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Abstract

Alpha-2-macroglobulin (A2M) is a broad-spectrum protease inhibitor that plays a role in maintaining
coagulation balance and immune regulation. Previous studies have demonstrated a strong
association between A2M and various kidney diseases. However, little is known about the role of
A2M in clear cell renal cell carcinoma (ccRCC). In this study, through pan-cancer analysis based on
data from multiple public databases such as The Cancer Genome Atlas (TCGA) and
Genotype-Tissue Expression (GTEXx), a unique prognostic relationship between A2M and ccRCC
was identified. A2M expression in three common RCCs and the prognosis were detected, which
further proved that A2M was closely related to the prognosis of ccRCC, and the diagnostic value of
A2M in ccRCC was determined. Additionally, the results found that A2M in ccRCC was regulated by
methylation and affected vascularization and immune invasion. Subsequently, A2M-related genes
were analyzed and 42 co-related gene expressions were identified in four public databases.
Furthermore, a prognostic model [A2M gene-associated prognostic index (A2M-GPI)] composed of
7 genes [TIEI, VWF, TCF4, PTPRB, ICAM2, DOCK®6, and RAMP3] was constructed using machine
learning to predict the prognosis of ccRCC. Additionally, A2M-GPI combined with independent
predictors (such as age, pathologic stage, and TNM stage) were used to create a survival
Nomogram. This study is the first to systematically analyze the multiple mechanisms of A2M in the
pathogenesis and progression of ccRCC. Machine learning was used to construct a prognostic
model based on A2M to confirm that A2M is a valuable prognostic biomarker for ccRCC. Based on
these findings, we created a publicly accessible website for its application (https://A2Mgpinomogram.
shinyapps.io/ccRCC_ prognosis_prediction/).

Keywords: ccRCC; Immunotherapy response; Methylation; Prognosis prediction; Alpha-2-macroglobulin.

Introduction

Renal cell carcinoma (RCC) is the most common  causes of global death and morbidity, accounting for
malignancy in the kidneys and one of the leading  approximately 2% of cancer diagnoses and deaths
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worldwide [1]. According to the statistics,
approximately one-third of RCC patients have
metastases at the time of diagnosis, with a high
mortality rate and a 5-year survival rate of only 12%
[2]. RCC is a heterogeneous disease comprising
various tumor types, with ccRCC accounting for the
highest proportion of 75%-80%, followed by papillary
RCC (pRCC) and chromophobe RCC (chRCC) [3].
With the emergence and development of
high-throughput = sequencing technology, our
understanding of the molecular drivers in the RCC
subtype has also been improving. In the fifth edition
of the classification of urogenital tumors published by
WHO in 2022, in addition to the morphologically
based classification, rare RCC categories defined by
molecules (such as Fumarate hydratase-deficient
RCC, Succinate dehydrogenase-deficient RCC,
SMARCB1-deficient RCC, and ALK-rearranged RCC)
has been added [4]. The traditional clinical treatment
methods of RCC are surgery, chemotherapy, and
radiotherapy. Recently, novel therapeutic modalities
including immunotherapy and targeted therapy have
gradually emerged and been applied in clinical
practice, such as vascular endothelial growth factor
(VEGF) and tyrosine kinase inhibitor (TKI), yielding
better therapeutic effects for patients [5]. However,
these therapies have some limitations, including high
recurrence rate, serious side effects, drug resistance,
and high price. Therefore, there is an urgent need to
search for a new and highly accurate biomarker that
can provide novel insights into treatment and
prognosis prediction in RCC patients.

Alpha-2-macroglobulin (A2M) is a 725-kD high
molecular weight homotetramer glycoprotein, which
is mainly synthesized by the liver and has important
biological activities. As a broad-spectrum protease
inhibitor, A2M is involved in the maintenance of
coagulation balance and immune regulation [6]. In
recent years, growing studies have revealed that A2M
is tightly implicated in kidney diseases. For example,
plasma A2M level is increased in patients with renal
disease [7, 8]. The expression level of A2M is
correlated with the progression of focal segmental
glomerulosclerosis and can serve as a predictor of
treatment [9, 10]. Additionally, it has been evidenced
that A2M may play an important role in the
pathogenesis of lupus nephritis and can be used as a
biomarker for diagnosis or disease progression [11].
However, few studies have been reported on A2M in
ccRCC, and its clinical and prognostic significance in
ccRCC remains unclear.

Therefore, this study aimed to analyze the
expression of A2M in ccRCC and identify the
relationship between A2M and the prognostic
outcomes of ccRCC patients. Based on this research,

we have developed a new prognostic A2M
gene-associated prognostic index (A2M-GPI) to
predict the therapeutic effects of A2M on the
intervention and prognosis of ccRCC. This study
offers new insights into utilizing A2M and its
molecular signature genes to predict the prognosis
and immunotherapy response in ccRCC.

Materials and Methods

Data preparation

RNAseq data and related clinical information of
different tumors and normal tissues were provided by
the Cancer Genome Atlas (TCGA) database and
genotype-Tissue  Expression (GTEx) database.
RNAseq data and clinical information in TPM form
GTEx and TCGA databases handled consistently by
the Toil method were extracted from the UCSC XENA
(https:/ /xenabrowser.net/datapages/). We strictly
followed the standard inclusion criteria provided by
the TCGA database for ccRCC patients. All included
cases were pathologically confirmed as ¢ccRCC, and
only high-quality, complete datasets were selected.
Samples with incomplete information or ambiguous
tumor classification were excluded. The specific
inclusion and exclusion criteria were as follows: (a)

Pathological confirmation of ccRCC; (b) Age = 18

years; (c) Availability of both clinical data and gene
expression profiles; (d) Presence of overall survival
(OS) data; (e) Datasets containing at least 30 tumor
samples with matched adjacent normal tissues; (f)
Removal of technical replicates if necessary. Samples
lacking survival time or survival status information,
as well as those involving other cancer types, were
excluded from this study. A total of 11069 pan-cancer
samples were collected, among which ccRCC (normal
tissue n = 90, cancer tissue n = 541), pRCC (normal
tissue n = 58, cancer tissue n = 291), and chRCC
(normal tissue n = 25, cancer tissue n = 65) data were
used for subsequent data analysis. Moreover, the
relationship between A2M gene expression and the
survival and prognosis in ccRCC patients was
investigated using Tumor Immune System Interaction
Database (TISIDB, http:/ /cis.hku.hk/TISIDB/), Gene
Expression Profiling Interactive Analysis (GEPIA,
http:/ /gepia.cancer-pku.cn/), Kaplan Meier (https:
/ /kmplot.com/analysis/), and PROGgeneV2 (http:
// genomics jefferson.edu/proggene/). A2M gene
correlation analysis results in ccRCC patients were
downloaded from  cBioPortal (https://www.
cbioportal.org/), = LinkedOmics  (https://www.
linkedomics.org/), and GEPIA database. The Agilent
microarray dataset and clinical characteristics of 101
ccRCC patients in the ArrayExpress (E-MTAB-1980)
database and the mRNA transcriptomic data and
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clinical survival characteristics of 38 ccRCC patients
(GSE29609) in the Gene Expression Omnibus (GEO)
database were used for external validation of the
model. Single-cell sequencing data (GSE152938) of
ccRCC patients were extracted from the GEO
database  (https://www.ncbi.nlm.nih.gov/) and
analyzed using the "Seurat V4" R package. The ccRCC
tumor single-cell dataset (http:/ /tisch.comp-genomic
s.org/) was obtained through Tumor Immune Single
Cell Hub 2 (TISCH?2).

