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Abstract

Background: Prostate cancer (PCa), a prevalent malignant neoplasm in men, has its biochemical
recurrence-free survival (BCRFS) serving as a critical determinant for patient prognosis. PARP inhibitors
have demonstrated potential therapeutic value in the management of PCa. Nevertheless, the precise
influence exerted by their associated genes on BCRFS remains elusive.

Methods: We selected the differentially expressed genes after treatment with olaparib and defined them
as PARP inhibitor-related genes (PIRGs). Consensus clustering was employed to evaluate the
relationships among different PIRGs clusters, prognosis, and the immune microenvironment. Univariate
COX regression analysis was used to screen the prognosis-related PIRGs, which were then incorporated
into multiple machine learning frameworks. The random forest algorithm with the highest C-index was
chosen to construct a BCRFS prediction model. A prognostic nomogram was developed based on the
risk score and clinical information, and the predictive performance of the model was assessed.

Results: In C4 - 2B and LNCaP cell lines, 230 and 58 genes were differentially expressed, respectively.
Consensus clustering results showed distinct survival prognoses and immune - infiltrated
microenvironments among different groups. The random forest model had a high average C - index in
both the training and validation sets. The prognostic model constructed in this study demonstrated a
higher C-index compared to the prognostic models from previous studies. High - risk group patients had
a poor immunotherapy response. A nomogram based on risk scores and clinical information accurately
predicted PCa patients' BCRFS. Cell experiments revealed that KANK3 was downregulated in PCa and
upregulated by olaparib treatment. KANK3 overexpression in PCa cell lines inhibited cell proliferation,
migration, and invasion, suggesting its oncogenic role in PCa.

Conclusion: Our study has described the correlations between PARP inhibitor-related genes and the

immune landscape, recurrence after radical prostatectomy, as well as clinical characteristics. The risk
score can improve the existing risk stratification system.

Keywords: PARP Inhibitor-Related Genes, KANK3, Prognosis, Prostate cancer, Machine Learning, Nomogram.

Introduction

Globally, the incidence of PCa shows significant
geographical differences. According to the Globocan
2020 data, PCa is the second most common cancer in
men worldwide, with approximately 1.414 million

new cases, accounting for 7.3% of all malignant
tumors. Its incidence is only second to breast cancer
and lung cancer[1]. Androgen deprivation therapy
(ADT), chemotherapy, immunotherapy, and radiation
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therapy are all available treatment options for castrate
- resistant prostate cancer (CRPC). Recently, PARP
inhibitors have also emerged as supplementary
treatment choices for this type of cancer[2-4].
Biochemical recurrence (BCR) refers to the situation
that after PCa patients receive radical treatments
(such as radical prostatectomy, radical radiotherapy,
etc.), the level of serum prostate-specific antigen
(PSA) rises above a certain critical value, and it is
generally considered that biochemical recurrence has
occurred[5]. This indicates that there may be residual
or recurrent tumor cells, but it does not necessarily
mean that clinically detectable metastasis or related
symptoms will appear. The existing indicators,
including Gleason score and PSA, have limitations in
accurately predicting the time of BCR in PCA
patients[6, 7]. Therefore, exploring new biomarkers
has important value and far-reaching significance that
cannot be ignored in optimizing the diagnosis and
treatment process of PCa patients.

Poly (ADP-ribose) polymerase (PARP) inhibitors
represent a groundbreaking class of targeted cancer
therapies that have significantly advanced the
treatment of various cancers, particularly those with
specific genetic mutations[8, 9]. PARP enzymes,
including PARP1 and PARP2, play a crucial role in
the repair of single-strand DNA breaks through the
base excision repair pathway[10]. When this repair
mechanism is compromised, cells accumulate genetic
damage, which can lead to cell death. The therapeutic
potential of PARP inhibitors stems from their ability
to exploit the concept of synthetic lethality. In cancers
with deficiencies in homologous recombination repair
pathways—such as those with BRCA1 or BRCA2
mutations —cells are already vulnerable due to their
inability to repair double-strand DNA breaks
effectively[11]. PARP inhibitors further impair the
cell's ability to repair single-strand breaks, leading to
the accumulation of DNA damage and ultimately
causing selective cancer cell death while sparing
normal cells.

PARP inhibitors, including drugs such as
olaparib, rucaparib, niraparib, and talazoparib, have
shown significant efficacy in treating cancers such as
ovarian, breast, prostate, and pancreatic
cancers[11-13]. These drugs have been particularly
effective in patients with BRCA mutations or other
HRR deficiencies, making them an essential
component of personalized cancer treatment. In
addition to their use in monotherapy, PARP inhibitors
are also being explored in combination with other
therapeutic modalities, including chemotherapy and
immunotherapy, to enhance their efficacy and
overcome resistance mechanisms[14, 15]

Overall, PARP inhibitors represent a significant

advancement in precision oncology, offering new
hope for patients with genetically defined cancers and
contributing to the ongoing evolution of cancer
treatment strategies[16-18].

In summary, the objective of this study was to
delve into the genomic alterations within PCa cell
lines subsequent to the administration of PARB
inhibitors, explore the influence of PIRGs on
prognosis and the immune microenvironment, and
establish a predictive model that can accurately
forecast the BCRFS of PCa patients through machine
learning approaches.

