognostic markers for PC. Furthermore, 
SF3a1 was found to promote splicing landscape 
reprogramming and progression of metastatic 
castration-resistant PC through SOX6- GH22I030351 
axis [46]. And an integrative lactylome and proteome 
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analysis based on liquid chromatography-tandem 
mass spectrometry (LC-MS/MS) revealed SF3A1 was 
lactylated, a novel type of post-translational 
modification, under both normoxia and hypoxia in 
oral squamous cell carcinoma (OSCC), which might 
contribute to the altered pre-mRNA splicing pattern 
and pathogenesis of OSCC [47]. 

Collectively, SF3a1 presented as variant mutated 
forms in different hematologic and solid 
malignancies, and specific mutations were associated 
with patient outcomes and treatment responses, 
despite a few discordant findings, indicating SF3a1 
and related AS events could be potential and 
promising therapeutic targets. However, most studies 
have focused only on prognostic correlations, while 
functional and mechanistic research remains largely 
underexplored, particularly in terms of how mutation 
patterns of SF3a1 influence U2 snRNP functionality, 
the subsequent mis-splicing of specific genes, and 
resulting tumorigenesis. 

The role of SF3a1 in other immune-related 
diseases 

SF3a1 has also been implicated in non-tumor 
immune-related disorders, including autoimmune 
and infectious diseases. A systematic meta-analysis 
revealed that SF3a1 SNPs were involved in genomic 
susceptibility repertoire of the most prevalent juvenile 
idiopathic arthritis subtype [48]. Comprehensive 
functional genomic screens showed that SF3a 
promoted osteoarthritis progression by inducing 
collagen IIA expression [49]. The expression level of 
SF3a, defined as an autoantigen gene of systemic 
lupus erythematosus (SLE), was upregulated in T 
lymphocytes of glomerulonephritis patients after 
immunosuppressive therapy [50]. These findings 
indicated that SF3a1 might act as an etiological factor 
and therapeutic target in specific auto-immune 
diseases. 

SF3a was downregulated in THP-1 macrophage 
cells following mycobacterium tuberculosis (M. tb) 
H37Rv infection, implying the importance of SF3a in 
innate immune cells for pathogen defense [51]. In 
addition to promoting inflammatory response, SF3a1 
also limited excessive and persistent inflammation by 
regulating the expression of mRNA isoforms in the 
toll-like receptor (TLR) signaling pathway. Negative 
regulators including sTLR4, Rab7b, and possibly 
IKKβb were upregulated through various AS events, 
while positive factors such as IRAK1, IKKβ, and CD14 
were downregulated via intron retention regulated by 
SF3a1. MyD88 was another gene regulated by SF3a1 
via AS in the innate immune response [52, 53]. 
Decreased expression of SF3a1 by liver X receptor 
agonist T0901317 had been shown to inhibit 

inflammation via up-regulating the alternative splice 
short form of MyD88 mRNA [54]. 

These studies revealed that SF3a1 dysregulation 
led to immune homeostasis disruption and the onset 
of immune-related disorders. Furthermore, SF3a1 
could serve as a target to prevent excessive 
inflammatory responses and the development of 
subsequent diseases. 

Conclusion 
The idea that altered splicing underlay 

oncogenesis has gained attention and expanded the 
therapeutic scope of multiple tumors over the years. 
SF3a1 appears to perform key functions within the 
SF3a complex in U2 snRNP through its dynamical 
interactions with various molecules. Currently, SF3a1 
mutations have been shown to be significantly 
correlated with hematologic and solid tumors. Several 
functional and mechanistic studies have elucidated 
the potential contribution of SF3a1 to the pathogenesis 
of cancers including CRC, PC and HCC. Additionally, 
SF3a1 also participates in autoimmune disorders and 
infectious diseases by regulating expression of 
isoforms of inflammatory factors. These findings 
suggest that SF3a1 is involved in both tumorigenic 
and immune-related diseases, although further 
investigations are needed. It also suggests that SF3a1 
could be a novel therapeutic target for tumor and 
autoimmune disease treatment. The induction of 
immunogenic tumor-specific neoepitopes by SF3b1 
mutations further implies its potential in tumor 
immunotherapy [31, 55]. 

Collectively, SF3a1 is a component of the SF3a 
complex within the spliceosome, functions as a core 
regulatory factor in pre-mRNA AS, and plays pivotal 
roles in multiple biological processes, including 
tumor development. Aberrant expression of SF3a1 
and related AS events may serve as biomarkers or 
therapeutic targets for related diseases, especially 
cancers such as PC, CRC and HCC. 
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