Human tumor tissue collection

A total of 70 cases of human RCC and 6 cases of
paracancer paraffin-embedded tissues were used in
this study. Samples in the tumor group were collected
from patients diagnosed in the First Affiliated
Hospital of Jinan University from 2016 to 2022,
including 50 cases of ccRCC, 14 cases of pRCC, and 6
cases of chRCC (Table S1). After biopsy, the tumors
were immediately washed 2 to 3 times with cold
phosphate-buffered saline (PBS) to remove the blood
and then fixed with liquid nitrogen or 4%
paraformaldehyde for further analysis. The 4%
paraformaldehyde-fixed tissue samples were
subsequently embedded in paraffin. This study was
approved by the Ethics Committees of the First
Affiliated Hospital of Jinan University (NO.KY-
2024-156) and conducted following the Declaration of
Helsinki. Written informed consent was obtained
from all individual participants included in the study.

Prognostic value analysis

The "survival "and "survminer" R packages
(v.3.21) were used for survival analysis and
visualization of overall survival (OS), disease-specific
survival (DSS), and progression-free survival (PFI)
data [12]. Kaplan-Meier curve and log-rank test were
used to determine clinical prognostic features in
cancer. Univariate and multivariate Cox regression
analysis was performed using the "forestplot' and
"survival" R packages to evaluate the association
between A2M and survival prognosis in
pancarcinoma.

Gene methylation analysis

The A2M promoter methylation data of ccRCC
patients was stored in Illumina Human Methylation
450K bead chip data in the TCGA database. After
filtering out the duplicates and missing values of A2M
sequencing data, the methylation data of a total of 319
patients were included. The RNAseq data in TCGA
were converted from FPKM (fragments per kilobase
per million) format into TPM (transcripts per million
reads) for log2 conversion. Next, Spearman
correlation visualization analysis was performed on

A2M expression and cg08300930 methylation probe
detection values using the "ggplot" package. The A2M
methylation distribution and living conditions in
ccRCC patients and normal people were evaluated
using MethHC (https:/ /awi.cuhk.edu.cn/~
MethHC/) and UALCAN (https://ualcan.path.uab.
edu/) web server. Beta values indicated the degree of
DNA methylation, ranging from 0 (unmethylated) to
1 (fully methylated).

Single gene difference analysis and functional
enrichment

Data were re-grouped according to the median
A2M  expression level and subject to difference
analysis using the "dplyr" R package and DESeq2
(v.1.26.0) package [13]. Differentially expressed genes
(DEGs) were screened with the threshold standard of
p < 0.05 and |log2FC| = 1.5. Moreover, potential
biological processes and pathways that DEGs may
involve were identified using ‘clusterProfiler",
"org.Hs.eg.db" (v. 3.10.0), "GOplot" (v. 1.0.2) R
packages, and  "c2.cp.kegg.v7.5.1.symbols.gmt"
database.

Based on the "c2.cp.all.v7.5.1.symbols.gmt"
database (R package "GSEA", "clusterProfiler", and
"GSEABase"), GSEA used to analyze gene set changes
in different pathways between the high-A2M
expression group and low-A2M expression group.

Single-cell RNAseq data analysis

Single-cell RNAseq data in the GSE152938
dataset were organized and analyzed using the
"Seurat" R package. For each sample, cells with fewer
than 20 unique molecular identifiers (UMIs) and cells
with fewer than 200 or more than 5,000 expressing
genes were eliminated. Additionally, dead cells with
UMI of more than 5% of the mitochondrial genome
were filtered out. After that, the top 2,000 highly
variable genes were identified using the '"Find
Variable Features" function in Seurat and the "vst"
method. The UMAP algorithm was used to reduce the
dimensionality of data. Cell clusters were annotated
using the Single R algorithm.

Correlation analysis of tumor immune
infiltration

The correlation between A2M expression and
immune cell content in ccRCC patients was calculated
using the ssGSEA algorithm in "GSVA" R package
(v.1.34.0) [14]. Characteristic markers were used to
annotate 21 kinds of immune cells [15]. The
expression value of A2M in all kinds of ccRCC
immune cells was analyzed utilizing the TISCH2
single-cell sequencing database. Additionally, the
potential relationship between A2M expression and
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immunomodulators [such as immunoinhibitors,
immunostimulators, chemokines, lymphocytes, major
histocompatibility complex (MHC) molecules, and
immune receptors] was evaluated through the TISIDB
biological portal.

Identification of gene associations and
variation levels

The expression matrix of 541 ccRCC patients in
the TCGA database was transformed using log2
(TPM+1), and samples with A2M expression ranking
of 20-80% were filtered out. The "stat" package
(v.3.6.3) was used for correlation analysis of RNA-seq
data. The A2M correlation analysis results of the
GEPIA database, cBioPortal, and LinkedOmics
network server were extracted, and the relevant
feature variables were screened with cor-spearman >
0.6. The gene mutation data of ccRCC were
downloaded from TCGA, and the mutations of 42
characteristic genes were analyzed and visualized
using the "maftools" R package. Genes with high
mutation frequency were displayed in histograms.

Construction of A2M-related gene signatures

Univariate Cox regression was used to evaluate
whether 42 A2M closely related genes had an impact
on the survival state of ccRCC, and the adjusted
threshold was p < 0.05. Least absolute shrinkage and
selection operator (LASSO) regression and 10-fold
cross-validation were performed using the "glmnet" R
package to select the value of "lambda min", the
smaller feature most relevant to the OS of patients in
the TCGA-KIRC cohort, to further narrow down
candidate genes and construct the most appropriate
prognostic risk feature [16]. Finally, the A2M-GPI for
each patient was derived according to the following
formula:

7

A2M _GPI = Z i * Ei

i=1
@i represents the risk coefficient, and Ei represents
the expression of each gene. According to the median
value of the final A2M-GPI score, ccRCC patients
were allocated into the low A2M-GPI group and high
A2M-GPI group. Principal component analysis (PCA)
was performed using the "stats" package. Moreover,
Kaplan-Meier analysis was performed on ccRCC
samples with OS > 25 days using the "survival" and
"survminer" packages to investigate the correlation
between patient survival status and prognosis time
and A2M-GPI scores.

Establishment of the prognostic model

For a better application of A2M-GPI in the clinic,
A2M-GPI was combined with other clinical features

(gender, age, and T, N, M stage). Appropriate clinical
features were selected by univariate post-multivariate
Cox regression analysis to construct a prognostic
nomogram. A nomogram model was established by
integrating survival time, survival state, and 7
characteristic variables using the "rms" R package.
Moreover, receiver operating characteristic (ROC)
curve analysis was conducted utilizing the R packages
"pROC" and "timeROC" (v.1.17.0.1) to obtain the area
under the curve (AUC). ggplot was used for
visualization. The R packages "caret" and "rmda" were
used for calibration analysis of the nomogram and
decision curve analysis (DCA) to evaluate the
specificity and sensitivity of the prediction model. The
1-, 3 -, and 5-year survival of ccRCC patients could be
accurately predicted by summing scores on clinical
characteristic variables. The concordance index
(C-index) value was used to indicate the accuracy of
survival predictions. The dynamic nomogram was
constructed using the "rsconnect" and the "DynNom"
packages.

