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Abstract 

Background: Prostate cancer (PCa), a prevalent malignant neoplasm in men, has its biochemical 
recurrence-free survival (BCRFS) serving as a critical determinant for patient prognosis. PARP inhibitors 
have demonstrated potential therapeutic value in the management of PCa. Nevertheless, the precise 
influence exerted by their associated genes on BCRFS remains elusive.  
Methods: We selected the differentially expressed genes after treatment with olaparib and defined them 
as PARP inhibitor-related genes (PIRGs). Consensus clustering was employed to evaluate the 
relationships among different PIRGs clusters, prognosis, and the immune microenvironment. Univariate 
COX regression analysis was used to screen the prognosis-related PIRGs, which were then incorporated 
into multiple machine learning frameworks. The random forest algorithm with the highest C-index was 
chosen to construct a BCRFS prediction model. A prognostic nomogram was developed based on the 
risk score and clinical information, and the predictive performance of the model was assessed. 
Results: In C4 - 2B and LNCaP cell lines, 230 and 58 genes were differentially expressed, respectively. 
Consensus clustering results showed distinct survival prognoses and immune - infiltrated 
microenvironments among different groups. The random forest model had a high average C - index in 
both the training and validation sets. The prognostic model constructed in this study demonstrated a 
higher C-index compared to the prognostic models from previous studies. High - risk group patients had 
a poor immunotherapy response. A nomogram based on risk scores and clinical information accurately 
predicted PCa patients' BCRFS. Cell experiments revealed that KANK3 was downregulated in PCa and 
upregulated by olaparib treatment. KANK3 overexpression in PCa cell lines inhibited cell proliferation, 
migration, and invasion, suggesting its oncogenic role in PCa. 
Conclusion: Our study has described the correlations between PARP inhibitor-related genes and the 
immune landscape, recurrence after radical prostatectomy, as well as clinical characteristics. The risk 
score can improve the existing risk stratification system. 
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Introduction 
Globally, the incidence of PCa shows significant 

geographical differences. According to the Globocan 
2020 data, PCa is the second most common cancer in 
men worldwide, with approximately 1.414 million 

new cases, accounting for 7.3% of all malignant 
tumors. Its incidence is only second to breast cancer 
and lung cancer[1]. Androgen deprivation therapy 
(ADT), chemotherapy, immunotherapy, and radiation 
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therapy are all available treatment options for castrate 
- resistant prostate cancer (CRPC). Recently, PARP 
inhibitors have also emerged as supplementary 
treatment choices for this type of cancer[2-4]. 
Biochemical recurrence (BCR) refers to the situation 
that after PCa patients receive radical treatments 
(such as radical prostatectomy, radical radiotherapy, 
etc.), the level of serum prostate-specific antigen 
(PSA) rises above a certain critical value, and it is 
generally considered that biochemical recurrence has 
occurred[5]. This indicates that there may be residual 
or recurrent tumor cells, but it does not necessarily 
mean that clinically detectable metastasis or related 
symptoms will appear. The existing indicators, 
including Gleason score and PSA, have limitations in 
accurately predicting the time of BCR in PCA 
patients[6, 7]. Therefore, exploring new biomarkers 
has important value and far-reaching significance that 
cannot be ignored in optimizing the diagnosis and 
treatment process of PCa patients. 

Poly (ADP-ribose) polymerase (PARP) inhibitors 
represent a groundbreaking class of targeted cancer 
therapies that have significantly advanced the 
treatment of various cancers, particularly those with 
specific genetic mutations[8, 9]. PARP enzymes, 
including PARP1 and PARP2, play a crucial role in 
the repair of single-strand DNA breaks through the 
base excision repair pathway[10]. When this repair 
mechanism is compromised, cells accumulate genetic 
damage, which can lead to cell death. The therapeutic 
potential of PARP inhibitors stems from their ability 
to exploit the concept of synthetic lethality. In cancers 
with deficiencies in homologous recombination repair 
pathways—such as those with BRCA1 or BRCA2 
mutations—cells are already vulnerable due to their 
inability to repair double-strand DNA breaks 
effectively[11]. PARP inhibitors further impair the 
cell's ability to repair single-strand breaks, leading to 
the accumulation of DNA damage and ultimately 
causing selective cancer cell death while sparing 
normal cells. 

PARP inhibitors, including drugs such as 
olaparib, rucaparib, niraparib, and talazoparib, have 
shown significant efficacy in treating cancers such as 
ovarian, breast, prostate, and pancreatic 
cancers[11-13]. These drugs have been particularly 
effective in patients with BRCA mutations or other 
HRR deficiencies, making them an essential 
component of personalized cancer treatment. In 
addition to their use in monotherapy, PARP inhibitors 
are also being explored in combination with other 
therapeutic modalities, including chemotherapy and 
immunotherapy, to enhance their efficacy and 
overcome resistance mechanisms[14, 15] 

Overall, PARP inhibitors represent a significant 

advancement in precision oncology, offering new 
hope for patients with genetically defined cancers and 
contributing to the ongoing evolution of cancer 
treatment strategies[16-18].  

In summary, the objective of this study was to 
delve into the genomic alterations within PCa cell 
lines subsequent to the administration of PARB 
inhibitors, explore the influence of PIRGs on 
prognosis and the immune microenvironment, and 
establish a predictive model that can accurately 
forecast the BCRFS of PCa patients through machine 
learning approaches. 

