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Abstract

Background: Glioblastoma (GBM) is the most prevalent and aggressive type of primary brain tumor in
adults. Fatty acid metabolism plays a crucial role in promoting tumorigenesis, disease progression, and
therapeutic resistance through the regulation of lipid synthesis, storage, and catabolism. However, its
potential for predicting both prognosis and treatment response in glioblastoma is unexplored.

Methods: We systematically compiled fatty acid metabolism-related genes (FAMGs) from published
literature and databases. A fatty acid metabolism signature (FAMS) was developed using a machine
learning-based framework. The predictive performance of the FAMS was rigorously validated across
multiple independent cohorts. Additionally, we investigated the associations between FAMS and clinical
characteristics, mutation profiles, tumor microenvironment features, and biological functions.

Results: Our analysis revealed distinct FAMGs expression patterns in patients with GBM, which
correlated with varying survival outcomes. Leveraging a robust machine learning framework, we
established a fatty acid metabolism-based prognostic model. The FAMS emerged as an independent
predictor of overall survival and other survival endpoints. Patients with lower FAMS exhibited
enrichment in mitosis- and DNA repair-related pathways, which is linked to better survival. Conversely,
higher FAMS scores were associated with enhanced immune activation, cellular proliferation, and
chemotaxis, suggesting a greater likelihood of benefitting from immunotherapy.

Conclusion: We developed a reliable fatty acid metabolism signature capable of stratifying GBM patients
on the basis of prognosis. The FAMS serves as an independent prognostic indicator and may offer clinical
utility in guiding personalized treatment strategies for patients with GBM.
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Introduction

Glioblastoma (GBM) is the most prevalent and
aggressive type of primary brain tumor in adults.
Patients have limited treatment options and have
worse  survival  globally  [1-3].  Although
advancements in treatment, such as chemotherapy,

surgical resection and even immunotherapy, have
been made, the survival outlook of GBM patients
remains poor. This can largely be attributed to the
extensive heterogeneity of tumors and their ability to
evade immune surveillance [4, 5]. Many efforts have
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been made to understand the metabolic foundations
of GBM and find new therapeutic targets, but the
results are limited [6-8]. Therefore, GBM is still a
challenging medical problem. More in-depth research
is needed to improve treatment outcomes.

Fatty acid (FA) metabolism is important for
energy production and storage. Many biological
processes, including cell proliferation and the
generation of signaling molecules, depend on fatty
acids. Recently, more attention has been given to its
pivotal role in cancer [9-11]. In the central nervous
system (CNS), FAs are particularly important because
the majority of the dry mass of the brain is composed
of lipids [12]. In addition, many CNS processes
require FAs, such as the generation of myelin [13], the
growth and regeneration of axons [14], and the
transport of neurotransmitters [15]. Researchers have
reported that FA metabolism is involved in tumor cell
proliferation, metastasis, and even treatment
resistance in brain tumors [16-20] through different
mechanisms. In addition, the metabolic patterns of
tumor cells differ markedly from those of normal
cells, and these differences may affect the local
metabolic landscape and mediate antitumor
immunity [21]. Lipid synthesis and metabolic
signaling can promote the antitumor function of
regulatory  T-cells (Tregs) in the tumor
microenvironment [22]. These tumor-associated
macrophage (TAM) subpopulations, termed lipid-
laden macrophages, intersect with mesenchymal-like
(MES-like) GBM cells to promote the malignant
transformation of tumors and immunosuppression
[23]. Hence, targeting fatty acid metabolism
represents a potential approach for the treatment of
GBM. In light of current studies focused on the
transcriptomic signatures associated with fatty acid
metabolism in GBM, we aimed to quantify a fatty acid
metabolism signature at the transcriptomic level,
which can enhance risk stratification and provide
guidance for treatment of GBM.