While previous studies have thoroughly
elucidated the molecular mechanisms of PARP
inhibitor therapy, systematic evaluation of the
prognostic value of PIRGs in independent validation
cohorts remains scarce. This study constructs an
innovative machine learning framework to promote
the translational application of genomic signature
markers into clinical risk stratification systems. Based
on multi-omics data from prostate cancer cohorts, our
developed PIRG prognostic model significantly
outperforms existing models in C-index evaluation. A
clinically — practical nomogram was further
constructed, integrating PIRG risk scores with clinical
information to achieve accurate prediction of
biochemical recurrence-free survival. Functional
mechanism studies confirmed that KANKS3 acts as a
key tumor suppressor gene in prostate cancer, and its
expression silencing is closely associated with tumor
aggressive phenotypes and PARP inhibitor resistance.
This study not only confirms the prognostic value of
PIRG signature profiles but also provides a theoretical
basis for precision diagnosis and treatment strategies
in advanced PCa.

Materials and Methods

Public data acquisition

We retrieved the PCa cohorts encompassing
BCRFS information from public databases. The TCGA
cohort was sourced from the TCGA database
(https:/ /portal.gdc.cancer.gov). =~ The  DKFZ2018
cohort was procured from the cBioportal website
(https:/ /www.cbioportal.org/). The sequencing data
of cell lines in both the Olaparib treatment group and
the control group (GSE116918), along with the PCa
cohorts (GSE70769 and GSE189186) incorporating
BCRFS, were retrieved and downloaded from the
Gene Expression Omnibus (http://www.ncbi.
nlm.nih.gov/geo). Regarding the expression data
derived from high-throughput sequencing, we
transformed it into the TPM format and conducted a
log2 transformation. For the microarray data, we
employed the normalizeBetweenArrays function
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within the limma package to rectify systematic
deviations among different samples in the microarray
experiments, thereby rendering the gene expression
data of various samples comparable[19].
Simultaneously, we also downloaded the survival
information of the aforementioned cohorts and
excluded patients with a survival time of zero months
to ensure the reliability of the analysis. The baseline
data of patients included in the datasets of this study
are shown in Supplementary Table 1.

Differential expression analysis

The DESeq2 R package was employed to
perform differential expression analysis[20]. Genes
fulfilling the criteria of |log2fold change| > 0.5 and
p-value < 0.05 were designated as differentially
expressed genes (DEGs).

ssGSEA

Each ssGSEA enrichment score reflects the extent
to which genes within a particular gene set are
upregulated or downregulated in a given sample[21].
We retrieved the gene sets of 28 immune cells from
prior studies. By employing the ssGSEA method, the
expression matrix was converted into an enrichment
matrix, thus obtaining the immune cell infiltration
levels of different samples.

Survival analysis

Survival analysis was carried out by means of
the survival R package. For the gene expression data
or risk score data of each patient, we employed the
survminer package to compute the optimal cut-off
value and stratify the patients. Subsequently,
Kaplan-Meier analysis was performed on the
stratified patients, and the survival curves were
generated.

Consensus clustering analysis

We employed the ConsensusClusterPlus R
package to conduct consensus clustering analysis on
patients based on the differentially expressed genes
associated with prognosis[22], which were screened
through univariate COX regression analysis. The
iteration count was configured at 50 times. Eighty
percent of the samples were selected for repetitive
sampling procedures. The Euclidean distance
calculation method was utilized, and the PAC
approach was adopted to identify the optimal number
of clusters.

Fitting and validation of machine learning
models

In order to obtain the most favorable prognostic
model, an overall integration of ten machine learning

algorithms, including CoxBoost, Lasso, Ridge, Enet,
StepCox, survival-SVM, GBM, plsRcox, RSF, and
SuperPC, was executed. Initially, variable screening
was performed using algorithms like StepCox, Lasso,
CoxBoost, and RSF that possess variable selection
capabilities. The selected variables were then
incorporated into algorithms capable of model
construction for the purpose of model fitting.

For CoxBoost analysis, the CoxBoost R software
package was used, and 10-fold cross-validation was
adopted to determine the optimal boosting steps. The
glmnet R package was utilized to build Lasso, Ridge,
and Enet models, where 10-fold cross-validation was
employed to find the regularization parameter
lambda. The survival-SVM model was fitted using the
survivalsvm R package. The gbm R package was used
to build the GBM model, and 10-fold cross-validation
was carried out. The plsRcox R package was used for
fitting the plsRcox model. To construct the RSF model,
the rfsrc function from the randomForestSRC R
package was employed, with the ntree parameter set
at 1000. The SuperPC model was built through the
superpc R package, and 10-fold cross-validation was
applied to fit the most appropriate model.

Immune infiltration analysis

We computed the ESTIMATE scores, stromal
scores, and immune scores of patients by utilizing the
ESTIMATE R package[23]. Furthermore, we retrieved
the marker gene sets of 28 immune cells from the
literature and employed the ssGSEA algorithm to
evaluate the infiltration of these 28 immune cells
among different patients. In addition, we utilized the
MCP counters algorithm to calculate the infiltration
levels of 10 immune cells in various patients for
verification purposes.

