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Abstract 

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a 5-year survival rate of 
below 8%. Standard chemotherapy regimens, including gemcitabine and FOLFIRINOX (fluorouracil, 
leucovorin, irinotecan, and oxaliplatin), offer limited clinical benefits. Although immune checkpoint 
inhibitors (ICIs) have revolutionized cancer immunotherapy, PDAC remains largely unresponsive to 
ICI monotherapy. In this study, we demonstrate that dasatinib, a multi-targeted tyrosine kinase 
inhibitor, reduces programmed death ligand 1 (PD-L1) expression in PDAC cells via a 
proteasome-dependent degradation pathway. Moreover, PD-L1 levels were correlated with 
dasatinib sensitivity, suggesting its utility as a predictive biomarker. These findings not only elucidate 
a novel mechanism of dasatinib’s action but also provide a strong rationale for combining dasatinib 
with ICIs to overcome immune resistance and enhance therapeutic efficacy against PDAC. 
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Introduction 
Pancreatic cancer (PC) is among the deadliest 

malignancies, with a 5-year survival rate of below 5% 
and a median survival of just 6 months when surgical 
resection is not feasible [1]. Approximately 80%–90% 
of cases arise as pancreatic ductal adenocarcinoma 
(PDAC) from the exocrine pancreas, and its 
nonspecific early symptoms make timely diagnosis 
difficult with current screening methods [2,3]. 
PDAC’s intrinsic resistance to both radiotherapy and 
standard chemotherapies, including gemcitabine, 
nanoparticle albumin-bound paclitaxel, and the 
FOLFIRINOX (fluorouracil, leucovorin, irinotecan, 
and oxaliplatin) regimen, yields only modest 

extensions in survival [4-9]. Immune checkpoint 
inhibitors (ICIs) targeting cytotoxic T lymphocyte- 
associated antigen 4 (CTLA-4), programmed death 1 
(PD-1), and PD ligand 1 (PD-L1) have revolutionized 
many cancers but have largely failed in PDAC, which 
exhibits primary resistance to monotherapy [10,11]. 
Only the rare 1%–2% of PDAC cases with a 
mismatched repair deficiency (dMMR) or high 
microsatellite instability (MSI-H), which correlates 
with a higher tumor mutation burden and a 
more-inflamed microenvironment, respond to 
pembrolizumab as a second-line treatment [12-16]. 
Unraveling the molecular drivers of lesion 
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development, carcinogenesis, and treatment 
resistance, and finding ways to reprogram the tumor 
microenvironment toward a T-cell-inflamed state are 
critical for devising novel, more-effective therapies. 

SRC, a non-receptor protein tyrosine kinase, 
plays a critical role in cellular signaling pathways, 
regulating key biological functions such as cell 
growth, differentiation, adhesion, and migration. In 
PDAC, aberrant SRC activation significantly 
contributes to disease progression [17]. Dasatinib, an 
ATP-competitive tyrosine kinase inhibitor (TKI) 
originally developed to target both SRC and ABL 
kinases, also inhibits KIT, ephrin receptors, and 
various other kinases [18,19]. Although dasatinib is 
approved by the US Food and Drug Administration 
(FDA) for treating Philadelphia chromosome-positive 
(Ph+) chronic myeloid leukemia (CML) and acute 
lymphoblastic leukemia (ALL) [20], phase II clinical 
trials have demonstrated that dasatinib, whether used 
alone or in combination with gemcitabine or FOLFOX 
(fluorouracil, leucovorin, and oxaliplatin), does not 
provide significant clinical benefits for advanced 
PDAC patients [21-23]. Nevertheless, its tolerability in 
patients suggests potential for further investigation. 
Identifying predictive biomarkers and exploring 
combination therapies could improve the efficacy of 
dasatinib in PDAC treatment. 

In this study, we identified a significant 
correlation between dasatinib sensitivity and PD-L1 
expression in PDAC cells, with higher PD-L1 levels 
associated with increased sensitivity to the drug. In 
contrast, dasatinib sensitivity was not correlated with 
SRC expression in these cells. Furthermore, our 
results indicate that dasatinib inhibits PD-L1 
expression via a proteasome-dependent pathway. 
These findings provide novel insights into the 
mechanisms underlying dasatinib’s action in PDAC 
and could inform future therapeutic strategies. 

Materials and Methods 
Bioinformatics analyses of published data 

Drug sensitivity and gene expression data from 
cancer cell lines, obtained from the Cancer 
Therapeutics Response Portal (CTRP [24-26]) project, 
were retrieved from the DepMap database 
(https://depmap.org/portal/) [27]. Correlations 
between drug sensitivity and gene expressions were 
analyzed using Pearson’s correlation. 