In this research, we first characterized the status
of fatty acid metabolism genes (FAMGs) in GBM and
established a robust Fatty Acid Metabolism
Prognostic Signature (FAMS) by integrating multiple
machine learning survival algorithms. We validated
the feasibility of FAMS in both training and validation
cohorts from different data platforms and classified
all GBM patients into high- and low-risk groups.
Additionally, we explored the underlying
relationships between FAMS and biological function
and immune cell infiltration in the TME. Our analysis
highlights the importance of the FAMS in predicting
the prognosis and response to treatment in patients
with GBM.

Materials and Methods

Data collection and processing

RNA-seq data, somatic mutation and copy
number variation (CNV) data, and corresponding
meta-information for the TCGA-GBM cohort [24]
were obtained from The Cancer Genome Atlas
(TCGA) database using TCGAbiolinks (v2.32.0) [25].
The raw microarray data of the TCGA-GBM cohort
[26] were downloaded from GDC (https://portal.
gdc.cancer.gov/). The transcriptomic data of the
normal brain cortex, along with other relevant
information, were retrieved from the Genotype-
Tissue Expression (GTEx v7, https://www.
gtexportal.org/home/datasets) database [27]. In
addition, the data from the other two CGGA batches,
mRNAseq_693 [28] and mRNAseq_325 [29] were
downloaded from the Chinese Glioma Genome Atlas
(CGGA, http:/ /www.cgga.org.cn/index.jsp). All the
RNA-seq data were mapped to the human reference
genome hgl9, and we retained genes that appeared in
all the data for subsequent analysis. Another two
microarray datasets, GSE16011 [30] and GSE13041
[31], were acquired from GEO (http://www.ncbi.
nlm.nih.gov/geo).

We retained all GBM patients whose overall
survival (OS) data for further analysis. The raw read
counts from the TCGA and CGGA cohorts were
converted to transcripts per kilobase million (TPM)
and further log2 transformed. The raw microarray
data were background adjusted and normalized via
the robust multiarray averaging (RMA) algorithm
[32]. We used the “maftools” package (v2.20.0) to
analyze the somatic mutation and CNV data [33].

To collect the FAMGs, we obtained gene sets
related to fatty acid metabolism from the Kyoto
Encyclopedia of Genes and Genomes (KEGG, v111.1)
[34] and the Molecular Signatures Database (MsigDB,
v2024.1. Hs) [35] hallmark and Reactome (v88) [36]
database. In conclusion, 332 fatty acid metabolism
genes were identified following the exclusion of
overlapping genes from the previously mentioned
data source.

Genetic alterations and differential expression
analysis of FAMGs in glioblastoma

The top genes with the highest mutation
frequency are shown by oncoplot. The frequency of
CNVs in FMGs was subsequently assessed, and the
most significant findings were represented using a
bidirectional lollipop chart for visualization. KEGG
enrichment analysis was conducted using the R
package “ClusterProfiler” (v4.12.6) [37]. To identify
the differentially expressed genes (DEGs) among the
FAMGs, we utilized data from the normal brain
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cortex data as a reference. The DESeq2 (v1.44.0)
package in R was employed to determine DEGs,
applying the significance criteria of |log2FC| >1 and
an adjusted p value of less than 0.05 [38].

Consensus clustering of FAMGs

Utilizing the RNA expression of the
differentially expressed FAMGs, we performed
consensus  clustering using the “Consensus
ClusterPlus” (v1.68.0) R package [39]. Next, we
integrated the consensus score matrix, the cumulative
distribution function (CDF) curve, and the proportion
of ambiguous clustering (PAC) score to determine the
optimal number of clusters. These metrics collectively
provide a robust framework for selecting the most
appropriate clustering solution [40]. To gain deeper
insights into the functions of the expression clusters,
we conducted GO and KEGG analyses. In addition,
single-sample gene set enrichment analysis (ssGSEA)
[41] was used to characterize the differences between
cancer hallmark functions and immune cell
proportions.

