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Abstract

Melanoma, a highly aggressive form of skin cancer, presents considerable challenges in early detection and
accurate diagnosis, particularly across its diverse subtypes such as acral lentiginous melanoma (ALM),
melanoma in situ (MIS), nodular melanoma (NM), and superficial spreading melanoma (SSM). This study
assesses the epidemiology, clinical characteristics, and screening techniques related to various melanoma
subtypes, emphasizing their distinct features and risk factors. Moreover, the use of machine learning (ML)
methodologies to categorize melanoma subtypes and the thorough examination of advancements in
Al-based melanoma diagnosis, primarily emphasizing convolutional neural networks (CNN) and transfer
learning approaches. Evaluate the efficacy of several deep learning models in classifying melanoma
subtypes while addressing significant obstacles, including class imbalance and model generalization.
Furthermore, it contemplates the integration of multimodal data, including genetic information and
patient demographics, to enhance diagnostic accuracy. This comprehensive review assesses the
epidemiology, clinical characteristics, and machine learning techniques utilized for the classification and
detection of different melanoma subtypes, emphasizing recent advancements in Al-driven methods and
their clinical significance.

Keywords: Skin Cancer, Acral Lentiginous Melanoma, Melanoma in situ, Nodular Melanoma, and Superficial Spreading
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Introduction

In humans, skin cancer is the most common
cancer, with millions of cases diagnosed annually,
particularly in the white population [1]. Ultraviolet
radiation (UVR) and radiotherapy or immuno-
suppressive therapy caused by environmental
exposure, that results in skin cancer [2]. The white

populations are caused in 90 - 95% by UV radiation in
skin cancer and therefore the population-attributable
factors are considered to be predominantly [3].
Generally, skin cancer is classified into melanoma and
non-melanoma skin cancer (NMSC) will be developed
by the derived cell [4]. Melanoma highly deadly type
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of skin cancer because it causes most deaths and
minority populations, melanoma occurs more
commonly in unusual anatomic locations compared
to white populations [5, 6]. Compared to melanomas,
non-melanomas are the largest common kind of skin
cancer [7]. Melanoma is a dangerous type of skin
cancer, with a global death rate of 14%, and
to the World Health Organization, nearly 7,650 deaths
from melanoma were anticipated in 2022, and 99,780
new melanoma cases in the USA [8, 9]. There are
1,958,310 newly diagnosed cancer cases and 609,820
cancer deaths in the United States in 2023 [10]. In the
United States, 5.4 million new cases of skin cancer in
every year [11]. In 2020, the estimated 19.3 million
new causes with a 95% uncertainty interval ranging
between 19.0 to 19.6 million cancers and almost 10.0
million deaths from cancer, with a 95% uncertainty
interval of 9.7 to 10.2 million [12].

Diagnosis of cutaneous cancer usually begins
with a skin assessment, dermoscopy, patient history,
and surgical biopsy [13]. The management of skin
cancer has a long and successful history in radiation
therapy (RT), which is a complementary method in
cutaneous oncology [14]. The ABCBE mnemonic
stands for asymmetry (A), border irregularity (B),
color variability (C), diameter (D), and evolution (E)
or any change. Additionally, the morphology,
location of the body, and arrangement of lesions may
also provide information about skin malignancy [15].
There are four main types of skin melanoma: acral
lentiginous melanoma (ALM), melanoma in situ
(MIS), nodular melanoma (NM), and superficial
spreading melanoma [16].

ALM is a subtype that is normally diagnosed at
later stages due to poor attention to lesions arising on
extremities and medical diagnostic mistakes [17].
ALM occurs on acral skin, including the nail beds,
soles, and palms [18]. It is challenging to clinically
diagnose ALM, particularly in its early stages, due to
the subtle clinical and histopathologic changes [19].
ALM subtypes are the most frequent types of
malignant among Asian people and are found in
people with dark skin tone, particularly in the soles of
the feet [20]. In individuals with Asian, black, or dark
brown skin, the most common is ALM [21]. ALM is
rare in all ethnicities because other melanoma types
are even less common in African Americans,
Hispanics, and Asians, ALM represents a common
melanoma seen in ethnic groups [22]. ALM is the
majority type of melanoma in several African, South
American, and Asian countries it represents a
moderately low percentage of melanoma cases in
some countries. In populations of European descent,
such as the United Kingdom, Australia, and the
United States [23]. MIS is a special challenge in

histopathology, clinical management, and treatment
[24]. The incidence of MIS is increasing more rapidly
than any invasive or in situ cancer in the US, and it
represents the earliest form of melanoma where the
malignancy is localized to the epidermis [25, 26]. The
prevalence of MIS is increasing as the population ages
and risk factors, including immunosuppression and
sun exposure, are becoming more common, making
treatment increasingly necessary, as long-term
cumulative sun exposure is linked to the development
of MIS [27, 28]. NM is the most popular type of
melanoma, typically diagnosed between 40 and 50
years old, and similarly common in each sex. The
trunk and neck are the most common locations for
occurrences [29, 30]. NM most commonly appears on
the chest or back and tends to grow vertically in the
skin, deeply penetrating if not removed [31]. NM has
a poor prognosis, and it includes 12% - 30% of all
diagnosed melanomas, with the largest incidence
rates in Australia and New Zealand [32, 33]. SSM is
the usual subtype of melanoma among fair-skin
people, corresponding to 70% of cases, and it is a
specific histologic subtype of cutaneous melanoma
[34, 35]. It begins an initial radial growth phase,
characterized by a growth limited to the skin layer,
then a depth growth phase that involves the presence
of invasion [36]. Between 1978 and 2007, the incidence
and survival of SSM have increased, while the
incidence and survival rates for NM have changed
[37].