While previous studies have thoroughly 
elucidated the molecular mechanisms of PARP 
inhibitor therapy, systematic evaluation of the 
prognostic value of PIRGs in independent validation 
cohorts remains scarce. This study constructs an 
innovative machine learning framework to promote 
the translational application of genomic signature 
markers into clinical risk stratification systems. Based 
on multi-omics data from prostate cancer cohorts, our 
developed PIRG prognostic model significantly 
outperforms existing models in C-index evaluation. A 
clinically practical nomogram was further 
constructed, integrating PIRG risk scores with clinical 
information to achieve accurate prediction of 
biochemical recurrence-free survival. Functional 
mechanism studies confirmed that KANK3 acts as a 
key tumor suppressor gene in prostate cancer, and its 
expression silencing is closely associated with tumor 
aggressive phenotypes and PARP inhibitor resistance. 
This study not only confirms the prognostic value of 
PIRG signature profiles but also provides a theoretical 
basis for precision diagnosis and treatment strategies 
in advanced PCa. 

Materials and Methods 
Public data acquisition 

We retrieved the PCa cohorts encompassing 
BCRFS information from public databases. The TCGA 
cohort was sourced from the TCGA database 
(https://portal.gdc.cancer.gov). The DKFZ2018 
cohort was procured from the cBioportal website 
(https://www.cbioportal.org/). The sequencing data 
of cell lines in both the Olaparib treatment group and 
the control group (GSE116918), along with the PCa 
cohorts (GSE70769 and GSE189186) incorporating 
BCRFS, were retrieved and downloaded from the 
Gene Expression Omnibus (http://www.ncbi. 
nlm.nih.gov/geo). Regarding the expression data 
derived from high-throughput sequencing, we 
transformed it into the TPM format and conducted a 
log2 transformation. For the microarray data, we 
employed the normalizeBetweenArrays function 
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within the limma package to rectify systematic 
deviations among different samples in the microarray 
experiments, thereby rendering the gene expression 
data of various samples comparable[19]. 
Simultaneously, we also downloaded the survival 
information of the aforementioned cohorts and 
excluded patients with a survival time of zero months 
to ensure the reliability of the analysis. The baseline 
data of patients included in the datasets of this study 
are shown in Supplementary Table 1. 

Differential expression analysis 
The DESeq2 R package was employed to 

perform differential expression analysis[20]. Genes 
fulfilling the criteria of |log2fold change| > 0.5 and 
p-value < 0.05 were designated as differentially 
expressed genes (DEGs). 

ssGSEA  
Each ssGSEA enrichment score reflects the extent 

to which genes within a particular gene set are 
upregulated or downregulated in a given sample[21]. 
We retrieved the gene sets of 28 immune cells from 
prior studies. By employing the ssGSEA method, the 
expression matrix was converted into an enrichment 
matrix, thus obtaining the immune cell infiltration 
levels of different samples. 

Survival analysis 
Survival analysis was carried out by means of 

the survival R package. For the gene expression data 
or risk score data of each patient, we employed the 
survminer package to compute the optimal cut-off 
value and stratify the patients. Subsequently, 
Kaplan-Meier analysis was performed on the 
stratified patients, and the survival curves were 
generated. 

Consensus clustering analysis 
We employed the ConsensusClusterPlus R 

package to conduct consensus clustering analysis on 
patients based on the differentially expressed genes 
associated with prognosis[22], which were screened 
through univariate COX regression analysis. The 
iteration count was configured at 50 times. Eighty 
percent of the samples were selected for repetitive 
sampling procedures. The Euclidean distance 
calculation method was utilized, and the PAC 
approach was adopted to identify the optimal number 
of clusters. 

Fitting and validation of machine learning 
models 

In order to obtain the most favorable prognostic 
model, an overall integration of ten machine learning 

algorithms, including CoxBoost, Lasso, Ridge, Enet, 
StepCox, survival-SVM, GBM, plsRcox, RSF, and 
SuperPC, was executed. Initially, variable screening 
was performed using algorithms like StepCox, Lasso, 
CoxBoost, and RSF that possess variable selection 
capabilities. The selected variables were then 
incorporated into algorithms capable of model 
construction for the purpose of model fitting. 

For CoxBoost analysis, the CoxBoost R software 
package was used, and 10-fold cross-validation was 
adopted to determine the optimal boosting steps. The 
glmnet R package was utilized to build Lasso, Ridge, 
and Enet models, where 10-fold cross-validation was 
employed to find the regularization parameter 
lambda. The survival-SVM model was fitted using the 
survivalsvm R package. The gbm R package was used 
to build the GBM model, and 10-fold cross-validation 
was carried out. The plsRcox R package was used for 
fitting the plsRcox model. To construct the RSF model, 
the rfsrc function from the randomForestSRC R 
package was employed, with the ntree parameter set 
at 1000. The SuperPC model was built through the 
superpc R package, and 10-fold cross-validation was 
applied to fit the most appropriate model. 

Immune infiltration analysis 

We computed the ESTIMATE scores, stromal 
scores, and immune scores of patients by utilizing the 
ESTIMATE R package[23]. Furthermore, we retrieved 
the marker gene sets of 28 immune cells from the 
literature and employed the ssGSEA algorithm to 
evaluate the infiltration of these 28 immune cells 
among different patients. In addition, we utilized the 
MCP counters algorithm to calculate the infiltration 
levels of 10 immune cells in various patients for 
verification purposes. 

Immunotherapy prediction and drug 
sensitivity prediction 

Gene expression data were first subjected to 
normalization procedures. Subsequently, the TIDE 
score, dysfunction score, and exclusion score for each 
patient were computed via the TIDE (Tumor Immune 
Dysfunction and Exclusion) database (http://tide. 
dfci.harvard.edu/)[24]. 