Calculation of FAMS by machine learning

To establish an FAMGs-based prognostic
signature, we first screened the prognostic FAMGs by
univariate Cox regression analysis and integrated 10
machine learning algorithms to construct a prediction
model. Finally, all combinations of these algorithms
were performed using the ten-fold cross-validation
method in TCGA-GBM mRNA-seq data [24] to train
the model. All the models were evaluated using five
additional validation datasets from different data
platforms, including TCGA microarray [26], CGGA
mRNA sequencing (mRNAseq_693 and mRNAseq_
325) [28, 29], GSE16011[30], and GSE13041[31]. To
select the model with the best performance, the
Harrell’s concordance index (C-index) [42] was
calculated across the five validation datasets. An
average C-index was used to select the final model to
construct a fatty acid metabolism prognostic signature
(FAMS).

The median value of the FAMS was used to
stratify patients into high- and low-risk groups; the
prognostic and predictive role of the FAMS were
explored on the basis of this situation. Survival
analyses were then performed for these two groups
across all GBM patients or those receiving treatment.
Multivariate Cox regression analysis was carried out
to assess the independence of FAMS from other
clinical factors.

Gene set enrichment analysis (GSEA)

To fully describe the functional differences
between different groups, we used GSEA [35] to

explore signaling pathways and functions in GSEA
software (v4.3.3). The log2-transformed fold changes
of genes were imported into the software, and gene
sets of hallmark genes and GO terms (BP and CC)
obtained from the MSigDB database were set as
background gene sets. After running the GSEA, we
used Cytoscape (v3.10.2) [43] software and the
EnrichmentMap (v3.4.0) [44] plug-in to visualize the
functional landscape obtained from the GSEA results.

Immune infiltration analysis

To characterize the immune response process,
we employed the tracking tumor immune phenotype
(TIP) webserver [45] to assess the cancer-immunity
cycle. In addition, two tumor microenvironment-
related signatures [46, 47] were collected and
evaluated by the ssGSEA method.

The relative abundance of 28 immune cell types
was also calculated by ssGSEA in each patient in the
TCGA-GBM cohort with immune cell markers [48-50].
The levels of immune checkpoint genes (such as
CTLA4 and CD163) were compared and visualized.
Spearman analyses were performed to assess the
relationship between immune cell abundance and the
calculated FAMS values.

Statistical analysis

All the data were processed and statistically
analyzed using R (v4.4.0) software. Kaplan-Meier
(KM) survival analysis was conducted with the
‘survminer” (v0.4.9) and ‘survival” (v3.5-5) R packages
[51-53]. Differences in continuous variables between
groups were evaluated using either the Wilcoxon rank
sum test or the Student’s t test depending on the data
distribution, and the chi-square test was applied to
compare categorical variables. The C-index of
different models were computed using the ‘Hmisc’
package (v5.1-3) [54]. All the statistical tests were
two-sided. p < 0.05 was considered to indicate
statistical significance.

Results

Genetic variant landscape and expression of
FAMGs in GBM

A total of 332 FAMGs were curated from the
KEGG, MSigDB, and Reactome databases (Table S1).
First, we investigated the somatic mutation
prevalence and CNV frequency of these fatty acid
metabolism-related genes among GBM patients.
Among them, IDH1 had the highest mutation rate (up
to 10%), and the mutation frequency of the other
genes was relatively low (approximately 3%-5%)
(Figure 1A). Copy number variation analysis revealed
that many FAMGs were highly variable (Figure 1B).
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PRKAG2, TBXAS1, CROT, MDH2, and paraoxonase
family genes (PON1, PON2, PON3) exhibited
widespread CNV amplification, whereas ECHSI,
UROS, FFAR4, and SCD exhibited CNV deletions. The
FAMGs with high amplification frequency are
involved primarily in arachidonic acid metabolism
and the adipocytokine signaling pathway, and the
FAMGs with high deletion frequency are associated
with linoleic acid metabolism, fatty acid elongation
and several other fatty acid metabolism-related
biological processes (Figure 1C).

We examined the expression levels of these
FAMBGs in both glioblastoma and normal brain tissue.
Principal component analysis (PCA) revealed a clear
distinction between normal tissue and glioblastoma
tissue on the basis of the expression patterns of
FAMGs (Figure 1D). Similarly, it was obvious that
expression of FAMGs exhibited significant differences
between the normal and tumor groups (Figure 1E).
Through differential expression analysis, we detected
152 FAMGs by comparing 166 glioblastoma samples
with 255 normal brain cortex samples. Among the
DEGs, 64 FAMGs were significantly upregulated in
the samples from patients with GBM, whereas 88
FAMGs were notably downregulated in the samples
from patients with GBM (Figure 1F, G).