Immunohistochemistry (IHC) analysis

The tissue sample was sectioned (4 pm) and
baked (40 min) in a 65°C oven. After dewaxing and
rehydration using gradient ethanol, the tissue sections
were subject to 15-min boiling in sodium citrate buffer
(pH = 6.0) for antigen repair. Next, the sections were
incubated (30 min) in 3% H>O; to inhibit endogenous
peroxidase activity, followed by rinsing in PBS. After
that, the sections were incubated with polyclonal
rabbit anti-A2M antibodies (1:100; ab109422, Abcam,
UK) overnight in a shaker (4 °C). Subsequently, the
sections were washed in PBS and incubated (room
temperature, 3 h) with horseradish peroxidase
(HRP)-labeled goat anti-rabbit IgG secondary
antibody (1:400, EarthOx, USA) in a dark box,
followed by visualization with DAB chromogenic
reagent (Maixin Biotechnology, Fuzhou, China). The
sections were then counter-stained (room
temperature, 1 min) with hematoxylin, dehydrated in
gradient alcohol, and sealed with neutral resin. The
sections treated with PBS instead of A2M antibodies
served as negative controls.

Immunofluorescence staining

The sections were incubated (4°C, overnight)
with primary anti-A2M antibody (1:100; ab109422,
Abcam), Caveolin 1 (1:100; ab109422, Abcam), CD3
(1:100; ab109422, Abcam), and CD45 (1:100; ab109422,
Abcam) in a shaker, followed by a further 2-h
incubation  (room  temperature)  with  the
corresponding Alexa Fluor 555 or 488 secondary
antibody (1:1000, Invitrogen, USA) in a shaker. All
sections undergoing immunofluorescence staining
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were counter-stained (room temperature, 1 h) with
DAPI (1:1000, Invitrogen).

DrugBank analysis

The DrugBank (https://go.drugbank.com/)
database  contains  comprehensive = molecular
information, mechanisms, interactions, and targets of
drugs [37]. The Drugbank was used to analyze the
pharmaco-transcriptomics of A2M.

Statistical analysis

R software V.4.2.1 (https://www.r-project.org)
was used for data mining and statistical analysis of
some results. The survival curve was estimated using
Kaplan-Meier survival analysis. The log-rank test was
used to calculate the hazard ratio (HR) and 95%
confidence interval (CI). Univariate and multivariate
Cox regression analyses were performed to determine
prognostic factors. The Mann-Whitney U test
(Wilcoxon rank sum test) was used to show A2M
expression values in unmatched samples, and the
Kruskal-Wallis test was used to compare the
differences in A2M-GPI and expression between
different tumor stages. The correlation analysis was
conducted using the Spearman test. Statistical
mapping and analysis were performed using
GraphPad Prism 7.0, and the results were shown as
mean * standard deviation (SD). The statistical
differences between IHC groups were analyzed using
a one-way analysis of variance (ANOVA). A p-value
of < 0.05 was considered a statistically significant
difference.

Results

Research workflow charts

Through screening 11,069 pan-cancer patients in
the TCGA database, a unique prognostic relationship
between A2M and ccRCC was identified. Based on the
function,  correlation analysis results, and
immunoinfiltration level of A2M in ccRCC, it's
determined that the transcriptome data of 541 ccRCC,
291 pRCC, and 65 chRCC patients in the TCGA
database and the single-cell RNA transcriptome data
of 5 RCC patients from the GSE152938 database met
the inclusion criteria. A2M protein expression level
was verified in combination with tumor samples from
70 clinical RCC patients. Regarding the training and
validation cohort in ccRCC, 517 patients in TCGA, 100
patients in GSE29609, and 38 patients in
E-MTAB-1980 were selected. Through machine
learning method, 42 related candidate feature genes
were narrowed to 7 genes, and a prognostic model
was constructed, evaluated, and validated in
combination with clinical data. The flow chart of this

study is shown in Figure 1.

The prognostic effect of A2M on the OS and
DSS in ccRCC in pan-cancer analysis

First, according to quantitative analysis results of
A2M mRNA pan-cancer expression based on TIMER
and TCGA databases, A2M showed significantly
differential expression in most tumors compared with
that in normal tissues (Figure S1). Among these
tumors, A2M was remarkably downregulated in
adrenocortical carcinoma (ACC), bladder urothelial

carcinoma (BLCA), breast invasive carcinoma
(BRCA), cervical squamous cell carcinoma and
endocervical adenocarcinoma (CESC),

cholangiocarcinoma (CHOL), colon adenocarcinoma
(COAD), esophageal carcinoma (ESCA), kidney
chromophobe (KICH), kidney renal papillary cell
carcinoma (KIRP), lung adenocarcinoma (LUAD),
lung squamous cell carcinoma (LUSC), ovarian serous
cystadenocarcinoma (OV), prostate adenocarcinoma
(PRAD), rectal adenocarcinoma (READ), uterine
corpus endometrial carcinoma (UCEC), and uterine
carcinosarcoma (UCS), whereas notably upregulated
in diffuse large B-cell lymphoma (DLBC),
glioblastoma multiforme (GBM), kidney renal clear
cell carcinoma (KIRC), acute myeloid leukemia
(LAML), brain low-grade glioma (LGG), pancreatic
adenocarcinoma (PAAD), skin cutaneous melanoma
(SKCM), stomach adenocarcinoma (STAD), testicular
germ cell tumor (TGCT), and thymoma (THYM).

The prognostic value of A2M in cancer was
subsequently explored. In short, univariate Cox
combined with multivariate Cox regression analysis
(variables with a p-value of < 0.10 on univariate
analysis were entered into a multivariate Cox
analysis) was performed on the OS, DSS, and A2M
expression of pancarcinoma in TCGA. The results
showed that A2M expression was correlated with the
OS prognosis of sarcomatoid cancer (SARC), SKCM,
KIRC, LUSC, and STAD (p < 0.1) (Figure 2A). As
indicated by Kaplan-Meier survival analysis results,
high A2M expression was associated with a good
overall prognostic OS in KIRC (Figure 2A1, p < 0.001),
SARC (Figure 2A3, p = 0.030), SKCM (Figure 2A4, p =
0.021), and was related to a poor survival prognosis
for OS in LUSC (Figure 2A2, p = 0.016). Additionally,
according to Cox regression analysis results of DSS
and A2M for pancarcinoma based on the TCGA
database, differential expression of A2M was notably
correlated with DSS prognosis of KIRC, SARC, BRCA,
and CESC (p < 0.1) (Figure 2B). Moreover,
Kaplan-Meier survival analysis results showed that
the DSS of patients with high A2M expression in
KIRC (Figure 2B1, p < 0.001) was dramatically better
than that of patients with low A2M expression.
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Additionally, patients with BRCA (Figure 2B2, p =
0.057), CESC (Figure 2B3, p = 0.066), and SARC
(Figure 2B4, p = 0.075) also showed a favorable
prognostic trend for DSS. Although Cox proportional
risk models of pan-cancer suggested that A2M was
tightly associated with survival outcomes in multiple
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tumors, A2M was only significantly associated with
both OS and DSS outcomes in KIRC (p < 0.001). This
suggested that A2M was a potential novel prognostic
biomarker in ccRCC, and its function in RCC needs to
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Figure 2: Association between A2M expression level and pan-cancer OS and DSS. (A) Forest map of multivariate Cox regression analysis of A2M and pan-cancer OS
(red: p < 0.1); (A1-A5) Kaplan-Meier analysis of the OS of five tumors significantly affected by A2M; (B) forest map of multivariate Cox regression analysis of A2M and
pan-cancer DSS (red mark: p < 0.1); (B1-B4) Kaplan-Meier analysis of the DSS of four tumors significantly affected by A2M.