This research offers a comprehensive review that
synthesizes existing knowledge about the utilization
of machine learning and artificial intelligence
approaches for the identification and classification of
melanoma subtypes. This review critically evaluates
existing methodologies, including deep learning
models like convolutional neural networks and
transfer learning approaches, to elucidate their merits,
limitations, and practical issues, in contrast to original
experimental findings. The report synthesizes recent
research findings to present an overview of technical
breakthroughs and emerging trends, while noting
gaps and opportunities for further inquiry. This
comprehensive analysis aims to aid physicians,
researchers, and Al practitioners in comprehending
the advancing domain of Al-enhanced melanoma
diagnosis and to facilitate the creation of more precise
and universally applicable diagnostic instruments.

Clinical Features of ALM, MIS, NM, SSM

Acral lentiginous melanoma (ALM)

ALM represents about 2 to 3% of all melanoma
cases and its uncommon form of melanoma is related
to later diagnosis and lower survival percentages [38,
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39]. It is found beneath the nail plate or sole, toes,
fingers, and hairless skin of palms. The colors that
appear on ALM are brown, black, and red as shown in
Figure 1 [40]. Clinically, ALM shows an initial radial
growth phase, appearing as variegated pigmentation,
and an uneven brown to-black macule [41]. The
unique dermatoscopic characteristic of ALM is the
linear ridge pattern, which is characterized by linear
pigmentation along the bands of volar skin as shown
in Figure 2 [42]. Prognostic factors include older age,
pathologic stage, tumor thickness, socioeconomic
status, and race [43]. Histopathologically, ALM is
distinguished by lentiginous proliferation during the
radial growth phase. Although rare, ALM represents
around 10% of all melanomas [44]. Subungual
variants are rarer in the white-skinned population,
with additional clinical features including clinical
hypomelanosis, a family record of melanoma, hair
color, and any previous history of non-melanoma skin
cancer [45, 46].

Melanoma in situ (MIS)

MIS accounts for 4% to 15% of all melanoma
types and commonly arises in chronically
sun-damaged areas of the skin, particularly in older
individuals, and begins as a brown or tan macule as
shown in Figure 3 [47, 48]. It is often found on the
neck, face, and scalp of advanced-age patients with
major sun-induced skin damage, and can also occur in
non-head and neck regions like the legs, forearms,
and back of the hands as shown in Figure 4 [49, 50].
The colors are variable shades of dark brown, tan,
brown, and black [51]. The dermatoscopic features are
asymmetrically pigmented with follicular openings,
dots, and globules aggregated around adnexal
openings, thick pigmented lines, and an annular
granular pattern [30]. In difference to other standard
types of MIS, the borders of lentigo maligna (LM) are
regularly defined histologically and clinically, as the
lesion usually combines with the surrounding area of
long-term sun damage [52].
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Figure 1. Acral lentiginous melanoma based on their appearance. (a) brownish ALM at the left sole, (b) blackish ALM at the right sole, (c) blackish ALM at the left sole (d) blackish

ALM at the sole
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Figure 2. Overview of ALM clinical features

Figure 3. Melanoma in situ (MIS) based on their color. (a) brownish MIS (b) blackish MIS (c) pinkish MIS, (d) reddish MIS

on the trunk, neck, or head, more common in males as
shown in Figure 5 [53]. The colors found in NM vary

NM is the second greatest well-known type in ~ from brown, blue, black, grey, and pink, including
light-skinned individuals, representing around 15 to  other shades of these color or their combinations. The
20% of melanoma cases. It is most generally located  surface of NM can be rough, scaly, or smooth as

Nodular melanoma (NM)
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shown in Figure 6 [54]. Dermatoscopic features of NM
include a blue-white veil, white streaks, isolated
globules, and dotted vessels or uneven linear [55].
NM indicates the lack of the early radial growth
phase, which begins with perpendicular growth, and
lesions are usually symmetric, with small diameters,
regular borders, and uniform color [56, 57]. In the
Early stage, the injury is usually an irregular black or
blue nodule with even edges [58]. NM lesions are
more common and lighter colored than other common
melanoma subtypes [59].

Superficial spreading melanoma (SSM)

SSM  represents between 50% to 70% of
melanoma cases and most commonly on the trunk in
males and on the lower extremities in females [60, 61].
SSM typically presents as a macule or plaque with an
uneven border and variable pigmentation, its
measures range from several millimeters to various
centimeters, often displaying multiple colors like blue,
red, gray, black, and white as shown in Figure 7 [62].
Dermatoscopic features are a blue-white layer,
peripheral black dots, several brown spots, and
irregular vascular structures as shown in Figure 8
[63]. Histopathological features of SSM include
asymmetry, lack of cellular maturation, and poor
circumscription [64].

Screening and Diagnosis of ALM, MIS,
NM, SSM

Screening and Diagnosis of ALM
Etiology

The case of ALM remains uncertain, as familial
cases have not been reported so far, there is diffused
evidence indicating that some genetic risk factors may
be present. For instance, a major longitudinal study
observed that patients with degree relatives
diagnosed with ALM had an increased risk of any
major melanoma subtypes, indicating some shared
genetic factors among various melanoma types [65].
In some studies, dummy or shearing stress was
suggested as a cause of the occurrence of the ALM this
becomes clear because ALM is most commonly found
in load-bearing zones of the foot, such as the heel,
forefoot, and lateral side [66, 67]. Ghanavatian et al.,
followed up on this and noted that adjusted for
surface area, ALM occurrence was inversely
proportional associated with atypical and benign
acral nevi presence in these weight-bearing areas. The
incidence of this phenomenon is much lower among
men than women [68].