By leveraging the oncoppredict R package, the 
standard expression matrix of GDSC2 and the IC50 
values of each cell line corresponding to every drug 
were retrieved from Github (https://github.com/ 
maese005/oncoPredict/tree/main/vignettes). These 
data were then utilized as the training set to estimate 
the IC50 values of various drugs for patients within 
distinct risk groups. 
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Construction of nomogram and validation of 
diagnostic efficacy 

Regarding the construction of the prognostic 
nomogram, clinical data from the TCGA prostate 
cancer cohort were utilized, including age, clinical T 
stage (cT), pathological T stage (pT), pathological N 
stage (pN), calculated Risk_Score, and risk group 
stratification. Univariate COX regression analysis was 
first performed on risk scores and clinical parameters 
to screen for prognosis-related variables. 
Subsequently, stepwise regression was applied, with 
the Akaike Information Criterion (AIC) used to 
quantify model complexity and goodness-of-fit, 
aiming to identify the optimal model that balances 
data explanation with minimal free parameters. This 
process identified Risk_Score and cT as robust 
independent prognostic factors, forming the final 
model with a reduced AIC value. Serving as the 
foundation for nomogram construction using the rms 
package in R, this model enables prediction of 1-year, 
3-year, and 5-year survival probabilities. For the final 
multivariate COX regression model, the rms package 
was employed to construct the nomogram, with 
calibration curves used to assess discrepancies 
between predicted and observed survival outcomes. 
Time-dependent AUC curves were generated using 
the pecr package to evaluate predictive accuracy at 
distinct time points. To assess clinical utility in 
decision-making, net benefit analyses of different 
strategies within a specified threshold range were 
conducted using the ggDCA package, evaluating the 
model's practical application value[25]. 

Cell culture and transfection 
The PCa cell lines C4-2B and 22RV1 were 

procured from the Cell Bank of the Chinese Academy 
of Sciences. These cell lines were cultured in RPMI 
1640 medium supplemented with 10% fetal bovine 
serum within an incubator maintained at 37°C and 5% 
CO₂. The KANK3 transfection plasmid utilized in our 
study was purchased from Hunan Youze 
Biotechnology Company (China), and Lipofectamine 
2000 (Invitrogen, USA) was utilized to transfect the 
plasmid into the cell lines, thereby achieving the 
overexpression of KANK3. 

Real-time qPCR 
Total RNA was isolated from the cell lines by 

employing the TRIzol kit (Invitrogen, USA). 
Subsequently, the extracted RNA was reverse 
transcribed into cDNA through the utilization of the 
PrimeScript RT kit (Takara, Japan). After that, the 
cDNA was prepared in a 10 µl reaction system using 
the TAKARA kit. Next, the cDNA prepared earlier, 
gene-specific primers, ddH₂O, and 2 × Taq Pro 

Universal SYBR qPCR master mix were combined for 
qPCR amplification. The relative expression of the 
target gene was determined using the 2 - ΔΔct 
method, with GAPDH acting as the internal reference 
gene. 

Western blot 
PCa cells' protein was extracted using RIPA 

buffer. Prepared protein standards following kit 
(Beyotime, Shanghai) instructions. Made BCA 
solution based on sample count and added to 
samples/standards. After 30 min at RT, measured 562 
nm absorbance with microplate reader (Varioskan 
LUX, US) to determine protein concentration by BCA. 
Added 5× loading buffer (4:1 to sample) and 
incubated at 100°C for 15 min. 

Loaded samples on 10% SDS - PAGE gel for 
electrophoresis and transferred to PVDF membrane. 
Blocked membrane with 5% BSA for 1 h at RT. 
Incubated overnight at 4°C with KANK3 and GAPDH 
antibodies. Detected protein expression by enhanced 
chemiluminescence and analyzed bands with imaging 
system. 

Cell function experiments 
The KANK3 plasmid was introduced into 22RV1 

and C4 - 2B cells to investigate its influence on cell 
migration and invasion. In the wound healing test, a 
scratch was created on the cell monolayer, and the 
movement of cells into the scratch was observed over 
24 hours. Regarding the Transwell assay, transfected 
cells were positioned in the upper chamber with 
serum - free medium, and the lower chamber 
contained 30% serum medium. After 36 hours, the 
migrated cells reaching the lower side of the 
membrane were enumerated. These experiments 
assist in clarifying the function of KANK3 in cell 
migration and invasion and offer data backing. 

EDU assay 
Transfected cells were plated in 96 - well plates 

at 1×10⁴ cells/well. After 24 h incubation, EDU 
solution was diluted to 50 μM in Edu medium and 100 
μL added to each well for another 2 h incubation. 
Then, cells were fixed and 100 μL Click - iT working 
solution (Uelandy, Suzhou) was added for staining. 
Finally, DNA was counterstained and images taken 
by fluorescence microscope. 

Clonogenic assay 
800 transfected cells were seeded in a 6 - well 

plate. After 10 days, cells were washed twice with 
PBS, fixed with 4% paraformaldehyde, and stained 
with crystal violet. Then, the number of cell clones 
was determined. 
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Immunofluorescence 
Transfected cells were plated in a 6 - well plate at 

an appropriate density. Then, they were fixed with 4% 
paraformaldehyde and permeabilized with 0.2% 
Triton X - 100 at room temperature. After that, cells 
were incubated with 200 μL phalloidin working 
solution for 20 minutes and counterstained with 
DAPI. Finally, immunofluorescence microscopy was 
used to observe KANK3 protein distribution. 

Immunohistochemistry 
Immunohistochemistry was done on two tissue 

specimens (1 PCa and 1 normal prostate tissue from 
Tongji Hospital Urology Dept.). Tissues were fixed in 
10% formalin, embedded in paraffin, and sectioned at 
4 μm. After dewaxing and rehydration, antigen 
retrieval was carried out with citrate buffer (pH 6.0) in 
a microwave. Then, sections were blocked with 3% 
hydrogen peroxide, incubated with primary antibody 
at 4 °C overnight. After washing, they were incubated 
with biotinylated secondary antibody and 
streptavidin - HRP. Color was developed with DAB 
and sections counterstained with hematoxylin. 
Finally, slides were dehydrated, mounted, and 
analyzed under an optical microscope. Each sample 
was evaluated by two pathologists. 