Consensus clustering of FAMGs in
glioblastoma

To underscore the clinical relevance of the
FAMGs, we performed a consensus clustering
analysis based on the differentially expressed FAMGs.
The CDF curves and PAC statistics indicated that the
patients could be divided into two FAMG patterns,
named as cluster 1 and cluster 2 (Figure 2A-C, S1A,
Table S2). Compared with cluster 2, cluster 1 had
fewer samples with IDH mutation, MGMT promoter
methylation, and chr 19/20 co-gain. In addition, the
expression of the immune checkpoint genes CD274,
PDCD1, CTLA4, TNFRSF18, TNFSF9, TIGIT, and LAG
was high in cluster 1. Both the immune and stromal
scores estimated by the ESTIMATE algorithm and the
proportion of immune cells in the tumor
microenvironment were significantly greater in
cluster 1 (Figure 2D). The cancer hallmark function
also showed the similar phenomena (Figure S1B).
Moreover, the results of the KM analysis confirmed
significant differences in overall survival (OS) and
disease-specific survival (DSS) between the clusters (p
=0.017 and p = 0.014, respectively) (Figure 2E-F).

Furthermore, to gain insights into the molecular

characteristics underlying this distinction, we
identified 1024 genes that were differentially
expressed between the clusters (Figure SI1C).

Functional enrichment analyses through GO, KEGG,

and hallmark pathways revealed that the cluster 1
was closely related to immune responses: leukocyte
chemotaxis and  migration, hypoxia, and
epithelial-to-mesenchymal transition (EMT) (Figure
S2A-C). These findings indicate significant differences
in biological functions between the two clusters
categorized by FAMGs and demonstrate the
rationality and implications of such categorization in
glioblastoma.

Establishment and validation of the fatty acid
metabolism prognostic signature

In light of the significant influence of FAMGs on
the clinical outcomes and tumor environment of GBM
patients, a FAMGs based prognostic signature was
pursued to gain deeper insights into the underlying
complexities of GBM. Through wunivariate Cox
regression  analysis, we initially  identified
prognosis-associated FAMGs among the differentially
expressed FAMGs (Figure 3A). These FAMGs were
analyzed using the machine learning method to
develop a robust fatty acid metabolism prognostic
signature (FAMS). The TCGA RNA-seq data were
used as the discovery cohort, and 101 kinds of
prediction models were fitted using different
combinations of the 10 algorithms. Furthermore, we
used two RNA-seq datasets (mRNAseq 693 and
mRNAseq_325) from the CGGA database as the
validation cohort. To avoid the influence of different
technologies and platforms, we included three
microarray-based  expression datasets (TCGA
microarray, GSE16011 and GSE13041) as the external
validation cohort. The C-index of each model was
calculated across all validation cohorts to evaluate its
performance. Notably, the model integrated with
Lasso and SuperSC achieved the highest average
C-index (0.64), outperforming all the other models
across the validation cohorts (Figure S3A). In the
LASSO regression, 10 FAMGs (G0S2, LDHA, ACOT7,
ADHIC, ADH1A, APEX1, CBR1, NBN, CD1D, GPX2)
with nonzero Lasso coefficients were selected to fit the
final model by SuperSC (Figure 3B, Table S3).