Melanoma in situ (MIS)
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Figure 4. Overview of MIS clinical features
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Figure 5. Nodular melanoma (NM) based on their location (a) NM at neck, (b) NM at leg, (c) NM at head, (d) NM at chest.

Nodular Melanoma (NM)

Figure 6. Overview of NM clinical features.
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Figure 7. Superficial Spreading Melanoma (SSM) based on their shape(a) reddish SSM with round, (b) brownish SSM at irregular borders, (c) reddish SSM at irregular round, (d)

brownish SSM at small irregular borders.
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Figure 8. Overview of SSM clinical features.

Epidemiology

ALM is in the range of 2 to 3% among newly
identified melanomas, and the average age of
diagnosis is 62.8 years. Changing ALM distribution

seems to positively influence women’s age, which
generally begins when reaching 80 years old, and
suddenly it increases within this age range. Male and
female populations affected by ALM are reported to
be approximately equal. However, females are
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reported relatively better than males in the diagnosis
stage of ALM. Besides, among different subtypes of
melanoma, ALM is much more prevalent among
non-whites than other types [69]. There appears to be
a considerable difference in the frequency of ALM
when compared to the other types of melanoma,
across different ethnic-racial groups. Because of the
shortage of available cases, the global patterns of
ALM pancreatic cancer epidemiology have not been
established, although it, in fact, usually, corresponds
to the ethnicity of people residing within the territory.
As an example, ALM comprises 55-58% of all the
developmental melanoma types in Taiwan and Korea
while in the United States, it is only about 2% [70].
This difference, for the most part, concerns the whiter
population who sustain higher rates of sun-derived
melanomas. ALM is present in 1-8% of rare melanoma
populations of European origin, and responsible for
more than 50% of all cutaneous
malignant melanoma cases [23].

Dermoscopy

The accurate clinical diagnosis of ALM has been
greatly improved due to the dermoscopic analysis.
Dermoscopic findings may be more crucial than
histological images in the early stages of ALM [71]. In
contrast, classical dermoscopic patterns of acral
melanocytic nevi include the parallel furrow pattern,
lattice-like pattern, and fibrillar pattern, which are
found in over 75% of benign acral lesions [72]. While
acquired acral nevi measure several millimeters in
size, typically present symmetrically, and are flesh-
colored, congenital acral nevi cover areas up to a few
centimeters of the skin surface, often have an
asymmetric pattern, and show blue-gray color or
globules [73].

Screening and diagnosis of MIS

Etiology

MIS is an early, non-invasive form of melanoma
in which the tumor is uncertain to the epidermis [49].
UVR exposure from sunlight and tanning beds is an
important environmental risk since it increases the
risk of melanoma [74]. The development of melanoma
is usually caused by genetic mutations in genes such
as BRAF, NRAS, and others [75].

Epidemiology

MIS has increased the case strongly among
white populations during the past few decades [76].
The Surveillance, Epidemiology, and End Results
(SEER) database indicates that MIS is one of the
cancers that is developing very quickly, with an
annual increase of 9.5% [77]. In 2018, there will be

nearly 2500 invasive and 1700 in-suit cases of
melanoma in New Zealand, based on estimations [76].
There are indications that many cases of melanoma
are overdiagnosed, with overtreatment causing harm
to the patients, apart from increasing medical costs for
individuals and healthcare systems. Current estimates
about the rate of overdiagnosis in Australia may be
outdated, and the financial implications for the
healthcare system have not yet been thoroughly
examined [78]. Over the past 40 years, the incidence of
malignant melanoma has steadily increased, at a rate
of approximately 5% a year. The current global
incidence is reported at 10.9/100,000 persons with the
lifetime risk of developing melanoma for Americans
estimated to be 1 in 75. Though the overall survival
rates specific to melanoma have improved over the
last two decades, the prognosis for patients with
advanced disease has not demonstrated any
advancement compared to 20 years ago [79].

Pathophysiology

MIS is the initial stage of melanoma where the
atypical melanocytes are confined within the
epidermis and have not yet increased depth dermal
layers [49]. Genetic mutation, especially in the BRAF,
NRAS, and CDKN2A genes, plays a very significant
part in the development of melanoma. The genetic
material coding for cyclin D1 (CCND1) plays a role
through its interaction with normal cell cycle
regulation [80]. Among these mutations, the most
important is undoubtedly the BRAF V600E mutation,
which leads to the activation of the mitogen-activated
protein kinase-MAPK pathway that basically pushes
melanocyte proliferation and survival [81].

Dermoscopy

Recent literature suggests that dermatoscopy has
increased the diagnostic precision of PSLs. The
technique utilizes multiple criteria are specific
patterns and structures both for melanocytic and
non-melanocytic lesions, general asymmetry, and
variability in color and structure [82]. Schiffner et al.,
described four characteristic dermoscopic criteria as
diagnostic patterns of LM pigment asymmetric
follicular openings, dark rhomboidal structures, slate-
colored globules, and slate dots. These characteristics
combined achieve a sensitivity of CI of 89% and a
specificity of 96% [82].