3.3 Diagnostic potential and prognostic effect
of A2M in three renal carcinoma subtypes

For further verifying the role of A2M in ccRCC,
the protein structure of A2M was first predicted and
synthesized using HPA (https://www.protein
atlas.org/) (Figure 3A). Subsequently, the TCGA and
GTEx databases were used to analyze the
transcriptome sequencing data of 897 TCGA tissues
(541 ccRCC tissues, 291 pRCC tissues, and 65 chRCC
tissues) and 173 normal tissues in the GTEx database.
The results indicated differences in the expression
trend of A2M in three types of RCC, with high A2M
expression in ccRCC patients (p < 0.001) and low A2M

expression in pRCC and chRCC patients (p < 0.001)
(Figure 3B). Additionally, the clinical baseline data
table of patient cohorts in TCGA-KIRC (Table 1),
TCGA-KIRP (Table S2), and TCGA-KICH (Table S3)
and the expression differences of A2M in different
clinical stages indicated that A2M expression level
had a significantly diagnostic potential for
determination of disease clinical stage and evaluation
of the main therapeutic effects (Figure S2).
Subsequently, the A2M protein expression level was
verified in 70 RCC tumor tissue samples from clinical
patients of the First Affiliated Hospital of Jinan
University and 6 control para-cancer tissue samples
using IHC staining. In the control group, A2M was
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primarily localized to the cell membrane and
cytoplasm, with positive staining observed in some
glomeruli and tubules. In the ccRCC group, A2M was
diffusely expressed in both the cell membrane and
cytoplasm. In contrast, the pRCC and rRCC groups
exhibited only weak A2M expression in these cellular
compartments. The results revealed that the A2M
protein level was consistent with its mRNA
expression results (Figure 3C-D). According to
regrouping and analysis results based on the average
optical density of IHC staining of each sample, the
superimposed bar graph showed that A2M high
expression was mainly distributed in normal subjects
(13.04%) and ccRCC patients (86.96%) (Figure 3E &
Table 54). Next, with the median expression level of

A2M mRNA as the cutoff point, the relationship
between A2M mRNA expression level and survival
time in different datasets was evaluated. It was found
that ccRCC patients with high A2M expression in
TCGA RNA-seq had higher OS levels (p < 0.001), with
no significant effect on OS prognosis in pRCC (p =
0.894) and chRCC (p = 0.695) patients (Figure 3F).
Similar results were also obtained in the verification
of external databases including TISIDB (p = 0.000391),
GEPIA (p 6.4e-05), Kaplan-Meier plotter (p
5.7e-06), and PROGgene (p = 7.1e-06) (Figure 3G). The
above results further proved that A2M can be used as
a potential diagnostic and prognostic biomarker for
ccRCC.
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Figure 3: A2M expression and prognosis analysis in ccRCC, pRCC, and chRCC. (A) Protein structure map of A2M; (B) RNA expression levels of A2M in ccRCC,
pRCC, chRCC, and normal samples in TCGA and GTEx databases; (C) IHC staining of A2M expression in tumor tissues of clinical ccRCC, pRCC, and chRCC patients; (D)
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statistical map of A2M expression level in C [mean optical density: integrated optical density (IOD)/area]; (E) redistribution according to the median mean optical density in D,
and the superimposed histogram showed the distribution of tumor specimens of ccRCC, pRCC, and chRCC in different A2M expression levels; (F) Kaplan-Meier survival curve
evaluation of the effect of A2M in TCGA on the prognosis of ccRCC, pRCC, and chRCC patients; (G) Kaplan-Meier survival curve evaluation of the effect of high or low A2M
expression on the prognosis of ccRCC patients in TISIDB, GEPIA, Kaplan-Meier plotter, and PROGgene public databases; *p < 0.05, compared to normal; **p < 0.01, compared

to normal; **p < 0.001, compared to normal.

Table 1. Clinical baseline data table of patients in the TCGA
ccRCC cohort.

Characteristic Low expression of High expression of p
A2M A2M

n 270 271

T stage, n (%) <0.001

T1 116 (43%) 163 (60.1%)

T2 43 (15.9%) 28 (10.3%)

T3 103 (38.1%) 77 (28.4%)

T4 8 (3%) 3 (1.1%)

N stage, n (%) 0.383

NO 124 (92.5%) 118 (95.2%)

N1 10 (7.5%) 6 (4.8%)

N Unknown 136 (NA) 147 (NA)

M stage, n (%) <0.001

MO 198 (78.9%) 231 (89.9%)

M1 53 (21.1%) 26 (10.1%)

M Unknown 19 (NA) 14 (NA)

Pathologic stage, n (%) <0.001

Stage I 113 (42%) 160 (59.5%)

Stage II 33 (12.3%) 26 (9.7%)

Stage III 68 (25.3%) 55 (20.4%)

Stage IV 55 (20.4%) 28 (10.4%)

Stage Unknown 1 (NA) 2 (NA)

Histologic grade, n (%) <0.001

G1 2(0.8%) 12 (4.5%)

G2 92 (34.8%) 144 (53.5%)

G3 121 (45.8%) 85 (32%)

G4 49 (18.6%) 27 (10%)

Grade Unknown 6 (NA) 3(NA)

OS event, n (%) <0.001

Alive 155 (57.4%) 211 (77.9%)

Dead 115 (42.6%) 60 (22.1%)

Age, n (%) 0.212

<=60 127 (47%) 142 (52.4%)

> 60 143 (53%) 129 (47.6%)

3.4 Analysis of A2M methylation level and
biological enrichment in ccRCC

Next, the role of A2M in the development and
progression of ccRCC was explored. A2M
methylation level in ccRCC was observed and
biological enrichment analysis was performed. It was
found that the methylation level of A2M in c¢ccRCC
was reduced compared with that in normal people
(Figure 4A), and obvious hypomethylation was
observed in the Cg08300930 site of A2M gene (Figure
4B). A lower methylation level of this site of the A2M
gene indicated a longer survival time of ccRCC
patients (HR = 1.99, p = 0.00065) (Figure 4C).
Additionally, the TCGA-KIRC cohort was analyzed

for A2M single gene differences, and a total of 6023
significantly ~differential genes were identified
(adjusted p < 0.05 and |log2FC| > 1.5). According to
the volcano map of DEGs, there were 5888
downregulated genes and 135 upregulated genes
(Figure 4D). Next, these DEGs in the ccRCC group
were subject to enrichment analysis. GO enrichment
analysis results showed that these differential genes
were related to various molecular functions, cell
composition, and biological processes, such as
regulation of hormone levels, anchored component of
membrane, and passive transmembrane transporter
activity (Figure S6A & Table S5). KEGG enrichment
analysis results indicated that A2M single-gene
differential genes were involved in multiple biological
pathways, such as cell complement and coagulation
cascade, pigment P450-mediated exogenous
metabolism, neuroactive ligand-receptor interactions,
neutrophil-extracellular trap formation, and CAMP
signaling pathway (Figure 4E & Table S6). Moreover,
according to GSEA enrichment analysis results, genes
in the A2M high expression group of ccRCC patients
were mainly positively correlated with lymphatic
angiogenesis, angiogenesis, VEGF, and VEGFR
signaling pathways, and negatively correlated with
signaling pathways such as reproduction, DNA
methylation, and linoleic acid metabolism (Figure 4F
& Table S7&8). Subsequently, for verifying the close
correlation between high A2M expression and
angiogenesis in ccRCC  patients, the co-
immunofluorescence of A2M and vascular
endothelial marker Caveolin 1 in tumor tissues from
clinical ccRCC patients in the First Affiliated Hospital
of Jinan University was detected wusing the
immunofluorescence method. The results indicated
that A2M expression was positively correlated with
the expression of endothelial cells (R = 0.832, p <
0.001) (Figure 4G&H), suggesting that A2M may play
an important role in tumor angiogenesis in ccRCC.