Materials 
Dulbecco's modified Eagle medium (DMEM; 

#11965084), Roswell Park Memorial Institute 
(RPMI)-1640 (#22400071), L-glutamine (#25030081), 
non-essential amino acids (NEAA; #11140050), 

sodium pyruvate (#11360070), and an antibiotic- 
antimycotic solution (#15240062) were obtained from 
Gibco (Grand Island, NY, USA). Fetal bovine serum 
(FBS; #35-010-CV) was obtained from Corning 
(Tewksbury, MA, USA). A GENEzol TriRNA Pure Kit 
(#GZX100) was obtained from Geneaid (New Taipei 
City, Taiwan). IQ2 SYBR Green Fast qPCR System 
Master Mix (#DBU-006) was obtained from Bio- 
Genesis Technologies (Taipei, Taiwan). An iScript 
cDNA Synthesis Kit (#1708891) was obtained from 
Bio-Rad Laboratories (Hercules, CA, USA). Dasatinib 
(#D-3307) was purchased from LC Laboratories 
(Woburn, MA, USA). Dimethyl sulfoxide (DMSO; 
#D5879), chloroquine (#C6628), phosphatase inhibitor 
cocktail tablets (#04906837001), and protease inhibitor 
cocktail tablets (#11873580001) were obtained from 
Sigma-Aldrich (St. Louis, MO, USA). MG132 
(#A11043) was purchased from Adooq BioScience 
(Irvine, CA, USA). 3-(4,5-Dimethylthiazol-2-yl)-2,5- 
diphenyl tetrazolium bromide (MTT; #AF-L11939) 
was obtained from Alfa Aesar (Ward Hill, MA, USA). 
Radioimmunoprecipitation assay (RIPA) lysis and 
extraction buffer (#89901) was purchased from 
Thermo Fisher Scientific (Waltham, MA, USA). 
Bradford protein assay (#5000006), dual-color protein 
marker (#1610374), 10× sodium dodecyl sulfate 
(SDS)-glycine running buffer (#1610772), Trans-Blot 
Turbo RTA mini 0.2-µm nitrocellulose transfer kit 
(#1704270), and other reagents for the Western blot 
analysis were purchased from Bio-Rad Laboratories. 
PD-L1 (#GTX104763), SRC (#GTX50504), phospho- 
Tyr416-SRC (#GTX134837), and GAPDH (#GTX1001 
18) antibodies were obtained from GeneTex (Hsinchu, 
Taiwan). Interferon regulatory factor 1 (IRF1) (#8478) 
and phospho-Tyr705-signal transduction and 
activator of transcription 3 (STAT3) (#9145) antibodies 
were obtained from Cell Signaling Technology 
(Beverly, MA, USA). The STAT3 (#sc-482) antibody 
was obtained from Santa Cruz Biotechnology (Santa 
Cruz, CA, USA). The LC3B (#18725-1-AP) antibody 
was obtained from Proteintech Group (Rosemont, IL, 
USA). Horseradish peroxidase (HRP)-conjugated 
anti-mouse (#115-035-003) and anti-rabbit (#111-035- 
003) secondary antibodies were purchased from 
Jackson Laboratory (Bar Harbor, MA, USA). An 
enhanced chemiluminescence (ECL) reagent 
(#NEL105001EA) was purchased from PerkinElmer 
(Waltham, MA, USA). 

Cell culture 
AsPC-1 (#60494). BxPC-3 (#60283), HPAC 

(#60495), and PANC-1 (#60284) cells were obtained 
from the Bioresource Collection and Research Center 
(BCRC; Hsinchu, Taiwan). These cells were cultured 
in DMEM (HPAC and PANC-1) or RPMI-1640 
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(AsPC-1 and BxPC-3) supplemented with 10% FBS, 
1 mM sodium pyruvate, a 1% NEAAs, 2 mM 
L-glutamine, and 1% antibiotic-antimycotic solution. 
They were grown in a humidified 37 °C, 5% CO2 
incubator. 

Cell-viability assay 
Cells were plated in a 96-well plate and allowed 

to adhere overnight. The following day, the medium 
was replaced with 200 μL of drug-containing medium 
in each well. After 72 h of incubation, 50 μL of an MTT 
solution (2 mg/mL) was directly added to the wells, 
and cells were incubated for an additional 4 h. 
Subsequently, the medium was removed, and the 
resulting MTT formazan crystals were dissolved in 
200 μL of DMSO. Absorbance was measured at 570 
and 650 nm on a microplate reader (Bio-Tek 
Instruments, Winooski, VT, USA). Cell viability was 
determined by subtracting the absorbance at 650 nm 
from that at 570 nm and normalizing the values to 
untreated control cells. 

Real-time quantitative polymerase chain 
reaction (qPCR) 

Total RNA was extracted using the GENEzol 
TriRNA Pure Kit. First-strand cDNA was synthesized 
with the iScript cDNA Synthesis Kit. PCR 
amplification was performed using IQ2 SYBR Green 
Fast qPCR System Master Mix on a QuantStudio1 
Real-Time PCR System (Thermo Fisher Scientific). 
Primer sequences used were as follows: PD-L1: 
forward 5′-TATGGTGGTGCCGACTACAA-3′ and 

reverse 5′-TGCTTGTCCAGATGACTTCG-3′; and 
β-actin: forward 5′-GTTGCTATCCAGGCTGTGCT-3′ 
and reverse 5′-AGGGCATACCCCTCGTAGAT-3′. 