Screening and diagnosis of NM

Etiology

The major risk factors include multiple
dysplastic nevi, family history, fair skin that tends to
burn, and sun exposure some studies also indicate
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that UV radiation is an important component of
melanoma risk [83, 84]. NM has been associated with
genetic factors, specifically mutations in the CDKN2A
and CDK4 genes, but it also reflects the impact of such
environmental factors as sun exposure and dysplastic
nevi [85].

Epidemiological

Epidemiological studies have shown that
fast-growing NM is predominately found in men over
the age of 50 presenting without the conventional risk
factors for other types of cutaneous melanoma (CM),
such as multiple nevi, freckles, or sun damage.
Unfortunately, this group with high risk is largely not
included in skin cancer screening programs.
Moreover, these screening measures seem to have
little impact on the early recognition of NM most
tumors develop quickly de novo in other areas of the
skin and are generally self-detected [86]. Over the past
few decades, invasive melanoma incidence has
increased progressively in the white populations of
the USA, United Kingdom, Australia, and New
Zealand. Incidence rates are projected to continue to
rise through 2031 in the majority of these populations.
In contrast, over the same time, melanoma mortality
has also been rising, but at a rate far lower than the
incidence increase [87].

Pathophysiology

Melanoma has its origin in melanocytes at the
dermal-epidermal junction where they undergo a
malignant transformation. Although this cancer can
arise from a pre-existing nevus, it often arises de novo.
In summary, melanoma evolution is generally
divided into two phases: the radial and vertical
growth phases. The radial growth phase displays a
horizontal alignment of neoplastic melanocytes at the
intraepidermal plane which could extend to the
papillary dermis as well [88]. The vertical growth
phase is characterized by dermal invasion and nodule
formation of a tumor [89].

Dermoscopy

NM is challenging for dermoscopy because the
pattern asymmetry is less significant than in SSM.
However, pigmented NM usually found an uneven
color [90]. Argenziano et al., found a novel indicator
of NM characterized by the blue-black color within
the lesion. It is proposed that the blue-black color is
due to a blend of pigments in the mid-deep dermis
resulting in the blue and the epidermis resulting in the
black. There was at least moderate agreement
between pathologists for any lesion surface with less
than 10% blue and black areas being significantly
pigmented NM, the authors wrote. Moreover,

Pizzichetta et al, related to wulceration and
homogeneous disorganized patterns, homogeneous
blue pigmented structureless areas, three or more
colors, a mix of polymorphous vessels, and milky-red
globules, as well as symmetrical shapes, were some
other features significantly associated with NM [91].

Screening and diagnosis of SSM

Etiology

The etiology of malignant melanoma is mainly
associated with exposure to UV light, which can be
regarded as a primary risk factor, especially in the
presence of the susceptibility of phenotype.
Furthermore, the risk of melanoma rising due to aging
can be attributed to exposure to other environmental
agents than only UV light. In the pathogenesis of
melanoma, break periods between the initiation of
exposure to the environment and the appearance of
the tumor, along with many more variables, have
interfered [92].

Epidemiology

SSM is the most common type of melanoma and
accounts for approximately 70% of the total incidence
of melanoma in the world [93]. This melanoma
originates because of the malignant transformation of
melanocytes which are cells synthesizing the
photoprotective  melanin  pigment [94]. The
development of a precancerous lesion is usually
observed to occur gradually over several years, before
a more rapid transformation in the preceding months
until diagnosis. Though SSM commonly occurs on the
back in men and on the legs in women, it can occur on
any part of the body [95]. Studies report that
BRAF-mutant melanomas are more common in
younger patients and mainly refer to the SSM
subtype, the trunk region, and patterns of intermittent
ultraviolet sun exposure [96-98]. The incidence of
melanoma has significantly increased over the years
on a worldwide basis. In 2019, it is estimated that
there were 57,220 new cases of melanoma in males
and 39,260 in females in the United States, which
accounts for 5.5% of the total cancer incidence and
was responsible for 7,230 deaths, or 1.2% of all
cancer-related deaths. The average annual number of
new cases is around 132,000. According to the 2019
report from The American Cancer Society, it is
estimated that 192,310 patients were diagnosed with
melanoma in the U.S [99].

Pathophysiology

In SSM, large numbers of single melanocytes are
situated in the epidermis. These melanocytes may be
arranged in clusters along the dermal-epidermal
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junction and frequently are present in the midportion
and upper layers of the epidermis as well [100]. BRAF
and NRAS gene mutations occur at an early point in
melanoma pathogenesis and are consistently
sustained during further tumor progression, taking
part in the pathogenesis of invasive melanoma but
also in cooperation with other mutations [101].
Several studies confirmed that immune evasion
mechanisms-antigen downregulation and resistance
to immune cell attacks- play an important role in the
uncontrollable growth of melanoma cells [102].

Dermoscopy

Dermoscopy is an early diagnostic technique
that is non-invasive and complements the accuracy
[103]. One review reported that a clinical examination
with the addition of dermoscopy reaches 90%
specificity-95% CI: 57-98% and 90% sensitivity-95%
CL: 80-95%, and went on to show just how much
dermoscopy increases the accuracy of the clinical
examination in identifying primary melanoma [104].
Recently, dermoscopy benefitted from the technical
evolution of imaging and digital cameras. The use of
these new technologies allowed the creation of the
so-called video-dermoscopy, paving the way for the
application of this diagnostic technique for
telemedicine approaches, simplifying the sharing of
clinical images, and facilitating follow-up of unclear
lesions [105]. This comprehensive review is progress
in current applications for patients, primary care
providers, dermatologists, and dermatopathologists.
The authors discuss various applications of image and
molecular processing applied in skin cancer and point
out the potential to apply Al in the self-screening of
patients and improving diagnostic accuracy in
non-dermatologists [106].