All patients in each dataset were assigned to one
of two groups on the basis of the median FAMS.
Patients in the high-risk group exhibited significantly
shorter OS durations than those in the low FAMS
group across the training cohort (Figure 3C) and
validation cohort (all p < 0.05) (Figure 3D-H). We
subsequently assessed the predictive value of the
FAMS for disease-specific survival (DSS) and
progression-free interval (PFI). KM analysis revealed
a consistent trend in the RNA-seq data and
microarray data, with high-risk patients having
shorter DSS and PFI (Figure S3B-E). In addition, Cox
regression analysis of the other four datasets
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including TCGA RNA-seq, TCGA microarray, CGGA conclusion, the FAMS demonstrates substantial
mRNAseq_693 and mRNAseq_325 suggested that the  clinical predictive value for glioblastoma (Figure S3F).
FAMS could be an independent prognostic factor. In
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Figure 3: A consensus FAMS was developed and validated via the machine learning-based algorithms. (A) Univariate Cox analysis identified 17 prognostic FAMGs in the TCGA
GBM mRNA-seq cohort. Data are presented as log2 hazard ratio (HR) * 95% confidence interval [Cl]. (B) The determination of the optimal A in TCGA mRNA-seq data. (C-E)

The Kaplan—Meier curves of OS according to the FAMS in TCGA mRNA-seq, CGGA mRNAseq_639, CGGA mRNAseq_325, TCGA microarray, GSE16011, GSE13041.

FAMS model predicts prognosis and
treatment response in independent GBM
dataset

To confirm the prognostic significance of the
FAMS, we analyzed the discrepancies in OS stratified
by IDH mutation status and treatment type.
Considering the IDH status, the patients with high
FAMS had the worst outcome among the
IDH-wild-type patients. Patients with low FAMS and
IDH mutation had better survival (Figure 4A). In the
CGGA mRNAseq_693 dataset, we observed similar
results (Figure 4B). In addition, other datasets also

consistently verified that wild-type IDH and high
FAMS are associated with worse survival outcomes
(Figure S4A-C). When focusing on treatment, high
FAMS was also associated with poor outcomes in
patients  treated with temozolomide (TMZ)
chemotherapy and radiotherapy (Figure 4C, E),
suggesting that the risk score could serve as a
predictor for treatment response. The result was
validated in CGGA mRNAseq_693 dataset (Figure
4D, F). In the other three datasets with treatment
information, the same result was found in patients
treated with radiotherapy (Figure S4D-F), and there
was no considerable difference between high- and
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low-FAMS patients who received chemotherapy
(Figure S4G, H). In summary, these findings suggest
that the FAMS can serve as a reliable predictor of both
prognosis and response to radiotherapy in patients
with GBM.

Functional characterization between the high-
and low-FMAS groups

Given the excellent performance in predicting
survival, we next aimed to explore the underlying
mechanisms related to FAMS. Utilizing various
functional annotation gene sets, we used GSEA to
comprehensively screen and characterize the
biological functions involved in the two FAMS
groups. Through enrichment analysis, we found that
multiple pathways related to immune responses, cell
proliferation, fatty acid transport, and cell chemotaxis
migration were enriched in the high FAMS score
group, whereas the main biological functions
involved in the low FAMS score group of patients
were Mitotic, DNA damage repair, and homologous
recombination (Figure 5A). Moreover, a correlation

analysis of the GO terms revealed a positive
correlation between FAMS and immune functions,
including neutrophil and macrophage migration and
T cell and B cell mediated immunity, and the cellular
response to ions (zinc and copper) had a similar
positive correlation with FAMS (Figure 5B). KEGG
analysis showed that the FMAS was strongly
associated with pathways such as galactose
metabolism, arachidonic acid metabolism, and
phenylalanine metabolism (Figure 5B). According to
the results of the GSEA of cancer hallmarks, the high
FAMS group was enriched in epithelial-to-
mesenchymal transition (EMT), hypoxia, and TNFA
signaling via NF-xB (Figure 5C-E), and the low FAMS
group was enriched in the G2M checkpoint, MYC
targets V1, and DNA repair (Figure 5F-H). These
results were consistent with the OS analysis results
mentioned above. In summary, the results of this
analysis suggest that high FMAS is linked to immune
responses and may be associated with a superior
response to immunotherapy.
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Association of FAMS with the immune
program and environment

Owing to the enrichment of immune
response-related functions in the high FAMS group,
we analyzed the representative steps involved in the
cancer immune cycle, including the release of
antigens, cancer antigen presentation, priming and
activation, immune cell recruitment and infiltration,
recognition of cancer cells and killing of cancer cells,
and found that immune cell recruitment and cancer
cell killing may be more pronounced in the high
FAMS group in the TCGA RNA-seq dataset (Figure
6A). Furthermore, we constructed two other
immunograms and TME signatures from published
literature [46, 47]. A radar plot revealed that immune-
and TME-related signatures were upregulated in the
high FAMS group (Figure 6B-C).