Immunotherapy prediction and drug
sensitivity prediction

Gene expression data were first subjected to
normalization procedures. Subsequently, the TIDE
score, dysfunction score, and exclusion score for each
patient were computed via the TIDE (Tumor Immune
Dysfunction and Exclusion) database (http://tide.
dfci.harvard.edu/)[24].

By leveraging the oncoppredict R package, the
standard expression matrix of GDSC2 and the IC50
values of each cell line corresponding to every drug
were retrieved from Github (https://github.com/
maese005/oncoPredict/ tree/ main/vignettes). These
data were then utilized as the training set to estimate
the IC50 values of various drugs for patients within
distinct risk groups.
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Construction of nomogram and validation of
diagnostic efficacy

Regarding the construction of the prognostic
nomogram, clinical data from the TCGA prostate
cancer cohort were utilized, including age, clinical T
stage (cT), pathological T stage (pT), pathological N
stage (pN), calculated Risk_Score, and risk group
stratification. Univariate COX regression analysis was
first performed on risk scores and clinical parameters
to screen for  prognosis-related  variables.
Subsequently, stepwise regression was applied, with
the Akaike Information Criterion (AIC) used to
quantify model complexity and goodness-of-fit,
aiming to identify the optimal model that balances
data explanation with minimal free parameters. This
process identified Risk Score and c¢T as robust
independent prognostic factors, forming the final
model with a reduced AIC value. Serving as the
foundation for nomogram construction using the rms
package in R, this model enables prediction of 1-year,
3-year, and 5-year survival probabilities. For the final
multivariate COX regression model, the rms package
was employed to construct the nomogram, with
calibration curves used to assess discrepancies
between predicted and observed survival outcomes.
Time-dependent AUC curves were generated using
the pecr package to evaluate predictive accuracy at
distinct time points. To assess clinical utility in
decision-making, net benefit analyses of different
strategies within a specified threshold range were
conducted using the ggDCA package, evaluating the
model's practical application value[25].

Cell culture and transfection

The PCa cell lines C4-2B and 22RV1 were
procured from the Cell Bank of the Chinese Academy
of Sciences. These cell lines were cultured in RPMI
1640 medium supplemented with 10% fetal bovine
serum within an incubator maintained at 37°C and 5%
CO,. The KANKS transfection plasmid utilized in our
study was purchased from Hunan Youze
Biotechnology Company (China), and Lipofectamine
2000 (Invitrogen, USA) was utilized to transfect the
plasmid into the cell lines, thereby achieving the
overexpression of KANKS3.

Real-time qPCR

Total RNA was isolated from the cell lines by
employing the TRIzol kit (Invitrogen, USA).
Subsequently, the extracted RNA was reverse
transcribed into cDNA through the utilization of the
PrimeScript RT kit (Takara, Japan). After that, the
cDNA was prepared in a 10 pl reaction system using
the TAKARA kit. Next, the cDNA prepared earlier,
gene-specific primers, ddH,O, and 2 x Taq Pro

Universal SYBR qPCR master mix were combined for
qPCR amplification. The relative expression of the
target gene was determined using the 2 - AAct
method, with GAPDH acting as the internal reference
gene.

Western blot

PCa cells' protein was extracted using RIPA
buffer. Prepared protein standards following kit
(Beyotime, Shanghai) instructions. Made BCA
solution based on sample count and added to
samples/standards. After 30 min at RT, measured 562
nm absorbance with microplate reader (Varioskan
LUX, US) to determine protein concentration by BCA.
Added 5x loading buffer (4:1 to sample) and
incubated at 100°C for 15 min.

Loaded samples on 10% SDS - PAGE gel for
electrophoresis and transferred to PVDF membrane.
Blocked membrane with 5% BSA for 1 h at RT.
Incubated overnight at 4°C with KANK3 and GAPDH
antibodies. Detected protein expression by enhanced
chemiluminescence and analyzed bands with imaging
system.

Cell function experiments

The KANKS3 plasmid was introduced into 22RV1
and C4 - 2B cells to investigate its influence on cell
migration and invasion. In the wound healing test, a
scratch was created on the cell monolayer, and the
movement of cells into the scratch was observed over
24 hours. Regarding the Transwell assay, transfected
cells were positioned in the upper chamber with
serum - free medium, and the lower chamber
contained 30% serum medium. After 36 hours, the
migrated cells reaching the lower side of the
membrane were enumerated. These experiments
assist in clarifying the function of KANK3 in cell
migration and invasion and offer data backing.

EDU assay

Transfected cells were plated in 96 - well plates
at 1x10* cells/well. After 24 h incubation, EDU
solution was diluted to 50 pM in Edu medium and 100
pL added to each well for another 2 h incubation.
Then, cells were fixed and 100 pL Click - iT working
solution (Uelandy, Suzhou) was added for staining.
Finally, DNA was counterstained and images taken
by fluorescence microscope.

Clonogenic assay

800 transfected cells were seeded in a 6 - well
plate. After 10 days, cells were washed twice with
PBS, fixed with 4% paraformaldehyde, and stained
with crystal violet. Then, the number of cell clones
was determined.
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Immunofluorescence

Transfected cells were plated in a 6 - well plate at
an appropriate density. Then, they were fixed with 4%
paraformaldehyde and permeabilized with 0.2%
Triton X - 100 at room temperature. After that, cells
were incubated with 200 pL phalloidin working
solution for 20 minutes and counterstained with
DAPIL Finally, immunofluorescence microscopy was
used to observe KANKS3 protein distribution.