Treatments

Surgery

Surgical treatment remains the gold standard in
melanoma management. It consists in the complete
excision of the scar after an excisional biopsy
performed at the diagnostic stage - micro staging I -
with a sufficiently large margin of healthy tissue,
depending on the depth of infiltration of the lesion
[107]. Other lymph nodes are removed if melanoma
cells are detected in the lymph nodes. Surgery is
another better therapy for metastatic melanoma, but it
is a supportive therapy and is often used in
conjunction with other treatments as a primary
treatment [108].

Chemotherapy

Chemotherapy was the initial treatment

approach for advanced melanoma. Various
chemotherapy combinations have been studied to
improve the clinical responses, but no significant
improvement in overall survival (OS) was detected
[109]. Apoptosis resistance is thought to be the main
reason melanoma does not respond to treatment and
while it remains one of the main treatments used in
hospitals for patients with advanced, refractory, or
recurrent melanoma, other treatments have replaced
many chemotherapy regimens [110, 111].

Targeted therapy

Approximately 70% of patients with cutaneous
melanoma have genetic mutations in key genes that
control cell growth and cancer progression. These
oncogenic mutations may be associated with
melanoma cell proliferation and a malignant
phenotype [109]. The targeted therapy approach uses
use small molecule drugs or antibodies to disrupt the
mutant protein and thereby reduce the severity of the
disease [112].

Immunotherapy

Melanoma is a cancer that generally tends to
respond relatively to immune modulation [113].
Various factors have been identified to explain
melanoma cell sensitivity to activation by the immune
system. These factors include increased tumor
mutational burden caused by UV light exposure, the
generation of cancer-testis antigens, and mimicry of
melanocyte lineage proteins that pathogen-associated
antigens [114].

Machine Learning Applications in Skin
Cancer Detection

Acral lentiginous melanoma (ALM)

In the study proposed by Abbas et al.,, [115] a
seven-layered DCNN model was developed using a
dataset of 724 dermoscopic images collected from the
Hospital at Yonsei University Health Organization in
South Korea. This experiment compared and
analyzed the results of the three DL models. The
proposed seven-layered DCNN model achieved an
accuracy of over 90%. Additionally, they applied
transfer learning models like Resnetl8 and AlexNet
for comparison, which achieved nearly 97% accuracy.
This research shows that DL models diagnose the
early stage of melanoma. In this study, Islam et al.,
[116] proposed a CNN model that uses image
preprocessing techniques, using the HAM10000
dataset, for this experiment consisting of 10,015 image
files of different skin growths. The results of the study
were compared with other existing models like
AlexNet, ResNet, Inception V4, and VGG-16. The
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proposed CNN model achieved a 90.93% accuracy in
training and 96.93% accuracy in testing respectively.
This model works better at classification compared to
other models.

Barros et al., [117] focus onsupervised and
self-supervised models, using datasets from ISIC data
archive, Atlases, PAD-UFES-2, and Derm7pt. The
models are BYOL, SwAV, MoCo, InfoMin,
supervised, and SimCLR. In the DDI dataset, all
models show poor results, the supervised model
achieved low results, and MoCo achieved high results
with 55.8% accuracy and a 12.5% fl score. The
Fitzpatrick 17k dataset shows good results, the
supervised model achieved the best accuracy of 63.4%
and fl-score of 41.8%. Each of the supervised and
self-supervised learning approaches performs
similarly on the dataset. In the PAD-UFES-20 dataset,
both model types performed similarly with the BYOL
model achieving a high accuracy of 59.2% and the f1
score of 27.5% respectively.

Raza al., [118] focus dataset containing 724
dermoscopy images collected from Dongsan Clinic at
KeiMyung University, Korea, and Severance Medical
Clinic, at Yonsei University, Korea. They used stacked
ensemble methods Inceptionv3, Xception,
InceptionResNet-V2, DenseNet201, and DenseNet121
these models perform high accuracy of imageNet. The
proposed stacking ensemble of the optimized models
achieved an accuracy, sensitivity, and specificity of
97.93%, 97.83%, and 97.50% respectively. In a study
focused by Lee et al.,, [119] used a trained dataset of
1072 dermoscopic image acral benign nevi. The

system has three stages: stage I based on dermoscopic
images, stage II clinical information, and stage III
evaluation and probability estimated by CNN. The
CNN achieved an accuracy of detecting ALM stage
1-74.7%, stage 1I-79.0 %, and stage III-86.9%
respectively. Figure 9 illustrates the methods for the
early and accurate diagnosis of the ALM in these
studies.