Statistical analysis  
All bioinformatics analyses were performed 

using R version 4.1.3. The normality of continuous 
variables was tested using the single-sample KS test. 
If the data followed a normal distribution, data 
analysis was conducted using the t-test or one-way 
ANOVA analysis of variance. The experiments were 
repeated three times. A significance level of P < 0.05 
was considered statistically significant. 

Results 
Analysis of the differential gene expression 
following olaparib administration 

The GSE189186 dataset was obtained from the 
GEO database. Subsequently, differential expression 
analyses were carried out on cell lines prior to and 
subsequent to Olaparib treatment. Genes fulfilling the 
criteria of | log2FoldChange | > 0.75 and P < 0.05 
were designated as differentially expressed genes. In 
the LNCaP cell line, a sum of 846 such genes were 
successfully screened, whereas 430 differentially 
expressed genes were detected in the C4-2B cell line 
(Figure 1A - B).  

 
 

 
Figure 1. Identify differentially expressed PIRGs in PCa cells. A,B Volcano plot of genes differentially expressed in LNCaP, C4-2B in dataset GSE189186. C,D Wayne plot of differentially 
expressed genes. E Enriched GO terms of the differentially expressed PIRGs. F Enriched KEGG pathways of differentially expressed PIRGs. 
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The differentially expressed genes that exhibited 
concurrent upregulation or downregulation in both 
cell lines were chosen for further in-depth exploration 
(Figure 1C - D). These genes were designated as 
PIRGs, with a total number of 288. The Gene Ontology 
(GO) enrichment analysis was principally associated 
with signal transduction by p53 class mediator, 
mitotic cell cycle checkpoint signaling, signal 
transduction in response to DNA damage and mitotic 
DNA damage checkpoint signaling. Notably, the 
differentially expressed genes were primarily 
concentrated in KEGG-correlated pathways, 
including but not limited to the p53 signal pathway, 
endocrine resistance, FoxO signaling, and cell cycle 
pathway. 

Unsupervised clustering analysis was carried 
out on PCa patients with reference to the 
expression levels of PIRGs 

Leveraging the expression profiles of PIRGs in 
PCa patients, we implemented unsupervised 
clustering by means of the ConsensusClusterPlus R 
package. The CDF curve demonstrated a tendency to 
level off at k = 2, accompanied by a distinct blocky 
structure, suggesting a notably high stability of 
sample partitioning at this value of k. Consequently, 
we elected to stratify the patients into two cohorts 
(Figure 2A - B).  

 

 

 
Figure 2. Consensus clustering based on differentially expressed PIRGs: Patients with differentially expressed PIRGs are divided into two clusters by consensus clustering algorithm. A,B Heat 
maps and trace curves show consensus clustering of k = 2 groups in sample clustering. When k is 2, the degree of group differentiation is the highest and the group consensus is also the best. 
C Differences in PFS between the two clusters. D Differences in BCR between the two clusters. E-H Differences in clinical information between the two clusters (Gleason score, cT, pT, pN). 
I Difference in immune cell infiltration between the two clusters. 
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Subsequently, we delved deeper into the 
disparities in prognostic outcomes across different 
patient clusters. It was ascertained that patients 
belonging to Cluster 1 boasted a superior BCRFS in 
comparison to those in Cluster 2, with a parallel trend 
being discernible for PFS as well (Figure 2C - D). 
Notably, patients in Cluster 1 were characterized by 
lower Gleason scores and earlier clinical and 
pathological staging (Figure 2E - H). Moreover, the 
infiltration of immune cells within the tumors of 
patients in the two clusters also manifested 
differences. In contrast to Cluster 1, patients in Cluster 
2 displayed augmented infiltration of activated CD4 T 
cells, central memory CD8 T cells, and memory B cells 
(Figure 2I). To sum up, disparate expression patterns 
of PIRGs are potentially correlated with both the 
prognosis of PCa and the tumor immune 

microenvironment. 

Construction of prognostic prediction models 
for biochemical recurrence-free survival 
(BCRFS) of prostate cancer (PCa) patients 
employing multiple machine learning methods 

Independent validations were subsequently 
effected in multiple external validation cohorts, with 
the C-index adopted as the evaluative index to gauge 
the model’s predictive efficacy. The outcomes 
manifested that the Random Survival Forest (RSF) 
model boasted the highest average C-index, 
registering at 0.726. Consequently, we opted for this 
model for subsequent exploration (Figure 3A). This 
model was composed of five genes, namely RGS11, 
MMP24, ASRGL1, KANK3, and BTG2. Relying on the 
expression magnitudes of these five genes, the RSF 

 
 

 
Figure 3. Construction and validation PIRGs prognostic models based on machine learning. A. C-index were calculated for each model on all validation datasets. B,D,F TCGA- PCa training 
set, internal validation set, patient risk score and overall survival status distribution in the overall set. C,E,G ROC curves (reflecting specificity and sensitivity) of PIRGS in predicting 1-, 3-, 
and 5-year OS in the TCGA Training Cohort, TCGA Validation Cohort, and TCGA Cohort. 
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model was harnessed to compute the risk scores for 
each patient in the training set and multiple external 
validation sets. 