Immunohistochemistry

Immunohistochemistry was done on two tissue
specimens (1 PCa and 1 normal prostate tissue from
Tongji Hospital Urology Dept.). Tissues were fixed in
10% formalin, embedded in paraffin, and sectioned at
4 pm. After dewaxing and rehydration, antigen
retrieval was carried out with citrate buffer (pH 6.0) in
a microwave. Then, sections were blocked with 3%
hydrogen peroxide, incubated with primary antibody
at 4 °C overnight. After washing, they were incubated
with  biotinylated secondary antibody and
streptavidin - HRP. Color was developed with DAB
and sections counterstained with hematoxylin.
Finally, slides were dehydrated, mounted, and
analyzed under an optical microscope. Each sample
was evaluated by two pathologists.

A LNCap Cell Line B

Differential Expression
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Statistical analysis

All bioinformatics analyses were performed
using R version 4.1.3. The normality of continuous
variables was tested using the single-sample KS test.
If the data followed a normal distribution, data
analysis was conducted using the t-test or one-way
ANOVA analysis of variance. The experiments were
repeated three times. A significance level of P < 0.05
was considered statistically significant.

Results

Analysis of the differential gene expression
following olaparib administration

The GSE189186 dataset was obtained from the
GEO database. Subsequently, differential expression
analyses were carried out on cell lines prior to and
subsequent to Olaparib treatment. Genes fulfilling the
criteria of | log2FoldChange | > 0.75 and P < 0.05
were designated as differentially expressed genes. In
the LNCaP cell line, a sum of 846 such genes were
successfully screened, whereas 430 differentially
expressed genes were detected in the C4-2B cell line
(Figure 1A - B).
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Figure 1. Identify differentially expressed PIRGs in PCa cells. A,B Volcano plot of genes differentially expressed in LNCaP, C4-2B in dataset GSE189186. C,D Wayne plot of differentially
expressed genes. E Enriched GO terms of the differentially expressed PIRGs. F Enriched KEGG pathways of differentially expressed PIRGs.
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The differentially expressed genes that exhibited
concurrent upregulation or downregulation in both
cell lines were chosen for further in-depth exploration
(Figure 1C - D). These genes were designated as
PIRGs, with a total number of 288. The Gene Ontology
(GO) enrichment analysis was principally associated
with signal transduction by p53 class mediator,
mitotic cell cycle checkpoint signaling, signal
transduction in response to DNA damage and mitotic
DNA damage checkpoint signaling. Notably, the
differentially expressed genes were primarily
concentrated in  KEGG-correlated  pathways,
including but not limited to the p53 signal pathway,
endocrine resistance, FoxO signaling, and cell cycle
pathway.

consensus matrix k=2

consensus CDF

Unsupervised clustering analysis was carried
out on PCa patients with reference to the
expression levels of PIRGs

Leveraging the expression profiles of PIRGs in
PCa patients, we implemented unsupervised
clustering by means of the ConsensusClusterPlus R
package. The CDF curve demonstrated a tendency to
level off at k = 2, accompanied by a distinct blocky
structure, suggesting a notably high stability of
sample partitioning at this value of k. Consequently,
we elected to stratify the patients into two cohorts
(Figure 2A - B).
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Figure 2. Consensus clustering based on differentially expressed PIRGs: Patients with differentially expressed PIRGs are divided into two clusters by consensus clustering algorithm. A,B Heat
maps and trace curves show consensus clustering of k = 2 groups in sample clustering. When k is 2, the degree of group differentiation is the highest and the group consensus is also the best.
C Differences in PFS between the two clusters. D Differences in BCR between the two clusters. E-H Differences in clinical information between the two clusters (Gleason score, cT, pT, pN).

I Difference in immune cell infiltration between the two clusters.
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Subsequently, we delved deeper into the
disparities in prognostic outcomes across different
patient clusters. It was ascertained that patients
belonging to Cluster 1 boasted a superior BCRFS in
comparison to those in Cluster 2, with a parallel trend
being discernible for PFS as well (Figure 2C - D).
Notably, patients in Cluster 1 were characterized by
lower Gleason scores and earlier clinical and
pathological staging (Figure 2E - H). Moreover, the
infiltration of immune cells within the tumors of
patients in the two clusters also manifested
differences. In contrast to Cluster 1, patients in Cluster
2 displayed augmented infiltration of activated CD4 T
cells, central memory CD8 T cells, and memory B cells
(Figure 2I). To sum up, disparate expression patterns
of PIRGs are potentially correlated with both the
prognosis of PCa and the tumor immune

B
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model was harnessed to compute the risk scores for = model also exhibited outstanding predictive

each patient in the training set and multiple external =~ competencies in multiple external validation sets,
validation sets. attesting to the robustness of the prognostic model we