Melanoma in situ (MIS)

Patil et al., [120] focus on two techniques CNN
and multilayer perceptron (MLP). Using a dataset
retrieved from https://dermnetnz.org/. The models
are CNN-MLP architecture for multi-class
classification. Their model achieved accuracy, recall,
f1-score, and precision of 95.12%, 94.73%, 95.37%, and
96.05% respectively. Hussein et al., [121] implemented
a CNN method for classifying melanoma skin cancer.
The publicly available datasets of skin lesion images
consist of 1,800 images of two types of moles. The
proposed CNN model delivered a 99.99% accuracy,
99.9% precision, 99.9% Recall, and 99.99% F1 score
respectively. Javaid et al, [122]focus on SVM,
random forest, and quadratic discriminant for
classification, using the publicly available ISIC-ISBI
2016 collection of skin images as a dataset. The SVM,
random forest, and quadratic discriminant system
achieved an accuracy of 88.17%, 90.84%, and 93.89%.
The random forest classifier achieved high accuracy
compared to other classifiers.
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Figure 10. Machine Learning Overview of MIS.
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Ghosh et al., [123] proposed an ensemble model
that used a dataset consisting of evaluation images of
1000 and training images of 9600. The study uses ViT,
DCNN, and Caps-Net to extract features from the skin
image and ensemble model with five ML methods
XGBoost, SVM, RF, KNN, and logistic regression. The
proposed ensemble method achieved an accuracy, f1
score, precision, and recall of 91.6%, 91.16%, 91.16%,
and 91.16% respectively. Cozzolino et al., [124]
developed models such as LR, SVM, RF, gradient
boosting (GB), kNN, and DNN. The DNN models
achieved the best accuracy of 91.1%, a recall rate of
91.1%, and an fl-score of 80.0%. The logistic
regression model achieved the best precision of 86.7%
respectively. Figure 10 shows the methods for the
early and accurate diagnosis of the MIS in these
studies.

Nodular melanoma (NM)

The study performed by Safdar et al., [125]
indicated that ensemble models like DenseNet-201
and ResNet-50 significantly increased classification
rates. The datasets of multiple skin lesions including
Med-Node, Dermls, and PH2 have been collected for

the identification and classification of lesions. The
database comprises a total of 2301 images consisting
of 1611 training images and 690 testing images. The
ensemble models achieved an accuracy of 95.20%,
ROC- AUO of 98.50%, sensitivity of 92.80%, and
specificity of 96.70% in multiple dermoscopy image
datasets. Winkler et al., [126] the study focus on a
CNN to detect the different melanoma subtypes. Six
dermoscopic image sets are wused for the
classifications. The CNN showed a high-level
performance for NM achieving a sensitivity of over
93.3%, ROC-AUO of 92.60%, and specificity above
65% respectively.

Daghrir et al., [127] focuses on different models
namely KNN, SVM, CNN, and majority voting. The
system utilized a public dataset of the ISIC archive,
which contains 23000 images of melanoma. The
system achieved an accuracy kNN of 57.3%, SVM of
71.8%, CNN of 85.5%, and majority voting of 88.4%
were obtained. The majority voting methods will
achieve high accuracy in detecting melanoma. Raza et
al., [128] experimented with the CNN model by using
the dataset of 17,805 training images using the DL
model. Their CNN model achieved an accuracy of
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94% for the melanoma skin cancer classification task.
Kilicarslan et al., [129] the study tested five DL models
Densenet, ResNet50, InceptionResNetV2,
InceptionV3, and MobileNet with seven optimizers.
The melanoma skin cancer dataset is used and it
consists of RGB images 10,605, benign 5500, and
malignant 5105. The DenseNet-SGD optimizer model
delivered the best accuracy of 94.90%, f-score of
94.92%, and sensitivity of 94.03%. Figure 11 represents
the methods for the early and accurate diagnosis of
NM in these studies.

Superficial spreading melanoma (SSM)

Thiyaneswaran et al.,, [130] proposed models
consisting of three different approaches feed-forward
back propagation neural network, fuzzy logic, and
SVM. The PH2 and ISIC database images are used for
this analysis. The images of the ISIC datasets were
compared with those of existing processes, including
Inception-V3, ResNet50, Inception ResNet V2, and
DenseNet-201. This study achieved an accuracy of the
models like fuzzy, SVM, and FFBPNN of 78%, 83%,
and 90% respectively. The FFBPNN model achieved
the highest accuracy for melanoma classification.
Pillay et al. [131] the study focus on transfer learning
by testing 14 pre-trained models to classification and

Safdar et al., (2021)

Winkler et al., (2020)

NODULAR MELANOMA
(NM)

Daghrir et al., (2020)

diagnosis of skin cancer. The datasets used are
MED-NODE, DermlS, and DermQuest to determine
the model performance and this experiment consists
of 376 macroscopic images. The squeezenetl-1
method achieved a high-performance accuracy of
93.42%, a sensitivity of 92.11%, and a specificity of
94.74% respectively. Kaur et al., [132] this study focus
on an automated melanoma classifier using an LCNet
model. The dermoscopic image datasets ISIC 2017,
ISIC 2016, and ISIC 2020 were used for this study and
the ISIC 2020 dataset achieved high results. The
proposed LCNet model achieved an accuracy,
fl-score, precision, and recall of 90.42%, 90.42%,
90.39%, and 90.41% for ISIC 2020, respectively.
Jangsamsi et al., [133] this research focuses on
comparing three DL models AlexNet, ResNet-18, and
MobileNet-V2 using a comprising dataset from the
MED-NODE dermatology database. The dataset
consists of 358 images of skin cancer. The ResNet-18
model achieved high accuracy, precision, sensitivity,
and specificity at 86.11%, 88.10%, 88.10%, and 88.33%
respectively. Chaturvedil et al., [134] focus CNN
models like InceptionV3, ResNeXt101,
InceptionResNetV2, Xception, and NASNetLarge. In
this study, they utilized a HAM10000 dataset. The
dataset includes 10,015 dermoscopic images of
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Figure 11. Machine learning overview of NM.
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various skin cancer types. The models achieved an
accuracy of 91.56%, 93.20%, 93.20%, 91.47%, and
91.11% respectively. The high-performance accuracy
is ResNetXt101 and InceptionResNetV2. Figure 12
presented the techniques for the early and accurate
diagnosis of SSM in these studies.