3.5 The role of A2M in the regulation of
immune invasion in ccRCC

The above results suggested that low A2M
expression was associated with rapid tumor
progression in ccRCC. However, the underlying
mechanisms of A2M in RCC progression and the
immune microenvironment remained unclear.
Therefore, A2M single gene differences were first
analyzed using the TCGA-KIRC, TCGA-KIRP, and
TCGA-KICH databases, and enrichment analysis was
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conducted on the commonly differentially expressed
genes (Co-DEGs) combined differential fold changes
log2FC. Changes in A2M expression can cause the
difference of 91 identical genes in ccRCC, pRCC, and
chRCC, and these genes were enriched in multiple
immune pathways (Figure S3 & Table S9). This
suggested that A2M may play an important role in
RCC immunomodulation. Therefore, immune
infiltration analysis was first conducted on the
TCGA-KIRC cohort and it was found that A2M was
positively correlated with most of the immune cell
types, with the most significant cell types including
NK cells (R = 0.530, p < 0.001), mast cells (R = 0.530, p
<0.001), pDC (R = 0.469, p < 0.001), Tem (R = 0.459, p
< 0.001), Tgd (R = 0.444, p < 0.001), Neutrophils (R =
0.363, p < 0.001), and macrophages (R = 0.166, p <
0.001) (Figure 5A&A1-A6). Moreover, A2M also
showed a trend of positive association with
intratumoral immune cell infiltration in rRCC and
chRCC (Figure S4A-B), but the immune cell types
with significant association were not the same as that
in ccRCC. Next, the role of A2M in the immunity of
ccRCC patients was further investigated. Specifically,
the single-cell sequencing results were analyzed and it
was found that A2M was primarily expressed in
mononuclear phagocytes (MNPs), endothelial cells,
fibroblasts, and proliferating cells in ccRCC dataset
GSE152938; the single-cell expression position of a
few leukocyte marker CD45 and T cell marker CD3
overlapped with the expression position of A2M,
which suggested that A2M may be related to MNPs
and T cells in immune cells, with a more close relation
to MNP (Figure 5B). To further verify this conclusion,
we used clinical ccRCC tumor tissues to co-locate
A2M with leukocyte marker CD45 and T cell marker
CD3 by immunofluorescence. The results showed that
A2M was expressed in only a small part of
CD45+CD3+ cells. This suggested that A2M may have
a limited effect on T cells' immune function (Figure
5C). Next, the correlation between immune -cell
distribution and proportion and A2M expression level
at the single-cell level was verified. Immune cell

profiles in 6 external single-cell databases
(KIRC_GSE111360, KIRC_GSE121636, KIRC_
GSE139555, KIRC_GSE145281_aPDL1, KIRC_

GSE159115, and KIRC_GSE171306) were analyzed,
and high expression of A2M was also found in MNPs
and Tprolif with high levels (Figure 5D).

Table 2. Drugs targeting A2M in the Drugbank.

Additionally, in KIRP and KICH, A2M was also found
highly expressed in mononuclear macrophage cell
lines (Figure S5). Taken together, A2M can change the
immune microenvironment of ccRCC by affecting
MNPs and T cells.

Next, the immunoinhibitors, immuno
stimulators, chemokines, lymphocytes, MHC
molecules, and immune receptors that were
significantly = associated with A2M in the

immunotherapy response of ccRCC patients were
explored (Figure 6). The colors and their intensity on
the bar scale denoted the nature of the correlation,
with the darker shade of blue indicating more
negative correlations (close to -1) and the darker
shade of red indicating more positive correlations
(closer to 1). It was found that the top two
immunoinhibitors positively correlated with A2M in
ccRCC were KDR (Cor = 0.712, p < 2.2e-16) and
ADORA2A (Cor = 0.355, p < 216e-17) (Figure
6A1-A2). The top two immunostimulators positively
correlated with A2M in ¢ccRCC were ENTPD1 (Cor =
0.598, p < 2.2e-16) and RAETI1E (Cor = 0.506, p <
2.2e-16) (Figure 6B1-B2). Additionally, CCL14 (Cor =
0.575, p < 2.2e-16) and CX3CL1 (Cor = 0.322, p <
3.26e-14) were top two chemokines positively
correlated with A2M in ccRCC (Figure 6C1-C2). The
top two lymphocytes positively correlated with A2M
in ccRCC included NK (Cor = 0.467, p < 2.2e-16) and
Th2 (Cor = 0.406, p < 2.2e-16) (Figure 6D1-D2). The
top two MHC molecules positively correlated with
A2M in ccRCC were HLA-E (Cor = 0.475, p < 2.2e-16)
and TAP2 (Cor = 0.244, p < 1.31e-08) (Figure 6E1-E2).
Finally, CXCR4 (Cor = 0.255, p < 2.2e-16) and CCR10
(Cor = 0.228, p < 2.2e-16) were top two immune
receptors positively correlated with A2M in c¢ccRCC
(Figure 6F1-F2). Taken together, these results
suggested that A2M may be involved in the
regulation of tumor microenvironment by MNP and T
cells in ccRCC, thus affecting immunotherapy
response. Additionally, it was also found through the
DrugBank database that some clinical drugs can alter
the mRNA expression level of A2M. Antimony
compounds and immunoinhibitor cyclosporine can
reduce A2M mRNA expression, while organoarsenic
drugs DARVIAS (darinaparsin), dasatinib,
dexamethasone, isotretinoin, selenium, and silicon
dioxide can increase A2M mRNA expression (Table
2).

Drug Change Interaction

References
(PubMed ID)

Antimony downregulated

Cyclosporine downregulated

Antimony results in decreased expression of A2M mRNA
Cyclosporine results in decreased expression of A2M mRNA

17547211

20106945
25562108
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Darinaparsin upregulated Darinaparsin results in increased expression of A2M mRNA 22535156
Dasatinib upregulated Dasatinib results in increased expression of A2M mRNA 20579391
Dexamethasone upregulated Dexamethasone results in increased expression of A2M mRNA 25047013
Isotretinoin upregulated Isotretinoin results in increased expression of A2M mRNA 20436886
Selenium upregulated Selenium results in increased expression of A2M mRNA 18997278
Silicon dioxide upregulated Silicon Dioxide analog results in increased expression of A2M mRNA 23806026
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*#¥p < 0.001, compared to normal.
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Figure 5: The effect of A2M on immune infiltration in ccRCC. (A) Correlation analysis of A2M expression and immune cell infiltration in ccRCC patients in the TCGA
cohort; (A1-Ab) correlation analysis between A2M expression and immune cells (NK cells, mast cells, pDC, Tem, Tgd, and neutrophils) (Top 6); (B) feature plot showing the
cell clusters of CD45, CD3, and A2M in ccRCC single-cell data (GSE152938); (C) immunocolocalization of A2M, CD45, and CD3 in ccRCC tumor tissues of clinical patients; (D)
validation of the distribution of A2M in various immune cells through external single-cell databases (KIRC-GSE111360, GSE121636, GSE139555, GSE145281_aPDLI, and

GSE159115, and GSE171306).