Next, we quantified immune cell infiltration in
the TCGA-RNA dataset and explored the relationship
between FAMS and immune infiltration. The results
showed that compared with the low FAMS group, the
high FAMS group had greater proportions of CD8+ T
cell, natural killer T cell, and macrophages (Figure
6D). Furthermore, FAMS was positively correlated
with the proportions of CD8+ T cell (R = 0.27; p <
0.001), natural killer T cell (R = 0.46; p < 0.001),
Macrophage (R = 0.54; p < 0.01) (Figure 6E-G).
Additionally, immunosuppressive markers, such as
FOXP3, CTLA4, CD163, and PDCD1, were more
highly expressed in the high-FAMS group (Figure
6H).

Genomic comparison between the high- and
low-FMAS groups

We compared the somatic mutation profiles of
patients in the high-FAMS group and low-FAMS
group, and the gene with the highest mutation
frequency in the high-FAMS group was PTEN,
whereas that in the low-FAMS group was TP53
(Figure 7A, B). Through a chi-square test, we
identified several genes with significantly different
mutation frequencies between the two patient groups,
including PTEN, EGFR, TP53, ATRX, and IDHI
(Figure 7C). Copy number variation analysis revealed
that several genes and chromosome segments differed
significantly in frequency between the two risk
groups (chi-square test, p < 0.05). For example, 14q13.1
and 14q21.2 were highly frequently deleted in the
high-FAMS group, whereas 19ql2 was highly
amplified in the low-risk group (Figure 7D).
Moreover, patients in the low-risk group exhibited
increased amplification of some cell cycle-related
genes, such as CCNE1, GPX4, and CDKN2D, and the
deletion of the genes APEX1, FOXA1, NFKBIA, and

VEGFA was frequently observed among patients in
the low-FAMS group (Figure 7D). In addition,
compared with the low FAMS group, the high FAMS
group had a notably greater tumor mutation burden
(p < 0.001; Figure 7E), and a positive correlation
between the TMB and FAMS was observed (Figure
7F). Further categorization of patients by both FAMS
score and TMB revealed that the worst prognosis is
associated with low TMB and high FAMS scores
(Figure 7G). These results emphasize the importance
of evaluating both the FAMS and the TMB as critical
prognostic factors for predicting patient outcomes.

Discussion

Tumors in the brain may progress more rapidly
because of their specific physiological location and
environment [55]. Glioblastoma is the most aggressive
type of primary brain tumor; and is currently
incurable and has a dismal prognosis [56]. It is shaped
by high heterogeneity of genetic drivers, metabolic
programs, and tumor microenvironments [24, 57, 58].
Fatty acids, a class of small carbon-rich molecules,
play various roles in tumorigenesis and tumor
progression. Oxidative phosphorylation (OXPHOS) is
crucial for the growth and proliferation of tumor cells
[59]. However, in the context of hypoxia, nutrient
deprivation, and other challenging conditions, fatty
acid oxidation (FAO) plays a central role in providing
energy to cancer cells. This process significantly
affects tumor progression and metastasis [60, 61].
Considering the unique environment of the brain,
targeting the metabolism of fatty acids could be an
effective approach for the treatment of glioblastoma
[62, 63]. In this study, we extensively characterized
the fatty acid metabolism genes in glioblastoma and
established a robust prognostic signature that has the
potential to aid precision medicine and provide
valuable insights into clinical and immunological
outcomes (Figure S5). Additionally, these findings can
facilitate more detailed investigations on fatty acid
metabolism in the future.