Despite significant progress in Al-based
melanoma classification, some limitations remain in
the analyzed models. A primary limitation is the
relatively small size and uneven attributes of most
training datasets, which may hinder model robustness
and increase the risk of overfitting. Furthermore, most
models have been developed and validated using
data from limited demographic and ethnic
populations, which raises concerns regarding their
generalizability and effectiveness in diverse clinical
settings. Variations in imaging devices, acquisition
techniques, and data fidelity intensify the difficulties
of model transferability. To address these constraints,
it is imperative to collect larger, more diverse datasets
and establish consistent review protocols to ensure
that Al technologies are trustworthy, equitable, and
usable for all populations. Notwithstanding the
encouraging progress in Al-based melanoma
detection and diagnosis, some potential obstacles

persist prior to achieving broad clinical
Thiyaneswaran et al., (2020)
Pillay et al., (2020)
Alshawi et al., (2022)
SUPERFICIAL
SPREADING MELANOMA
(SSM)

Jangsamsi et al., (2024)

implementation. Regulatory approval processes must
guarantee the safety, efficacy, and resilience of Al
models across varied populations and clinical
environments. Ethical considerations around data
privacy, algorithmic bias, and informed consent
necessitate meticulous attention to uphold patient
trust and ensure equitable healthcare delivery.
Furthermore, thorough clinical validation via
prospective trials and real-world investigations is
crucial to establish the generalizability and
dependability of AI solutions. Confronting these
obstacles will be essential to properly leveraging the
capabilities of Al technologies in dermatology and
eventually enhancing patient outcomes. A crucial
issue affecting the clinical adoption of Al tools is the
capacity to comprehend model decisions. Methods
like Gradient-weighted Class Activation Mapping
(Grad-CAM) and saliency maps offer visual
elucidations of deep learning model predictions by
emphasizing image areas that significantly impact
classification  results. = These  interpretability
methodologies  boost clinician trust through
transparency, facilitate validation and error analysis,
and eventually support the safer and more successful
integration of Al in melanoma diagnosis.

FFBPNN Accuracy: 78%
Fuzzy Accuracy: 83%
SVM Accuracy: 90%

Accuracy: 93.42%
SqueezeNetl-1 Sensitivity: 92.11%
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Ensemble CNN
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Figure 12. Machine learning overview of SSM.
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Discussion

Newly emerging technologies for the early
detection of skin cancer

Hyperspectral and multispectral imaging
methods use optical equipment to measure several
wavelength bands that are not found in the visible
spectrum [135]. Light absorption and reflectance
properties of different parts of the skin allow these
imaging methods to give a detailed overview of both
structural and chemical properties of the tissues.
Using this enhanced data allows for better separation
of malignant from benign lesions than was previously
possible with typical imaging methods. Hyperspectral
and multispectral imaging improve the way lesions
are examined and melanoma is detected, as they can
find small skintone and shape changes in a clinical
setting [136]. Similarly, biosensors and molecular
diagnostic systems are advanced ways to find early
signs of skin cancer by looking at certain melanoma
biomarkers [137]. They combine biomolecules such as
antibodies, nucleic acids or aptamers, to detect
cancerous DNA, proteins or microRNAs in bodily
fluids. When biosensors are combined with
microfluidics and nanotech, this greatly increases the
speed, sensitivity and available locations for
diagnostic tests and may enhance traditional
histopathology. Monitoring melanoma progress and
therapy effects in real time, thanks to molecular
diagnostics, makes it possible to personalize care for
each patient. A liquid biopsy is now often used to
detect and track melanoma by studying circulating
tumor cells (CTCs), circulating tumor DNA (ctDNA)
and extracellular vesicles found in the blood or in
various bodily fluids [138]. This approach allows
doctors to analyze the tumor’s molecular features
without taking out pieces of the tumor. With liquid
biopsy, metastasis can be detected early, the
variability of tumors can be studied and how therapy
is working can be monitored in real time [139].
Manufacturers have greatly improved the accuracy of
liquid biopsy for melanoma thanks to new
technology.  Nanotechnology-enhanced imaging
methods, in conjunction with optical coherence
tomography  (OCT), provide high-resolution,
depth-resolved viewing of skin microstructures,
hence enhancing the identification of early melanoma
lesions [140]. Nanoparticles can be designed as
contrast agents or molecular probes to selectively
target certain tumor markers, hence improving OCT
signal contrast and specificity. OCT delivers
cross-sectional images of the skin with micrometer-
level resolution, facilitating noninvasive evaluation of
lesion depth and morphology in real time [141]. The
integration of nanotechnology with OCT presents

significant potential for enhancing traditional imaging
techniques and enabling more precise, early-stage
melanoma detection.