3.6 Analysis of A2M closely related genes and
their variation landscape in ccRCC patients

The potential role of A2M in tumorigenesis and
tumor progression was further explored. Spearson
correlation analysis of A2M genes was first conducted
using the LinkedOmics database. According to the
results, there were 9187 genes positively correlated
with A2M and 10924 genes negatively correlated with
A2M (Figure 7A). After intersecting A2M-related
genes in TCGA, GEPIA, cBioPortal, and LinkedOmics
databases (cor-spearman > 0.6), 42 A2M co-related
genes (1.2%) were identified, including PECAM,
MMRN?2, NES, CD93, etc. (Figure 7B-C). Additionally,
the somatic variation of 42 A2M co-related genes in

ccRCC patients was analyzed, and the results showed
that about 13.4% (45/336) of ccRCC patients had
mutations in A2M co-related genes. Among the top 10
mutated genes, Von Willebrand factor (VWEF) (18%)
had the highest mutation frequency, and the other 9
genes had a mutation frequency of 4%-9%; missense
mutations accounted for the vast majority of mutation
types (Figure 7D). Further GO and KEGG enrichment
analyses of A2M co-related genes showed that A2M
co-related genes were mainly involved in regulating
various biological processes such as angiogenesis,
endothelial cell development and differentiation, and
cell adhesion (Figure 7E& Table S10). As indicated by
the protein-protein interaction (PPI) network analysis
results of 42 A2M co-related genes, CD34, PECAM1,
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CDHS5, and VWF had tight interprotein interactions
(Figure 7F). The correlation coefficient diagram
showed the internal correlations between CD34,
PECAM1, CDH5, VWF, and A2M genes, among
which A2M and PECAM1 had the strongest
correlation (R = 0.90) (Figure S6B). According to

A

Kaplan-Meier curve analysis results, high CD34,
PECAM1, CDH5, and VWF mRNA expressions were
associated with longer OS in ccRCC patients in GEPIA
(p < 0.001) (Figure S6C). These findings further
suggested that A2M in ccRCC played an important
role in tumor angiogenesis.
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Figure 6: A2ZM and immunotherapy response in ccRCC. (A-F) The correlation between A2M expression and immunoinhibitors (A), immunostimulators (B), chemokines
(C), lymphocytes (D), MHC molecules (E), and immune receptors (F) in pancarcinoma; (A1-A2) scatter plots of the top 2 immunoinhibitors positively correlated with A2M
expression in ccRCC patients; (B 1-B2) scatter plots of the top 2 immunostimulators positively correlated with A2M expression in ccRCC patients; (C1-C2) scatter plots of the
top 2 chemokines positively correlated with A2M expression in ccRCC patients; (D 1-D2) scatter plots of the top 2 lymphocytes positively correlated with A2M expression in
ccRCC patients; (E1-E2) scatter plots of the top 2 MHC molecules positively correlated with A2M expression in ccRCC patients; (F1-F2) scatter plots of the top 2 immune

receptors positively associated with A2M expression in ccRCC patients.
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Figure 7: Analysis of A2M-related differential genes and tumor mutations in ccRCC. (A) Volcano map of A2M single gene correlation analysis; (B) Venn diagram of
the intersection of A2M-related genes in four different databases (TCGA, GEPIA, cBioPortal, and LinkedOmics) (Cor-spearman 2 0.6); (C) the correlation degree between 42
co-related genes and A2M in four databases; (D) waterfall plot of A2M-related genes in TCGA cohort; mutation summary map showing mutation classification, mutation
distribution of single nucleotide variants (SNV) category, and top 10 mutated genes; (E) GO and KEGG enrichment analysis of co-related genes; (F) the PPl network of A2M
co-related genes via Cytoscape visualization; the top 4 significantly interacting genes with the highest PPl degree (degree 2 15) were selected.

3.7 Screening of prognostic characteristic
variables in ccRCC patients and construction
of the A2M-GPI prognostic model

Clinical survival information of ccRCC patients
was collected and analyzed. Univariate Cox analysis
was performed on 42 A2M co-related genes to screen
survival-related genes (p < 0.05). Through LASSO-
Cox regression analysis, 7 genes were identified [TIE1,
VWE, transcription factor 4 (TCF4), protein tyrosine
phosphatase receptor type B (PTPRB), intercellular

adhesion molecule 2 (ICAM2), dedicator of
cytokinesis 6 gene (DOCK®6), and receptor activity
modifying protein-3 (RAMP3)] and the A2M-GPI
prognostic model was constructed (Figure 8A-B). The
A2M-GPI score of each patient was obtained by the
following formula: A2M-GPI = (-0.06057755*TIE1
exp.) + (0.00416184*VWF exp.) + (-0.22620967*TCF4
exp.) + (0.62309290*PTPRB exp.) + (-0.06403383*
ICAM2 exp.) + (-0.19163895*DOCK6 exp.) +
(0.08291625* RAMP3 exp.). Based on the median
A2M-GPI value calculated by the above formula,
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patients with clinical information in the TCGA cohort
were allocated into the high A2M-GPI and low
A2M-GPI group and served as a training set.
A2M-GPI was significantly correlated with various
clinical features. For example, in histologic grade

A
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Figure 8: Screening of prognostic characteristic variables in ccRCC patients. (A) Selection of 7 model genes by machine learning; (B) 10-fold cross-validation of
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Figure 9: Internal training and external verification of gene signature prognostic prediction model. (A) Distribution of A2M-GPI adjusted for survival state and
time in TCGA, E-MTAB-1980, and GSE29609 cohorts; (B) PCA diagram of A2M-GPI in TCGA-KIRC (OS), TCGA-KIRC (DSS), E-MTAB-1980 and GSE29609 cohorts; (C) the
expression of each gene component in the high or low A2M-GPI risk group; (D) OS, DSS, and PFl in patients with high A2M-GPI and low A2M-GPI in the TCGA-KIRC cohort;
OS and DSS in patients with high A2ZM-GPI and low A2M-GPI in the GSE29609 cohort; OS in patients with high A2ZM-GPI and low A2M-GPI in the E-MTAB-1980 cohort.

3.8 Internal training and external validation of
A2M-GPI predictive models

Next, the survival rates of ccRCC patients with
different A2M-GPI values were compared. In short,
517 ccRCC patients in the TCGA-KIRC (OS) cohort

with OS > 60 days were allocated into the high
A2M-GPI risk group and low A2M-GPI risk group
based on A2M-GPI score combined survival status,
and this group was selected as the training dataset.
First, the OS of ccRCC patients with different
A2M-GPI scores was compared. The results showed
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that patients with high A2M-GPI had better OS than
those with low A2M-GPI (Figure 9A). PCA results
revealed that the clustering effect based on A2M-GPI
was satisfactory (Figure 9B). Moreover, as shown by
the heat map, genes of each component in the group
with high A2M-GPI also showed higher expression
levels (Figure 9C). Additionally, survival data showed
that ccRCC patients with high A2M-GPI scores had
higher OS (p < 0.001) (Figure 9D).

A

Meanwhile, TCGA-KIRC (DSS), E-MTAB-1980,
and GSE29609 were used as model external validation
cohorts. The results showed that there were
significant differences in the number of survival and
death status distributions between the high A2M-GPI
risk group and low A2M-GPI risk group (Figure 9A),
and the clustering was satisfactory. ccRCC patients
with high A2M-GPI scores had a better prognosis
both in DSS and PFI (Figure 9D).
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3.9 Establishment, evaluation, and clinical
application of the nomogram model