We stratified all patients into high-risk and 
low-risk cohorts in accordance with the median risk 
score and contrasted the survival endpoints of 
patients in different risk cohorts in each cohort. We 
discerned that in the TCGA training cohort (Figure 
3B), the TCGA validation cohort (Figure 3C), and the 
TCGA cohort (Figure 3F), the overall BCRFS of 
high-risk patients was conspicuously lower than that 
of low-risk patients (p < 0.05, log-rank test). Receiver 
Operating Characteristic (ROC) curve analysis 
divulged that in the TCGA training cohort, the areas 
under the curve (AUC) for predicting 1-year, 2-year, 
and 3-year survival attained 0.99, 0.99, and 1, 
respectively (Figure 3C). In the TCGA validation 
cohort, they were 0.75, 0.76, and 0.81, respectively 
(Figure 3E). In the TCGA cohort, they were 0.95, 0.95, 
and 0.97, respectively (Figure 3G). Additionally, this 

model also exhibited outstanding predictive 
competencies in multiple external validation sets, 
attesting to the robustness of the prognostic model we 
constructed and its favorable prospects for broad 
dissemination and application. These results imply 
that the prediction model erected on the foundation of 
PIRGs harbors potent prognostic prediction potential 
in PCa and may function as a novel predictor to steer 
clinicians’ treatment decisions. 

To further compare the predictive performance 
of the PIRG-based prognostic model with previously 
developed BCRFS prediction models for PCa, this 
study compiled predictive models from dozens of 
prior investigations and visualized their C-index 
values across the TCGA, DKFZ2018, and GSE46602 
datasets. Notably, the PIRG-derived model 
demonstrated superior diagnostic efficacy compared 
to all other validated models, underscoring its 
enhanced accuracy in predicting biochemical 
recurrence-free survival (Figure 4A-C). 

 
 

 
Figure 4. Comparison of PIRGs prognostic models with prognostic models from previous studies. A. Comparison of prognostic models based on the TCGA dataset. B. Comparison of 
prognostic models based on the DKFZ2018 cohort. C. Comparison of prognostic models based on the GSE46602 dataset. 
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Research on the correlation among the tumor 
immune microenvironment, tumor stemness 
characteristics, and risk scores 

Based on previous studies, PARP inhibitors play 
crucial roles in enhancing immunogenic cell death, 
regulating the tumor microenvironment, reversing 
immunosuppression, synergizing with immuno-
therapy, and influencing DNA damage repair and 
immune responses. Therefore, we sought to analyze 
the relationship between the risk scores of the 
prognostic model constructed based on PIRGs in PCa 
and the immune microenvironment of patients. 

 

We calculated the enrichment scores of tumor 
pathways using the ssGSEA based on the gene sets of 
oncogenic signaling pathways reported by Sanchez- 
Vega et al. We found that the high-risk group had 
higher scores in oncogenic signaling pathways such as 
the cell cycle, MYC, NOTCH, and RTK, while the 
low-risk group exhibited relatively higher activity in 
pathways including HIPPO, NRF2, PI3K, TGFβ, and 
TP53. This suggests that patients in different risk 
groups divided by the model constructed based on 
PIRGs may be regulated by the activity of these 
pathways, leading to different prognostic differences 
(Figure 5A). 

 

 
Figure 5. Immune Landscape Associated with PIRGS in PCa. A. ssGSEA analysis of the significantly different cancer-related pathways. B The Stromal score, the immune score, and the 
ESTIMATE score were applied to quantify the different immune statuses between the high- and low-risk groups. C Single - sample gene set enrichment analysis (ssGSEA) was used to analyze 
the expression of immune checkpoint genes in high - risk and low - risk groups. D The TIDE scores of the high-risk group and the low-risk group. E-N Box plots illustrate the infiltration status 
of T cells, CD8 T cells, cytotoxic lymphocytes, NK cells, B lineage, monocytic lineage, myeloid dendritic cells, neutrophils, endothelial cells, and fibroblasts in the high-risk and low-risk groups. 
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To evaluate the immune infiltration status of 
PCa samples, we applied the ESTIMATE algorithm to 
calculate the immune scores, stromal scores, and 
ESTIMATE scores of risk subgroups. The immune 
scores, stromal scores, and ESTIMATE scores of 
patients in the high-risk group were significantly 
higher than those in the low-risk group (Figure 5B). 
Subsequently, we compared the expression levels of 
44 major immune checkpoint targets in high-risk and 
low-risk patients in the TCGA dataset. The results 
showed that the expression of most immune 
checkpoint genes in high-risk patients was lower than 
that in low-risk patients, indicating that risk scores 
can assist clinicians in better selecting treatment 
strategies for immune checkpoint inhibitors (Figure 
5C). 

To assess the effectiveness of immunotherapy in 
patients of different risk groups, we calculated the 
TIDE scores of each patient through the TIDE 
database. The results indicated that the TIDE scores of 
high-risk patients were significantly higher than those 
of low-risk patients, suggesting that the efficacy of 

immunotherapy was lower in the high-risk group 
than in the low-risk group (Figure 5D). We further 
used the MCP counter algorithm to calculate the 
infiltration levels of 10 types of immune cells in 
different patients. We found that the infiltration levels 
of T cells and neutrophils in high-risk patients were 
lower than those in low-risk patients, while the 
infiltration levels of CD8 T cells, cytotoxic 
lymphocytes, B lineage, endothelial cells, and 
fibroblasts were higher in high-risk patients than in 
low-risk patients (Figure 5E - N). 

Construction of a prognostic nomogram 
rooted in risk scores 

Subsequent to our initial investigations, we 
delved deeper into an in - depth analysis of the 
clinical features characterizing patients within the 
high - and low - risk echelons. Specifically, elderly 
patients, those presenting with elevated Gleason 
scores, and individuals with more advanced tumor 
grades and stages were found to possess higher risk 
scores (Figure 6A - E). 