We stratified all patients into high-risk and  constructed and its favorable prospects for broad

low-risk cohorts in accordance with the median risk  dissemination and application. These results imply
score and contrasted the survival endpoints of  that the prediction model erected on the foundation of
patients in different risk cohorts in each cohort. We  PIRGs harbors potent prognostic prediction potential
discerned that in the TCGA training cohort (Figure  in PCa and may function as a novel predictor to steer
3B), the TCGA validation cohort (Figure 3C), and the  clinicians’ treatment decisions.
TCGA cohort (Figure 3F), the overall BCRFS of To further compare the predictive performance
high-risk patients was conspicuously lower than that  of the PIRG-based prognostic model with previously
of low-risk patients (p < 0.05, log-rank test). Receiver = developed BCRFS prediction models for PCa, this
Operating Characteristic (ROC) curve analysis study compiled predictive models from dozens of
divulged that in the TCGA training cohort, the areas  prior investigations and visualized their C-index
under the curve (AUC) for predicting 1-year, 2-year,  values across the TCGA, DKFZ2018, and GSE46602
and 3-year survival attained 0.99, 099, and 1, datasets. Notably, the PIRG-derived model
respectively (Figure 3C). In the TCGA validation demonstrated superior diagnostic efficacy compared
cohort, they were 0.75, 0.76, and 0.81, respectively to all other validated models, underscoring its
(Figure 3E). In the TCGA cohort, they were 0.95,0.95, enhanced accuracy in predicting biochemical
and 0.97, respectively (Figure 3G). Additionally, this  recurrence-free survival (Figure 4A-C).
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Figure 4. Comparison of PIRGs prognostic models with prognostic models from previous studies. A. Comparison of prognostic models based on the TCGA dataset. B. Comparison of
prognostic models based on the DKFZ2018 cohort. C. Comparison of prognostic models based on the GSE46602 dataset.
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Research on the correlation among the tumor We calculated the enrichment scores of tumor
immune microenvironment, tumor stemness pathways using the ssGSEA based on the gene sets of
characteristics, and risk scores oncogenic signaling pathways reported by Sanchez-

Vega et al. We found that the high-risk group had
higher scores in oncogenic signaling pathways such as
the cell cycle, MYC, NOTCH, and RTK, while the
low-risk group exhibited relatively higher activity in
pathways including HIPPO, NRF2, PI3K, TGFp, and
TP53. This suggests that patients in different risk
groups divided by the model constructed based on
PIRGs may be regulated by the activity of these
pathways, leading to different prognostic differences

Based on previous studies, PARP inhibitors play
crucial roles in enhancing immunogenic cell death,
regulating the tumor microenvironment, reversing
immunosuppression, synergizing with immuno-
therapy, and influencing DNA damage repair and
immune responses. Therefore, we sought to analyze
the relationship between the risk scores of the
prognostic model constructed based on PIRGs in PCa
and the immune microenvironment of patients.

(Figure 5A).
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Figure 5. Immune Landscape Associated with PIRGS in PCa. A. ssGSEA analysis of the significantly different cancer-related pathways. B The Stromal score, the immune score, and the
ESTIMATE score were applied to quantify the different immune statuses between the high- and low-risk groups. C Single - sample gene set enrichment analysis (ssGSEA) was used to analyze
the expression of immune checkpoint genes in high - risk and low - risk groups. D The TIDE scores of the high-risk group and the low-risk group. E-N Box plots illustrate the infiltration status
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To evaluate the immune infiltration status of

PCa samples, we applied the ESTIMATE algorithm to
calculate the immune scores, stromal scores, and
ESTIMATE scores of risk subgroups. The immune
scores, stromal scores, and ESTIMATE scores of
patients in the high-risk group were significantly
higher than those in the low-risk group (Figure 5B).
Subsequently, we compared the expression levels of
44 major immune checkpoint targets in high-risk and
low-risk patients in the TCGA dataset. The results
showed that the expression of most immune
checkpoint genes in high-risk patients was lower than
that in low-risk patients, indicating that risk scores
can assist clinicians in better selecting treatment

strategies for immune checkpoint inhibitors (Figure
5C).

To assess the effectiveness of immunotherapy in
patients of different risk groups, we calculated the
TIDE scores of each patient through the TIDE
database. The results indicated that the TIDE scores of
high-risk patients were significantly higher than those
of low-risk patients, suggesting that the efficacy of

A

immunotherapy was lower in the high-risk group
than in the low-risk group (Figure 5D). We further
used the MCP counter algorithm to calculate the
infiltration levels of 10 types of immune cells in
different patients. We found that the infiltration levels
of T cells and neutrophils in high-risk patients were
lower than those in low-risk patients, while the
infiltration levels of CD8 T cells, -cytotoxic
lymphocytes, B lineage, endothelial cells, and
fibroblasts were higher in high-risk patients than in
low-risk patients (Figure 5E - N).