Established and emerging methods for
differentiating benign and malignant lesions

Diagnosing benign from malignant skin lesions
is easier because of these types of diagnostics which
rely on analysis of specific genomic, proteomic and
metabolomic profiles [142]. Experts use genetic
markers and especially changes in BRAF and NRAS
genes, to learn more about how melanoma develops
and progresses. In proteomic studies, characteristic
changes in proteins are observed in cancer cells, while
metabolomic analysis finds differing metabolic ways
in cancer. The use of biomarkers provides more clarity
about lesions than just their appearance, helping with
early and correct diagnosis. By using high-throughput
sequencing and mass spectrometry technology,
molecular diagnostics can become more accurate and
help with choosing personal approaches to care and
treatment. RCM, MPM and hyperspectral imaging
allow advanced visualization of the skin’s structure
and cellular shapes without invading the skin. RCM
lets experts see inside the skin in real time and at
nearly the same quality as a biopsy, helping to
identify cancerous cells without a biopsy. With
endogenous fluorophores, MPM captures images that
highlight the energy use and organization of tissues.
Hyperspectral imaging gives a wide range of
frequencies, so it can detect the biochemical
differences between tumors and normal tissues that
help tell them apart. They add to the reliability of
diagnosis and obviate unnecessary invasive
treatments, accompanying traditional medical and
dermoscopic evaluations. Combining the findings of a
clinical exam, images and molecular information
often results in more accurate diagnosis of skin lesions
and reduces incorrect positive or negative test results.
Employing multimodal data fusion, we are able to
merge morphological, functional and molecular
information to assess the lesion status carefully [143].
The use of machine learning and similar algorithms
supports the efficient processing of different types of
data which helps build dependable diagnostic
models. When an integrated approach is used, doctors
can create unique treatment plans that benefit each
patient’s care.

Newly emerging therapeutics for the
treatment and prevention of skin cancer

Concentrating on important systems in the body
that fuel tumor growth and life has brought major
changes to melanoma treatment. Using BRAF and
MEK inhibitors which are small molecule inhibitors,
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helps to stop diseases related to melanoma in patients
with these gene abnormalities [144]. On top of that,
monoclonal antibodies designed to interfere with
signaling or attack antigens on cancer cells are highly
effective and cause less harm to the body. As a result
of using targeted strategies, melanoma patients have
improved reaction to treatment and live longer than
those who use conventional chemotherapy.
Immunotherapy is now often given in melanoma
treatment, relying on the patient’s immune system to
seek out and kill cancer. Anti-CTLA-4 and anti-PD-1
antibodies are immune checkpoint inhibitors that
boost immune cells and encourage them to fight
cancer [145]. Cancer vaccines and therapies such as
transferring tumor-infiltrating lymphocytes are meant
to enhance how the immune system recognizes cancer
cells. Numerous patients now benefit from a longer
and more successful treatment due to the
standard-setting value of these medications in
advanced melanoma. It uses light therapies called
photodynamic therapy and lasers to treat selected
cancerous cells without harming healthy tissues
nearby. The approach involves using drugs that build
up in cancer cells which are then exposed to light of
the right color to make toxic oxygen species. Laser
therapy uses direct and focused light power to
carefully remove malignant tumors [146]. Especially
with early or outward skin cancers, these methods are
useful as either main or complementary treatments to
surgery. Skincare precautions are designed to
decrease the risk of skin cancer with prevention
drugs, better habits and new vaccines. Nicotinamide
and retinoids are drugs that have shown they help
decrease the risk of non-melanoma skin cancers.
Public health programs underscore sun protection
practices, such as the application of sunscreen and the
avoidance of UV exposure, as essential strategies for
melanoma prevention. Furthermore, vaccination
research is investigating preventative and therapeutic
strategies aimed at melanoma-associated antigens to
elicit enduring immune protection. These methods
combined form a comprehensive strategy for skin
cancer prevention.

Conclusion

Melanoma includes subtypes like ALM, MIS,
NM, and SSM which present significant challenges for
early detection and accurate diagnosis. The systematic
review paper has considered various
machine-learning techniques for detecting and
classifying skin cancer. All those techniques are
noninvasive. Recent advancements in deep learning,
particularly CNN are highly effective in improving
diagnostic accuracy. By integrating advanced imaging

techniques with dermoscopic, healthcare providers
can diagnose melanoma earlier and improve
accuracy, thereby providing instant treatment and
better patient care. This technique has greatly
improved the accuracy of skin cancer detection, the
diagnostic process, and clinicians diagnosing
high-risk lesions. There is strong potential for further
development, particularly in enhancing Al models by
integrating a broader range of multimodal input data,
including genetic markers, patient histories, and
advanced imaging techniques such as hyperspectral
and multispectral imaging. Challenges will survive,
especially in addressing class imbalance when the
dataset expands to include various skin types and
melanoma subtypes. The integration of Al tools into
telemedicine presents a valuable opportunity to
increase early screening, especially in rural areas. The
effective incorporation of Al-driven melanoma
detection tools into clinical practice will mostly rely
on thorough prospective validation trials carried out
in actual healthcare environments. These studies are
crucial for thoroughly evaluating model performance,
safety, and wusefulness among varied patient
populations and clinical workflows. Furthermore, the
continual enhancement of Al algorithms via
persistent learning and feedback systems will be
essential to uphold their precision and pertinence.
Subsequent research ought to  investigate
multi-institutional cooperation to promote data
sharing and standardization, thus improving model
robustness and generalizability. These initiatives,
alongside a focus on ethical, regulatory, and practical
factors, will facilitate Al's integration as a crucial
element in tailored melanoma management. In
conclusion, the research in Al, advanced imaging
technologies, and telemedicine provides strong
improvements in melanoma detection and diagnosis.
The advancement is considered to improve early skin
cancer detection and provide more personalized
treatment options, improve patient outcomes and
further advance the management of skin cancer.
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