A2M-GPI showed good clustering and
prognostic effects in internal training and external
verification. Subsequently, whether A2M-GPI could
be an independent prognostic factor for ccRCC
patients was further determined. Univariate and
multivariate Cox regression analysis was performed
on A2M-GPI and other clinical variables (Figure
10A-B). According to wunivariate Cox regression
analysis results, age, T, N, M, pathologic stage, and
A2M-GPI of ccRCC patients could significantly affect
the prognosis of patients. Age (HR = 1.032, 95%CI:
1.018-1.046, p < 0.001), lymphatic metastasis (HR =
3.205, 95%CI: 1.653-6.213, p < 0.001), and distant
metastases (HR = 4.826, 95%CI: 3.495-6.663, p < 0.001)
were considered risk factors, whereas A2M-GPI was
considered a protective factor (HR = 0.311, 95%Cl:
0.241-0.401, p < 0.001) (Figure 10A). Multivariate Cox
regression analysis results indicated that A2M-GPI
could be used as an independent prognostic factor in
ccRCC patients (HR = 0.435, 95%CI: 0.284-0.666, p <
0.001). Additionally, age was also an independent
prognostic factor (HR = 1.029, 95%ClI: 1.008-1.051, p =
0.006) (Figure 10B). Considering data accessibility and
clinical applicability, 4 clinical characteristic variables
(age, stage, presence of distant metastasis, and
A2M-GPI) were used to construct the nomogram
model. Multivariate Cox and stepwise regression
analysis were used to construct a nomogram survival
prognosis model based on the TCGA-KIRC cohort
and to show the 1-, 3-, and 5-year OS probabilities of
patients (Figure 10C). The C-index of the model was
0.786 (95%ClI: 0.768-0.804). In the 3-year and 5-year
decision curve analysis (DCA), it can be seen that the
constructed nomogram model had better benefit,
specificity, and sensitivity than any other
characteristic variable and model (Figure 10D-E). The
prognostic calibration curves showed a good fit
between the OS probability predicted by the
nomogram model and actual survival at 1, 3, and 5
years (Figure 10F). Kaplan-Meier survival analysis
results showed that there were significant differences
in OS between high and low nomogram scores for
ccRCC patients (p < 0.001), with patients with high
nomogram scores having higher OS rates (Figure
10G). Next, the diagnostic value of the component
genes, A2M-GPI model, and nomogram model at 1, 3,
and 5 years was analyzed through ROC curves. The
AUC indicated that the nomogram model had higher
diagnostic value and accuracy in predicting
prognostic survival of ccRCC patients (Figure 10H-I
and Figure S6D). Moreover, a web site
(https:/ / A2Mgpinomogram.shinyapps.io/ccRCC_pr

ognosis_prediction/) wused by the users was
constructed to facilitate the usage of our prediction
model by the clinical doctors. The input data (age,
stage, TNM stage, and A2M-GPI) were pre-processed,
and then the 1-, 3-, and 5-year survival probability
and survival maps were automatically exported.

Discussion

A2M belongs to the 139 MEROPS family, which
has 7 members in humans and 2 members in mice.
A2M is also involved in multiple functional
regulation in the body. A2M can improve immunity,
enhance antigen uptake, processing, and presentation
of antigen-presenting cells [17-19]. Therefore, A2M
can be used as a biomarker for the diagnosis and
prognosis of many diseases. Although several studies
have explored A2M expression and function in
specific tumors, its broader role—particularly its
prognostic implications —has not been systematically
investigated. In this study, we provided the first
comprehensive analysis of the expression level and
prognostic value of A2M between tumor and normal
tissues. Our study showed that the mRNA expression
of A2M was downregulated in most tumors. Existing
evidence has documented that A2M expression is
significantly upregulated in a few tumors such as
KIRC, DLBC, and GBM. Additionally, we assessed its
prognostic value in multiple tumors and found
significant correlations in SARC, SKCM, and KIRC,
suggesting distinct roles in tumor biology.

Recently, Cheng et al. [20] have identified 5
complement-related genes (A2M, APOBEC3G,
COL4A2, DOCK4, and NOTCH4) through a
comprehensive analysis of mRNA expression data in
the database of the International Cancer Genome
Consortium, and established a risk score model to
predict the prognosis of ccRCC. However, little is
known about the expression of A2M in ccRCC tumors
and its prognostic and therapeutic value. In ccRCC
specifically, we conducted a detailed analysis of
A2M's expression profile, diagnostic/prognostic
relevance, methylation status, somatic mutations,
immune infiltration, and functional pathways for the
first time—identifying it as a strong prognostic
biomarker.

Our study suggested that A2M is a potential
novel prognostic marker in ccRCC. Over the past
decade, the treatment of RCC has overgrown to
targeted therapies targeting specific targets, such as
VEGF, PDGF, and related receptors [21]. A2M-related
differential genes in ccRCC were screened and
enriched through GO, KEGG, and GSEA analyses.
These differential genes were enriched in the
regulation of hormone levels and cell complement
and coagulation cascade. Interestingly, according to

https://lwww.jcancer.org



Journal of Cancer 2025, Vol. 16

3159

GSEA enrichment results, high expression of A2M in
ccRCC patients was positively correlated with
lymphatic angiogenesis, angiogenesis, VEGF, VEGFR,
and other signaling pathways. This suggested that
these findings were closely related to the important
role of A2M in angiogenesis. It has been shown that
A2M binds with various important vascular genetic
factors [such as bFGF, VEGF, and placental growth
factor (PIGF)] to inactivate the binding factors [22].
Additionally, A2M can also regulate uterine
vascularization and remodeling during pregnancy
[23]. Subsequently, double immunofluorescence
labeling of A2M and vascular marker Cavolinl was
further performed to explore whether A2M
expression in ccRCC was closely related to the
number of vascularization. Although there was no
colocalization between the two, it was found that
Cavolinl expression was increased around the region
with high A2M expression, which may be attributed
to the complexity of tumor vessels [24].

In recent years, the introduction of ICI therapy
has effectively improved the prognosis of RCC
patients [25]. There are various immune cells in the
tumor microenvironment, which gather in the tumor
tissue and play a certain anti-tumor role. The body
recruits various immune cells (such as mononuclear
macrophages and T cells) to eliminate tumor cells [26,
27]. This study revealed that A2M played an
important role in tumor immune regulation and was
closely related to NK cells, MNPs, and T cells. It has
been evidenced that NK cell infiltration has a
protective effect and has prognostic value in renal,
colorectal, and lung cancer [28-30]. Additionally,
Yulin Deng et al. have found that the ccRCC group
with a low risk of somatic cell mutation has a higher
abundance of activated NK cells [31]. However, the
specific mechanism of A2M in regulating the activity
of NK cells in ccRCC to inhibit tumor growth remains
to be further studied. As an important component of
the immune tumor microenvironment, MNP is
specifically involved in cancer-specific
T-cell-mediated killing of tumor cells, which provides
new possibilities for cancer immunotherapy [32]. This
study found that A2M was closely related to MNP.
Consistently, studies have shown that A2M induces
changes in internal conformation when stimulated,
thus stimulating the receptor-mediated endocytosis of
the MNP system [33, 34]. Therefore, it's hypothesized
that the formation of the MNP immune
microenvironment was also involved in the
anti-tumor effect of A2M, and A2M may also act as an
indirect immune target regulated by MNP. It's
well-established that infiltrating T cells play an
important role in shaping the anti-tumor immune
response; CD8+ T cells, in particular, are one of the

major immune cell types responsible for tumor cell
killing [35]. Accumulating reports have shown that
the number and density of tumor-infiltrating CD8+ T
cells can improve the survival rate of cancer patients
[36, 37]. In the complex tumor microenvironment,
constant antigen exposure of T cells can result in
dysfunction, and dysfunctional T cells have reduced
proliferation ability, presenting a low-functioning
state of "T cell exhaustion." Therapeutic reactivation
of tumor-specific T cells has yielded promising results
in cancer patients [38]. A2M has the function of
antigen delivery, which can enhance the response of T
lymphocytes [19], participating in the immune
microenvironment of tumors.