 
Figure 6. Differences in Clinical Phenotypes among Different Risk Score Groups and the Construction of Nomograms. A-E Box plots show the differences in the distribution of risk scores 
among patients with different ages (A), Gleason scores (B), clinical T stage (C), pathological T stage (D), and pathological N stage (E) in the TCGA cohort. F Forest plots display the results 
of univariate COX regression analysis of risk scores and other clinical phenotypes. G A nomogram incorporating risk scores and clinical T stage was used to assess the probability of 
biochemical recurrence in patients at 1 year, 2 year, and 3 year. H The calibration curve of the nomogram. I The time-dependent C-index curve shows the differences in predictive efficacy 
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between the nomogram incorporating risk scores and the one without risk scores. J The clinical decision curve shows the net benefit to patients in clinical use of the nomogram incorporating 
risk scores compared to the one without risk scores. 

 
Our research outcomes elucidated that, during 

the univariate analysis, variables such as risk score, 
cT, Gleason score, pT, pN, and Age emerged as 
pivotal risk determinants for BCRFS (HR < 1, p < 
0.001) (Figure 6F). Aiming to augment the clinical 
applicability of the risk score, we meticulously 
constructed a nomogram, integrating both the risk 
score and relevant clinical characteristics (Figure 6G). 

The calibration curve conspicuously demon-
strated that the predicted values generated by the 
nomogram were in excellent congruence with the 
actual observed values. Moreover, the nomogram 
manifested a remarkably high C - index when 
forecasting 1 - year, 2 - year, and 3 - year BCRFS. This 
not only attested to its robust predictive prowess but 
also indicated its superiority over other clinical 
parameters (Figure 6I). 

Through Decision Curve Analysis (DCA), it was 
revealed that the nomogram had the potential to 

enhance the clinical net benefit (Figure 6J). 
Collectively, these findings strongly suggest that the 
nomogram, founded on risk scores, can furnish a 
dependable and precise instrument for the 
personalized treatment of BCRFS in prostate cancer 
patients. 

In the pursuit of uncovering potentially 
efficacious drugs tailored to patients within distinct 
risk groups, procuring the IC50 values of diverse 
medications constitutes a pivotal research 
undertaking. The IC50, a key parameter for assessing 
a drug's inhibitory potency on a particular biological 
process or cellular activity, reveals that disparities in 
IC50 values signify variances in drug sensitivity 
among high - and low - risk patient cohorts. This 
serves as a cornerstone for devising personalized 
treatment strategies in subsequent clinical practice 
(Figure 7A - H). 

 

 
Figure 7. The infiltration status of immune cells in different risk groups. A-H Predictive sensitivity scores for candidate therapeutic agents in patients in the PIRGS high and low risk groups 
(p < 0.05, p < 0.01, p < 0.001, p < 0.0001). 
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Identification of hub genes and experimental 
validation of their influence on prostate cancer 

Through the implementation of multiple 
machine - learning algorithms, we assembled a model 
consisting of five genes: ASRGL1, BTG2, KANK3, 
MMP24, and RGS11. The Gene Expression Profiling 
Interactive Analysis (GEPIA) platform was then 
harnessed to scrutinize the expression profiles of 

ASRGL1 (Figure 8A), BTG2 (Figure 8B), KANK3 
(Figure 8C), MMP24 (Figure 8D), and RGS11 (Figure 
8E) within PCa and normal tissue specimens. Among 
these, only KANK3 exhibited a statistically significant 
differential expression between prostate cancer and 
normal prostate tissues. In the GSE189186 dataset, the 
gene expression of KANK3 diverged markedly 
between the two cell groups treated with olaparib and 
dimethyl sulfoxide (DMSO) (Figure 8F). Notably, the 

 

 
Figure 8. The expression of KANK3 in PCa tissues and normal tissues. A-E The Gene Expression Profiling Interactive Analysis (GEPIA) was utilized to study the expression levels of 
ASRGL1, BTG2, RGS11, MMP24, and KANK3 in PCa tissues as compared to those in normal tissues. F The expression situation of KANK3 in GSE189186. G-H Immunohistochemistry 
shows the expression of KANK3 in normal prostate tissues and PCa tissues. 
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administration of olaparib led to an upregulation of 
KANK3 expression. Furthermore, immunohisto-
chemical analysis was employed to validate the 
expression of KANK3 in normal prostate tissues and 
prostate cancer lesions (Figure 8G). Prior 
investigations have suggested that KANK3 functions 
as a tumor - suppressor gene; however, its 
implications in the context of PCa have yet to be 
documented in the scientific literature. Consequently, 
we designated KANK3 as the central gene for 
subsequent experimental exploration. 

In this experimental endeavor, our objective was 
to elucidate the impact of KANK3 overexpression on 
the PCa cell lines 22Rv1 and C4 - 2B. Initially, we 
exploited gene - overexpression techniques to achieve 
augmented KANK3 expression in the 22Rv1 and C4 - 
2B cell lines. To ensure the efficacy of the 
overexpression protocol, quantitative polymerase 
chain reaction (qPCR) and Western blotting (WB) 
were deployed to assess the efficiency of 
overexpression (Figure 9A-B). The qPCR results 
revealed that, relative to the control group, the 
KANK3 mRNA levels were substantially elevated in 
the 22Rv1 and C4 - 2B cells overexpressing KANK3, 
signifying a significant upsurge in KANK3 expression 
at the transcriptional level. Simultaneously, the WB 
analysis further corroborated that, at the protein level, 
the grayscale intensity of the corresponding protein 
band in the KANK3 - overexpressing cells was 
markedly enhanced compared to the control group, 
compellingly demonstrating successful over-
expression of KANK3 at the protein - synthesis level. 
Building upon these findings, we proceeded to 
conduct a colony - formation assay to evaluate the 
influence of KANK3 overexpression on the 
proliferative capacity of these two PCa cell lines. The 
22Rv1 and C4 - 2B cells overexpressing KANK3, along 
with their respective control counterparts, were 
seeded at an appropriate density onto culture plates 
and cultivated under identical conditions. Following a 
defined cultivation period, a conspicuous disparity 
emerged. In comparison to the control, the number of 
colonies formed by the 22Rv1 and C4 - 2B cells 
overexpressing KANK3 was significantly diminished. 
This outcome indicates that KANK3 overexpression 
can impede the proliferation of the 22Rv1 and C4 - 2B 
PCa cell lines, intimating that KANK3 may play a 
pivotal regulatory role in the proliferation of PCa cells 
(Figure 9C). These findings offer invaluable 
experimental insights for further in - depth 
investigations into the pathogenesis of PCa and the 
identification of potential therapeutic targets. 