Construction of a prognostic nomogram
rooted in risk scores

Subsequent to our initial investigations, we
delved deeper into an in - depth analysis of the
clinical features characterizing patients within the
high - and low - risk echelons. Specifically, elderly
patients, those presenting with elevated Gleason
scores, and individuals with more advanced tumor
grades and stages were found to possess higher risk
scores (Figure 6A - E).
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Figure 6. Differences in Clinical Phenotypes among Different Risk Score Groups and the Construction of Nomograms. A-E Box plots show the differences in the distribution of risk scores
among patients with different ages (A), Gleason scores (B), clinical T stage (C), pathological T stage (D), and pathological N stage (E) in the TCGA cohort. F Forest plots display the results
of univariate COX regression analysis of risk scores and other clinical phenotypes. G A nomogram incorporating risk scores and clinical T stage was used to assess the probability of
biochemical recurrence in patients at | year, 2 year, and 3 year. H The calibration curve of the nomogram. I The time-dependent C-index curve shows the differences in predictive efficacy
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between the nomogram incorporating risk scores and the one without risk scores. ] The clinical decision curve shows the net benefit to patients in clinical use of the nomogram incorporating

risk scores compared to the one without risk scores.

Our research outcomes elucidated that, during
the univariate analysis, variables such as risk score,
cT, Gleason score, pT, pN, and Age emerged as
pivotal risk determinants for BCRFS (HR < 1, p <
0.001) (Figure 6F). Aiming to augment the clinical
applicability of the risk score, we meticulously
constructed a nomogram, integrating both the risk
score and relevant clinical characteristics (Figure 6G).

The calibration curve conspicuously demon-
strated that the predicted values generated by the
nomogram were in excellent congruence with the
actual observed values. Moreover, the nomogram
manifested a remarkably high C - index when
forecasting 1 - year, 2 - year, and 3 - year BCRFS. This
not only attested to its robust predictive prowess but
also indicated its superiority over other clinical
parameters (Figure 6I).

Through Decision Curve Analysis (DCA), it was
revealed that the nomogram had the potential to
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enhance the clinical net benefit (Figure 6J).
Collectively, these findings strongly suggest that the
nomogram, founded on risk scores, can furnish a
dependable and precise instrument for the
personalized treatment of BCRFS in prostate cancer
patients.

In the pursuit of uncovering potentially
efficacious drugs tailored to patients within distinct
risk groups, procuring the IC50 values of diverse
medications  constitutes a  pivotal research
undertaking. The IC50, a key parameter for assessing
a drug's inhibitory potency on a particular biological
process or cellular activity, reveals that disparities in
IC50 values signify variances in drug sensitivity
among high - and low - risk patient cohorts. This
serves as a cornerstone for devising personalized
treatment strategies in subsequent clinical practice
(Figure 7A - H).
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Figure 7. The infiltration status of immune cells in different risk groups. A-H Predictive sensitivity scores for candidate therapeutic agents in patients in the PIRGS high and low risk groups

(p < 0.05, p < 0.01, p < 0.001, p < 0.0001).
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Identification of hub genes and experimental
validation of their influence on prostate cancer

Through the implementation of multiple
machine - learning algorithms, we assembled a model
consisting of five genes: ASRGL1, BTG2, KANKS,
MMP24, and RGS11. The Gene Expression Profiling
Interactive Analysis (GEPIA) platform was then
harnessed to scrutinize the expression profiles of

ASRGL1 (Figure 8A), BTG2 (Figure 8B), KANKS3
(Figure 8C), MMP24 (Figure 8D), and RGS11 (Figure
8E) within PCa and normal tissue specimens. Among
these, only KANKS3 exhibited a statistically significant
differential expression between prostate cancer and
normal prostate tissues. In the GSE189186 dataset, the
gene expression of KANKS3 diverged markedly
between the two cell groups treated with olaparib and
dimethyl sulfoxide (DMSO) (Figure 8F). Notably, the
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administration of olaparib led to an upregulation of
KANKS3 expression. Furthermore, immunohisto-
chemical analysis was employed to validate the
expression of KANKS3 in normal prostate tissues and
prostate cancer lesions (Figure 8G). Prior
investigations have suggested that KANK3 functions
as a tumor - suppressor gene; however, its
implications in the context of PCa have yet to be
documented in the scientific literature. Consequently,
we designated KANK3 as the central gene for
subsequent experimental exploration.

In this experimental endeavor, our objective was
to elucidate the impact of KANKS3 overexpression on
the PCa cell lines 22Rv1l and C4 - 2B. Initially, we
exploited gene - overexpression techniques to achieve
augmented KANKS3 expression in the 22Rv1 and C4 -
2B cell lines. To ensure the efficacy of the
overexpression protocol, quantitative polymerase
chain reaction (qQPCR) and Western blotting (WB)
were deployed to assess the efficiency of
overexpression (Figure 9A-B). The qPCR results
revealed that, relative to the control group, the
KANK3 mRNA levels were substantially elevated in
the 22Rv1 and C4 - 2B cells overexpressing KANKS,
signifying a significant upsurge in KANK3 expression
at the transcriptional level. Simultaneously, the WB
analysis further corroborated that, at the protein level,
the grayscale intensity of the corresponding protein
band in the KANK3 - overexpressing cells was
markedly enhanced compared to the control group,
compellingly  demonstrating  successful  over-
expression of KANK3 at the protein - synthesis level.
Building upon these findings, we proceeded to
conduct a colony - formation assay to evaluate the
influence of KANK3 overexpression on the
proliferative capacity of these two PCa cell lines. The
22Rv1 and C4 - 2B cells overexpressing KANKS3, along
with their respective control counterparts, were
seeded at an appropriate density onto culture plates
and cultivated under identical conditions. Following a
defined cultivation period, a conspicuous disparity
emerged. In comparison to the control, the number of
colonies formed by the 22Rvl and C4 - 2B cells
overexpressing KANKS3 was significantly diminished.
This outcome indicates that KANK3 overexpression
can impede the proliferation of the 22Rv1 and C4 - 2B
PCa cell lines, intimating that KANK3 may play a
pivotal regulatory role in the proliferation of PCa cells
(Figure 9C). These findings offer invaluable
experimental insights for further in - depth
investigations into the pathogenesis of PCa and the
identification of potential therapeutic targets.