In this study, we analyzed the copy number
variation, expression levels, and related functional
background of FAMGs. The FAMGs with high copy
number deletions are related mainly to fatty acid
biosynthesis; and elongation, and the genes with high
amplification are involved in arachidonic acid
metabolism and the adipocytokine signaling
pathway. Using the gene expression profiles, patients
from the TCGA GBM RNA-seq dataset were stratified
into two distinct molecular groups. Cluster 1
expressed higher levels of immune checkpoint genes
and had greater immune cell abundance, whereas
Cluster 2 was associated with a more favorable
prognosis. DEGs between the two groups were
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identified. GO and KEGG analyses revealed that the
genes whose expression was high in Cluster 1 might
participate in biological processes and pathways
related to the immune response. These findings may

indicate that the expression patterns of FAMGs are
potentially related to the tumor microenvironment of

GBM, which may

result in different survival

outcomes and immune response states.
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combined FAMS and tumor mutation burden.

On the basis of the differential expression of
FAMGs and their association with prognosis, we
constructed a prognostic signature, referred to as
FAMS, to predict patient survival and prognosis. All
patients were divided into high- and low-FAMS
groups on the basis of the FAMS values, which

demonstrated disparate survival trends and biological
characteristics. The patients in the high FAMS group
exhibited consistently shorter OS, DSS, and PFI across
multiple datasets from different data platforms. In
addition, fatty acid metabolism has been reported to
be associated with resistance to radiotherapy in
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tumors [64-67], and the FAMS in our study could
distinguish the patients who exhibit a greater
response to radiotherapy. The patients with low
FAMS showed prolonged survival, which may
indicate that they had a superior response to
radiotherapy. We also observed an association
between FAMS and chemotherapy response, but the
association was not consistently significant. Each of
these genes plays a unique role in tumorigenesis and
tumor progression. For example, G0S2 is a gene
involved in extrinsic apoptotic signaling pathway,
and is considered a key regulator of energy
homeostasis, controlling both fatty acid availability
and fatty acid oxidation [68, 69]. ACOT7 is an
Acyl-CoA thioesterase isoform that is involved
primarily in the hydrolysis of arachidonoyl-CoA. It
can provide the arachidonic acid required for the
synthesis of prostaglandins [70]. While the
arachidonic acid can serve as a pro-inflammatory
precursor, it is essential for the cell cycle, cell
proliferation, and glucose metabolism [71, 72].
Overall, additional research is necessary to clarify the
specific molecular mechanisms and potential roles of
these genes.

A number of studies have indicated that
immunotherapy may  benefit patients with
glioblastoma; nevertheless, owing to the lack of
understanding of the tumor environment and
immune processes, a considerable proportion of
patients derive only minimal benefit from
immunotherapy [73, 74]. We evaluated the anticancer
immune process through a seven-step
Cancer-Immunity Cycle, including the release of
cancer cell antigens, cancer antigen presentation,
priming and activation, trafficking of immune cells to
tumors, infiltration of immune cells into tumors,
recognition of cancer cells by T cells, and killing of
cancer cells [45]. Patients in the high FAMS group had
high functional scores related to immune cell
recruitment. FAMS was positively correlated with the
immune cell proportions of diverse immune cell
types, including macrophage, activated CD8+ T cell,
and natural killer T cell. This may indicate a potential
immune response in patients with high FAMS.

In summary, we developed a prognostic
signature derived from FAMGs. This model can serve
as an independent prognostic factor to predict the
outcomes of GBM patients. Nonetheless, a key
limitation of our study is the absence of validation in a
prospective cohort; and the lack of functional
validation for the genes incorporated in FAMS. In
addition, clinical and molecular information in the
public data was limited, so there may be some
potential associations with FAMS that were not
observed in this study.

Conclusions

Within the confines of this study, we
systematically explored the multiomics landscape of
fatty acid metabolism genes (FAMGs) in glioblastoma
and meticulously devised a robust prognostic
signature by integrating FAMGs. In addition, this
research elucidates the potential relationships
between prognostic models and mutation patterns,
the tumor microenvironment, and biological
functions. Consequently, this signature has the
potential to serve as a robust and promising tool to
improve personalized risk stratification and
therapeutic implications for glioblastoma patients.
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