Subsequent to validating the overexpression 
efficiency of KANK3 in the PCa cell lines C4 - 2B and 
22Rv1, we delved deeper into exploring its impact on 

cell migration and invasion. The scratch - assay 
technique was utilized to observe the effect of KANK3 
on the migratory potential of the PCa cell lines. In this 
experiment, scratches were made on the 22Rv1 and 
C4 - 2B cells overexpressing KANK3, as well as their 
control counterparts, and the scratch - closure 
dynamics were observed and documented at specific 
time intervals (Figure 9D). The results revealed that, 
compared to the control group, the rate of scratch - 
closure was significantly retarded in the KANK3 - 
overexpressing cells. This indicates that KANK3 
overexpression substantially inhibits the migratory 
capacity of PCa cells, suggesting that KANK3 plays a 
crucial regulatory role in the cell - migration process. 
To further authenticate the effect of KANK3 on the 
invasive potential of PCa cells, a 5 - ethynyl - 
2'-deoxyuridine (EdU) assay was also performed. 
EdU, a thymidine analogue, can be incorporated into 
newly - synthesized DNA during cell proliferation. By 
detecting the incorporation of EdU, we can assess the 
proliferative and invasive activities of the cells. The 
results demonstrated that, relative to the control 
group, the number of EdU - positive cells in the PCa 
cells overexpressing KANK3 was significantly 
reduced, further validating the inhibitory effect of 
KANK3 on the invasive ability of PCa cells (Figure 
9E-F). These experimental results highlight the 
significant role of KANK3 in the migration and 
invasion of PCa cells, providing novel insights and 
theoretical underpinnings for a more profound 
understanding of the oncogenic mechanisms of PCa 
and the formulation of targeted - therapeutic 
strategies. 

To further appraise the impact of KANK3 
overexpression on the in - vivo progression of PCa, a 
nude - mouse xenograft model was established. The 
PCa cells stably overexpressing KANK3 and their 
control counterparts were subcutaneously injected 
into nude mice. The growth kinetics of the tumors 
were monitored at regular intervals over a defined 
time period. During the course of the experiment, it 
was observed that the tumors derived from KANK3 - 
overexpressing cells exhibited a slower growth rate 
(Figure 10A-D). Immunohistochemical analysis 
demonstrated significantly elevated KANK3 
expression in PCa tissues overexpressing KANK3 
compared to normal tissues. Concurrently, the 
number of Ki67-positive cells was markedly reduced 
within the cancerous lesions. These results indicate 
that KANK3 exerts a tumor-suppressive role by 
inhibiting cell proliferation. The observed negative 
regulatory effect of KANK3 on Ki67 expression in PCa 
provides direct evidence supporting this mechanism 
(Figure 10E). 



 Journal of Cancer 2025, Vol. 16 

 
https://www.jcancer.org 

3955 

 

 
Figure 9. Regulating the expression of KANK3 can affect the proliferation and migration of PCa cells. A qPCR was used to detect the expression levels of KANK3 in the control and 
overexpression groups of C4-2B and 22RV1 cell lines. B Western blot was used to detect the expression levels of KANK3 in the control and overexpression groups of C4-2B and 22RV1 cell 
lines. C Plate colony formation assay was used to verify the effect of KANK3 on the proliferation of C4-2B and 22RV1 cell lines. D Wound healing assay (100 ×) and migration assay (200 ×) 
were used to detect the migration ability of different groups of cells. E-F EdU assay (200 ×) demonstrated that KANK3 promoted PCa cells growth. *P < 0.05, **p < 0.01,***p < 0.0001 
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Figure 10. KANK3-overexpressing xenografts grew in vivo. Overexpression of KANK3 inhibited the growth rate of transplanted tumors in vivo. A-D Tumor morphology, body weight and 
tumor, tumor volume curves are shown. E IHC results showed expression of various proteins in tumors (200 × scale bars at 50 μm and 400 × scale bars at 25 μm). All data are presented as 
mean ± SD. p < 0.05. 

 

Discussion 
PCa is a malignant tumor with significant 

immunosuppressive characteristics and limited 
immune activation. This immunosuppression is 
related to the decreased activity of cytotoxic T cells, 
impaired antigen presentation, and increased levels of 
immunosuppressive cytokines and immune check-
point molecules[26]. Although it is considered a cold 
tumor, certain subgroups of PCa show a high degree 
of immune infiltration, which may be due to changes 
in genetic or epigenetic factors, immune cell 
composition, and the tumor microenvironment[27]. 
These differences emphasize the importance of 
identifying diagnostic biomarkers for effective patient 
stratification and personalized treatment strategies. 

In this investigation, we harnessed 
bioinformatics approaches to scrutinize genomic 
modifications subsequent to the administration of 
PARB inhibitors. Moreover, we probed into the 
influence of PIRGs on the prognosis of PCa and its 
immune microenvironment, and developed a 
prognostic nomogram. 

At the onset, we sifted through differentially 
expressed genes to establish a foundation for 
subsequent investigations. From the C4 - 2B and 
LNCaP cell lines, we pinpointed 230 genes exhibiting 
consistent up - regulation and 58 genes showing 
consistent down - regulation, which were designated 
as PIRGs. By means of univariate Cox analysis, we 
effectively identified 71 genes correlated with PCa 
prognosis. This step was of paramount importance as 
it refined our focus on genes that could potentially 
affect disease outcomes. 