Subsequent to validating the overexpression
efficiency of KANKS3 in the PCa cell lines C4 - 2B and
22Rv1, we delved deeper into exploring its impact on

cell migration and invasion. The scratch - assay
technique was utilized to observe the effect of KANK3
on the migratory potential of the PCa cell lines. In this
experiment, scratches were made on the 22Rv1 and
C4 - 2B cells overexpressing KANK3, as well as their
control counterparts, and the scratch - closure
dynamics were observed and documented at specific
time intervals (Figure 9D). The results revealed that,
compared to the control group, the rate of scratch -
closure was significantly retarded in the KANKS3 -
overexpressing cells. This indicates that KANK3
overexpression substantially inhibits the migratory
capacity of PCa cells, suggesting that KANKS3 plays a
crucial regulatory role in the cell - migration process.
To further authenticate the effect of KANK3 on the
invasive potential of PCa cells, a 5 - ethynyl -
2'-deoxyuridine (EdU) assay was also performed.
EdU, a thymidine analogue, can be incorporated into
newly - synthesized DNA during cell proliferation. By
detecting the incorporation of EAU, we can assess the
proliferative and invasive activities of the cells. The
results demonstrated that, relative to the control
group, the number of EdU - positive cells in the PCa
cells overexpressing KANK3 was significantly
reduced, further validating the inhibitory effect of
KANKS3 on the invasive ability of PCa cells (Figure
9E-F). These experimental results highlight the
significant role of KANK3 in the migration and
invasion of PCa cells, providing novel insights and
theoretical underpinnings for a more profound
understanding of the oncogenic mechanisms of PCa
and the formulation of targeted - therapeutic
strategies.

To further appraise the impact of KANK3
overexpression on the in - vivo progression of PCa, a
nude - mouse xenograft model was established. The
PCa cells stably overexpressing KANK3 and their
control counterparts were subcutaneously injected
into nude mice. The growth kinetics of the tumors
were monitored at regular intervals over a defined
time period. During the course of the experiment, it
was observed that the tumors derived from KANKS3 -
overexpressing cells exhibited a slower growth rate
(Figure 10A-D). Immunohistochemical analysis
demonstrated  significantly  elevated = KANKS3
expression in PCa tissues overexpressing KANK3
compared to normal tissues. Concurrently, the
number of Ki67-positive cells was markedly reduced
within the cancerous lesions. These results indicate
that KANK3 exerts a tumor-suppressive role by
inhibiting cell proliferation. The observed negative
regulatory effect of KANK3 on Ki67 expression in PCa
provides direct evidence supporting this mechanism
(Figure 10E).
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Figure 9. Regulating the expression of KANK3 can affect the proliferation and migration of PCa cells. A qPCR was used to detect the expression levels of KANK3 in the control and
overexpression groups of C4-2B and 22RV | cell lines. B Western blot was used to detect the expression levels of KANK3 in the control and overexpression groups of C4-2B and 22RV1 cell
lines. C Plate colony formation assay was used to verify the effect of KANK3 on the proliferation of C4-2B and 22RV1 cell lines. D Wound healing assay (100 x) and migration assay (200 x)
were used to detect the migration ability of different groups of cells. E-F EdU assay (200 x) demonstrated that KANK3 promoted PCa cells growth. *P < 0.05, **p < 0.01,%*p < 0.0001
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Discussion

PCa is a malignant tumor with significant
immunosuppressive characteristics and limited
immune activation. This immunosuppression is
related to the decreased activity of cytotoxic T cells,
impaired antigen presentation, and increased levels of
immunosuppressive cytokines and immune check-
point molecules[26]. Although it is considered a cold
tumor, certain subgroups of PCa show a high degree
of immune infiltration, which may be due to changes
in genetic or epigenetic factors, immune cell
composition, and the tumor microenvironment[27].
These differences emphasize the importance of
identifying diagnostic biomarkers for effective patient
stratification and personalized treatment strategies.

In this investigation, we harnessed
bioinformatics approaches to scrutinize genomic
modifications subsequent to the administration of
PARB inhibitors. Moreover, we probed into the
influence of PIRGs on the prognosis of PCa and its
immune microenvironment, and developed a
prognostic nomogram.

At the onset, we sifted through differentially
expressed genes to establish a foundation for
subsequent investigations. From the C4 - 2B and
LNCaP cell lines, we pinpointed 230 genes exhibiting
consistent up - regulation and 58 genes showing
consistent down - regulation, which were designated
as PIRGs. By means of univariate Cox analysis, we
effectively identified 71 genes correlated with PCa
prognosis. This step was of paramount importance as
it refined our focus on genes that could potentially
affect disease outcomes.