Subsequently, the role of A2M in ccRCC was
further investigated. In short, the interaction between
A2M genes and neighboring genes with frequent
mutations was explored to identify the potential
causes of A2M changes. In the network, 42 genes in
four databases that shared a close positive association
with A2M were identified, and the mutation of these
42 genes was observed. The results suggested that
VWEF had the highest mutation frequency (18%), and
missense mutations accounted for the vast majority of
mutation types. Consistently, it has been evidenced
that elevated VWF levels in cancer patients may not
only lead to cancer-related clotting disorders but can
also mediate cancer progression and metastasis.
Endothelium-secreted VWEF polymers contribute to
tumor cell adhesion and transendothelial migration,
which is critical for tumor transmission [39]. VWF
mutations cause functional deficits, often resulting in
blood disorders and rare tumor formation [40]. This
further confirmed that the role of A2M in ccRCC was
closely related to tumor angiogenesis. Additionally, it
was also found that among 42 A2M co-related genes,
CD34, PECAM1, CDH5, and VWF had tight protein
interactions, which further proved that the role of
A2M in ccRCC was closely related to angiogenesis.

In addition to biomarkers, the emergence and
development of prognostic models in recent years
have also played a key role in the diagnosis and
treatment of RCC, which compensates for deficiencies
in targeting individual gene alterations. Through the
intersection of A2M-related genes in multiple ccRCC
databases, 42 A2M co-related genes were identified,
and then subject to univariate Cox analysis. Next, 7
genes (TIE1, VWF, TCF4, PTPRB, ICAM2, DOCKG®,
and RAMP3) were screened to construct the
prognostic model. These 7 genes have been reported
to be involved in various biological processes (such as
angiogenesis, transcriptional regulation, signaling,
cell adhesion). In short, it has been evidenced that
TIE1 is involved in tumor angiogenesis and
inflammatory vascular remodeling [41]. TIE1 mRNA
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expression is elevated in RCC, and TIE1 receptor and
its ligands may play a role in RCC angiogenesis [42].
The transcription factor TCF4 has also been shown to
be associated with RCC invasiveness [43]. VWF can
promote  pro-inflammatory signaling, regulate
angiogenesis and vascular permeability, and thus
promote tumor cell growth and vascular metastasis
[39]. In ccRCC, VWEF expression level in elderly
patients aged over 65 years is markedly higher than
that in younger (< 65 years) patients [44]. PTPRB is a
transmembrane protein associated with endothelial
cell adhesion, which can inhibit tumor cell
proliferation and invasiveness [45]. Unfortunately,
PTPRB has been poorly studied in RCCS. ICAM2 is a
transmembrane glycoprotein, and erythroblast
transformation-specific-related gene (ERG)-induced
ICAM2 can inhibit tumor proliferation and metastasis
by enhancing ubiquitination and degradation of
radixin (RDX) [46]. DOCK6 is one of the novel
age-related biomarkers for identifying and validating
thyroid cancer, which can predict prognosis and
immunotherapy [47]. RAMPS3 is one of three members
of the RAMPs family, with RAMP3 deletion leading
to inhibition of tumor proliferation and metastasis
[48]. To date, no study has evaluated the prognostic
value of these genes in ccRCC patients. To compare
the prognostic efficacy of our A2M-based nomogram
model (C-index = 0.786) with existing ccRCC models,
we integrated previous studies that utilized features
with distinct biological significance, such as
metabolism (C-index = 0.774) [49], cuproptosis
(C-index = 0.77) [50], ferroptosis (C-index = 0.771)
[51], glycolysis (C-index = 0.781) [52], m6A and m5C
(C-index = 0.737) [53], potassium channels (C-index =
0.76) [54], tumor microenvironment (C-index = 0.744)
[55], and immune features (C-index = 0.786) [56].
Notably, our nomogram model demonstrated
superior C-index performance compared to nearly all
existing models in the TCGA-ccRCC dataset. In
summary, these findings confirm that the
A2M-centered nomogram model is a more effective
prognostic tool for ccRCC. In addition, for the first
time, this prognostic model based on A2M was
established on a public website.

Over the past decade, the introduction of novel
therapies (such as immune checkpoint inhibitors) has
significantly advanced the clinical progress in the
treatment of ccRCC. However, despite the remarkable
efficacy of these novel therapies in some patients, a
considerable proportion of patients still face
challenges related to primary or acquired resistance.
Therefore, there is an urgent need in clinical practice
to explore new therapeutic strategies to further
optimize treatment outcomes. The role of A2M in the
treatment of ccRCC is still unclear. However, several

studies have indicated that A2M demonstrates
significant potential in tumor immunotherapy and
targeted therapy [57]. A2M plays a significant role in
immunotherapy by enhancing antigen presentation,
thereby improving the immune system's capacity to
recognize and eliminate tumor cells [58].
Additionally, A2M can also regulate the tumor
microenvironment and affect the efficacy of
immunotherapy. It has been shown that in patients
with advanced prostate cancer, lower A2M levels are
associated with lower levels of cytokines (such as IL-6
and TGF-Beta) [59]. Both of them can affect the
efficacy of PD-L1 cancer immunotherapy [60].
Moreover, A2M can directly interact with multiple
proteins of the complement system and influence
their activation and regulation, thereby affecting the
efficacy of immunotherapy. Chronic lymphocytic
leukemia (CLL) is a hematologic malignancy
characterized by the clonal proliferation of mature B
lymphocytes. In CLL patients, A2M impacts the
complement-dependent mechanisms activated by
immunotherapeutic drugs through its involvement in
the classical pathway of the complement system,
consequently  reducing the effectiveness of
immunotherapy [61]. Additionally, A2M can serve as
a drug carrier to deliver immunotherapy drugs
accurately to the tumor site, improving the
therapeutic effect. CpG oligodeoxynucleotides
(ODNs)  represent a  promising class of
immunotherapeutic agents that activate the innate
immune system through the Toll-like receptor 9
(TLR9) signaling pathway and exert anti-tumor effects
by reversing the immunosuppressive tumor
microenvironment. The combined use of CpG ODNs
with A2M can markedly enhance immunostimulatory
properties and elicit a more potent cytokine response.
Furthermore, A2M-bound CpG ODNs gain nuclease
protection that prevents their degradation, ultimately
leading to improved efficacy of immunotherapy [62].
Taken together, these studies provide critical
references for further exploration of A2M's potential
applications in therapeutic strategies.

5. Strengths and limitations

Despite the good performance of our model in
both the training and validation cohorts, there are
some limitations. First of all, most of the A2M
expression and prognosis data came from existing
data of different database cohorts, which is a
retrospective study. Although some results have been
revalidated, there are still inevitably varying degrees
of bias. Second, the data in the online database are
constantly updated, which may affect the final study
results. Third, there is a lack of research on the
mechanism by which A2M affects ccRCC. Fourth, the
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established model was only validated in the ccRCC
public database, and validation through phase 3
randomized controlled trials is lacking. In the future,
more high-quality, large samples, multi-center
randomized controlled trials with adequate follow-up
would be included for further verification, which is
the direction of our efforts.

6. Conclusions

Therefore, this study aimed to analyze the
expression of A2M in ccRCC and identify the
relationship between A2M and the prognostic
outcomes of ccRCC patients. Moreover, a new
prognostic A2M gene-associated prognostic index
(A2M-GPI) was established to predict the therapeutic
effects of A2M on the intervention and prognosis of
ccRCC. In conclusion, our study identified the
heterogeneity of A2M in RCC patients and assessed
the value of A2M in the clinical prognosis of ccRCC.
Additionally, the establishment of the new model
may help evaluate ccRCC patients and select
appropriate treatment options. Additionally, the
related prognostic model and the model application
practice public website (https://A2Mgpinomogram.
shinyapps.io/ccRCC_prognosis_prediction/)  were
established, which is of great significance for clinical
prognosis assessment of ccRCC patients.
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