Subsequently, a consensus clustering analysis 
was carried out on these 71 prognosis - associated 
genes. The results indicated that patients in the two 
distinct clusters displayed disparate survival 
prognoses and levels of immune cell infiltration. 

In the subsequent phase, with the TCGA cohort 
serving as the training set and several other cohorts 
encompassing BCRFS as the validation set, we 
utilized an array of machine - learning techniques to 
formulate a prognostic model for PCa patients. 
Eventually, we opted for the random forest algorithm, 
which boasted the highest average C - index, to 
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compute the risk score for each patient. The risk 
stratification based on these scores revealed 
significant disparities in survival prognosis, clinical 
manifestations, the immune microenvironment, and 
responses to immunotherapy. 

Leveraging the risk scores and clinical data, we 
constructed a prognostic model for PCa. The 
outstanding diagnostic efficacy of this model was 
substantiated through calibration curves and time - 
dependent C - index curves. 

We selected the hub gene KANK3 from the 
model for in - depth exploration. It was discovered 
that KANK3 was underexpressed in PCa; however, its 
expression was upregulated upon drug 
administration. When KANK3 was overexpressed in 
PCa cell lines, there was a notable enhancement in the 
proliferation, migration, and invasion capabilities of 
these cell lines. In vivo experiments further 
corroborated that overexpression of KANK3 led to a 
substantial increase in the volume and weight of 
subcutaneous tumors in mice. 

Studies of the KANK3 gene in other tumors have 
also been reported. In some tumor types, KANK3 also 
exhibits unique expression patterns and functions. For 
example, KANK3 was down-regulated in LUAD 
tissues and the expressions of KANK3 had a strong 
influence on prognosis of LUAD patients. 
Overexpression of KANK3 significantly inhibited,  
whereas KANK3 silencing observably enhanced the 
capacity of NCI-H1975 and PC-9 cells to proliferate, 
invade and migrate[28]. For immune cells, KANK3, 
which is a favorable prognosis marker in HNSCC, 
was significantly down-regulated in lymphatic 
metastatic tissues compared with adjacent normal 
tissues[29]. In HCC cells, KANK3 knockdown 
enhanced cell migration and invasion, while its 
overexpression inhibited these cell behaviors. 
Interestingly, such effects of KANK3 were not 
observed under hypoxic conditions, suggesting 
oxygen-dependent activity of KANK3[30]. 

Our experimental results further confirmed that 
up-regulation of KANK3 is closely associated with the 
prognosis of PCa. However, several aspects still 
require further investigation. For example, the exact 
molecular mechanisms underlying KANK3 
upregulation and its link to overall prognosis need to 
be elucidated in more detail. KANK3 has the potential 
to interact with other proteins or signaling pathways 
within cancer cells, and understanding these 
interactions will provide a more comprehensive view 
of its function. In addition, future studies should 
explore whether KANK3 could serve as a potential 
therapeutic target. If its upregulation does correlate 
with improved prognosis, strategies to specifically 
target or modulate KANK3 expression could be 

developed as part of novel therapeutic regimens for 
PCa. Looking forward to the future, there are still 
many problems to be solved urgently, which also 
points out the direction for subsequent research. First, 
it is essential to elucidate the molecular mechanisms 
by which KANK3 exerts its effects. This requires 
exploration at multiple levels such as gene 
transcription, post-translational modifications, and 
protein-protein interactions. For example, KANK3 
may influence repair processes by interacting with 
other DNA repair-related proteins or may be involved 
in key molecules regulating signaling pathways 
associated with cell proliferation and migration. 
Second, it is of great clinical importance to evaluate 
the potential of KANK3 in combination with PARP 
inhibitors as therapeutic targets. In addition, it is 
necessary to investigate whether the efficacy of PARP 
inhibitors can be enhanced or possible resistance 
problems overcome by modulating the expression or 
function of KANK3.Through these in-depth studies, it 
is expected to provide a stronger theoretical basis and 
more innovative treatment strategies for the precise 
treatment of PCa. 

Notably, our study introduces several innovative 
approaches that distinguish it from previous 
investigations. Unlike prior studies focusing on 
therapeutic mechanisms of PARP inhibitors, we 
establish a novel machine learning framework 
integrating PIRGs to construct a prognostic model 
with significantly higher C-indices (0.78 in training set 
and 0.75 in validation set) than existing PCa models. 
This framework not only transforms biological 
insights into predictive tools but also yields a 
clinically applicable nomogram combining risk scores 
and clinical parameters (Gleason score, PSA level), 
which achieves an AUC of 0.82 for predicting 5-year 
biochemical recurrence-free survival. Mechanistically, 
we experimentally validate KANK3, a key PIRG 
identified by the model, as a functional tumor 
suppressor that inhibits cell proliferation by 
negatively regulating Ki67 expression. These findings 
bridge the gap between PARP inhibitor biology and 
precision oncology, offering a transformative 
approach to risk stratification that extends beyond the 
scope of prior studies focusing solely on therapeutic 
mechanisms. 

Conclusion 
This study utilized prognosis - associated genes 

with altered expression after olaparib treatment. 
Using machine - learning methods, a prognostic 
model was developed to accurately predict the BCRFS 
of PCa patients. Experiments verified that KANK3, a 
key hub gene in the model, had low expression in 
prostate cancer but was up - regulated post - 
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treatment. Overexpressing KANK3 increased the 
proliferation, migration, and invasion of PCa cells, 
suggesting its link to poor PCa prognosis. 
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Supplementary table.  
https://www.jcancer.org/v16p3942s1.pdf 
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