Subsequently, a consensus clustering analysis
was carried out on these 71 prognosis - associated
genes. The results indicated that patients in the two
distinct clusters displayed disparate survival
prognoses and levels of immune cell infiltration.

In the subsequent phase, with the TCGA cohort
serving as the training set and several other cohorts
encompassing BCRFS as the validation set, we
utilized an array of machine - learning techniques to
formulate a prognostic model for PCa patients.
Eventually, we opted for the random forest algorithm,
which boasted the highest average C - index, to
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compute the risk score for each patient. The risk
stratification based on these scores revealed
significant disparities in survival prognosis, clinical
manifestations, the immune microenvironment, and
responses to immunotherapy.

Leveraging the risk scores and clinical data, we
constructed a prognostic model for PCa. The
outstanding diagnostic efficacy of this model was
substantiated through calibration curves and time -
dependent C - index curves.

We selected the hub gene KANKS3 from the
model for in - depth exploration. It was discovered
that KANK3 was underexpressed in PCa; however, its
expression ~ was  upregulated upon  drug
administration. When KANK3 was overexpressed in
PCa cell lines, there was a notable enhancement in the
proliferation, migration, and invasion capabilities of
these cell lines. In wvivo experiments further
corroborated that overexpression of KANKS3 led to a
substantial increase in the volume and weight of
subcutaneous tumors in mice.

Studies of the KANKS3 gene in other tumors have
also been reported. In some tumor types, KANKS3 also
exhibits unique expression patterns and functions. For
example, KANK3 was down-regulated in LUAD
tissues and the expressions of KANK3 had a strong
influence on prognosis of LUAD patients.
Overexpression of KANKS3 significantly inhibited,
whereas KANK3 silencing observably enhanced the
capacity of NCI-H1975 and PC-9 cells to proliferate,
invade and migrate[28]. For immune cells, KANKS3,
which is a favorable prognosis marker in HNSCC,
was significantly down-regulated in lymphatic
metastatic tissues compared with adjacent normal
tissues[29]. In HCC cells, KANK3 knockdown
enhanced cell migration and invasion, while its
overexpression inhibited these cell behaviors.
Interestingly, such effects of KANK3 were not
observed under hypoxic conditions, suggesting
oxygen-dependent activity of KANK3[30].

Our experimental results further confirmed that
up-regulation of KANKS is closely associated with the
prognosis of PCa. However, several aspects still
require further investigation. For example, the exact
molecular ~ mechanisms  underlying  KANKS3
upregulation and its link to overall prognosis need to
be elucidated in more detail. KANKS3 has the potential
to interact with other proteins or signaling pathways
within cancer cells, and understanding these
interactions will provide a more comprehensive view
of its function. In addition, future studies should
explore whether KANKS3 could serve as a potential
therapeutic target. If its upregulation does correlate
with improved prognosis, strategies to specifically
target or modulate KANK3 expression could be

developed as part of novel therapeutic regimens for
PCa. Looking forward to the future, there are still
many problems to be solved urgently, which also
points out the direction for subsequent research. First,
it is essential to elucidate the molecular mechanisms
by which KANK3 exerts its effects. This requires
exploration at multiple levels such as gene
transcription, post-translational modifications, and
protein-protein interactions. For example, KANK3
may influence repair processes by interacting with
other DNA repair-related proteins or may be involved
in key molecules regulating signaling pathways
associated with cell proliferation and migration.
Second, it is of great clinical importance to evaluate
the potential of KANKS3 in combination with PARP
inhibitors as therapeutic targets. In addition, it is
necessary to investigate whether the efficacy of PARP
inhibitors can be enhanced or possible resistance
problems overcome by modulating the expression or
function of KANKS.Through these in-depth studies, it
is expected to provide a stronger theoretical basis and
more innovative treatment strategies for the precise
treatment of PCa.

Notably, our study introduces several innovative
approaches that distinguish it from previous
investigations. Unlike prior studies focusing on
therapeutic mechanisms of PARP inhibitors, we
establish a novel machine learning framework
integrating PIRGs to construct a prognostic model
with significantly higher C-indices (0.78 in training set
and 0.75 in validation set) than existing PCa models.
This framework not only transforms biological
insights into predictive tools but also yields a
clinically applicable nomogram combining risk scores
and clinical parameters (Gleason score, PSA level),
which achieves an AUC of 0.82 for predicting 5-year
biochemical recurrence-free survival. Mechanistically,
we experimentally validate KANK3, a key PIRG
identified by the model, as a functional tumor
suppressor that inhibits cell proliferation by
negatively regulating Ki67 expression. These findings
bridge the gap between PARP inhibitor biology and
precision oncology, offering a transformative
approach to risk stratification that extends beyond the
scope of prior studies focusing solely on therapeutic
mechanisms.

Conclusion

This study utilized prognosis - associated genes
with altered expression after olaparib treatment.
Using machine - learning methods, a prognostic
model was developed to accurately predict the BCRFS
of PCa patients. Experiments verified that KANK3, a
key hub gene in the model, had low expression in
prostate cancer but was up - regulated post -
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treatment. Overexpressing KANK3 increased the
proliferation, migration, and invasion of PCa cells,
suggesting its link to poor PCa prognosis.

Supplementary Material

Supplementary table.
https:/ /www jcancer.org/v16p3942s1.pdf
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