Western blot analysis 
Cells were rinsed twice with ice-cold 

phosphate-buffered saline (PBS) and centrifuged at 
1,500 rpm for 5 min. The cell pellet was then 
resuspended in RIPA lysis buffer and incubated on ice 
for 30 min, with vortexing every 5 to 10 min. The 
lysate was subsequently centrifuged at 16,000 ×g and 
4 °C for 20 min, and the supernatant was collected. 
The protein concentration was measured using the 
Bradford protein assay. Equal amounts of protein 
were mixed with loading buffer and subjected to 
SDS-polyacrylamide gel electrophoresis (SDS-PAGE). 
Following electrophoretic separation, proteins were 
transferred onto a nitrocellulose membrane. The 
membrane was blocked with 5% non-fat milk for 
30 min and incubated overnight at 4 °C with primary 
antibodies. The next day, the membrane was treated 
with an HRP-conjugated anti-rabbit or anti-mouse 
secondary antibody for 2 h. Proteins were detected 
using an ECL reagent, and signals were visualized 
with the GE Amersham Imager 600 (GE Healthcare 
Life Sciences, Marlborough, MA, USA). 

Results and Discussion 
Correlation of dasatinib sensitivity with PD-L1 
expression in PDAC cells 

Using the Cancer Therapeutics Response Portal 
(CTRP) database [24-26] via the 
CellMinerCDB website (https:// 
discover.nci.nih.gov/rsconnect/ 
cellminercdb/) [28], we found 
that cancer cells with higher 
PD-L1 messenger (m)RNA 
expression were more 
responsive to dasatinib (Fig. 1A), 
especially in pancreatic, lung, 
and breast cancers (Fig. 1B). To 
validate this correlation, four 
PDAC cell lines (HPAC, BxPC-3, 
AsPC-1, and PANC-1) were 
examined. HPAC and BxPC-3 
cells, which have higher PD-L1 
expression, demonstrated 
greater sensitivity to dasatinib 
compared to PD-L1-negative 
AsPC-1 and PANC-1 cells (Fig. 
2A,B). While PD-L1 expression is 
known to be regulated by 
STAT3/IRF1 signaling [29], no 
correlation was found of STAT3 

 

 
Figure 1. Dasatinib drug sensitivity correlates with PD-L1 expression. (A) Drug response profiles 
correlated with PD-L1 mRNA expression in cancer cell lines (CCLs) were analyzed using the CTRP database. (B) The 
correlation between dasatinib drug activity (area under curve, AUC) and PD-L1 mRNA expression in each CCL type 
is shown. 
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or IRF1 protein levels with PD-L1 expression in the 
four PDAC cell lines (Fig. 2A). Additionally, STAT3 
and IRF1 mRNA levels were not linked to dasatinib 
sensitivity (Fig. 2C). These findings suggest that 
PD-L1 may serve as a biomarker for dasatinib's 
effectiveness in treating PDAC. 

Dasatinib sensitivity was not correlated with 
SRC in PDAC cells 

The CTRP data analysis revealed that unlike 
dasatinib, activity of other related TKIs were not 
associated with PD-L1 mRNA expression (Table 1). 
Representative scatter plots for SRC inhibitors, 
including dasatinib, saracatinib, KX2-391, and 
bosutinib, are presented in Fig. 3A. Additionally, 
neither the active (Tyr416-phosphorylated) nor total 
SRC protein levels (Fig. 3B) were correlated with 
dasatinib sensitivity in the four PDAC cell lines tested 
(Fig. 2B). Moreover, dasatinib effectively inhibited 
SRC activity in these cells (Fig. 3C), from which we 
concluded that dasatinib sensitivity in PDAC cells is 
not linked to SRC inhibition. 

 

Table 1. Correlations between the drug activity of selected TKIs 
and PD-L1 mRNA expression in PDAC cell lines. Raw data were 
obtained from the CellMinerCDB website. 

Drug name Targets Pearson's correlation 
coefficient 

P 
Value 

Dasatinib SRC, ABL1, KIT 0.584 0.00549 
Masitinib KIT, PDGFRA/B 0.461 0.0406 
OSI-930 KIT, VEGFR2 0.31 0.226 
Tandutinib KIT, VEGFR3 0.292 0.199 
Saracatinib SRC, ABL1 0.268 0.253 
Ki8751 KIT, VEGFR2, PDGFRA 0.207 0.382 
Lenvatinib KIT, VEGFR, 

PDGFRA/B 
0.15 0.518 

Imatinib BCR-ABL1, KIT 0.04 0.858 
Bosutinib SRC, ABL1 -0.098 0.672 
KX2-391 SRC -0.134 0.586 
Sunitinib KIT, VEGFR, 

PDGFRA/B 
-0.154 0.504 

Nilotinib ABL1, BCR, KIT -0.154 0.505 
Axitinib KIT, VEGFR, 

PDGFRA/B 
-0.175 0.46 

 

 

 
Figure 2. Dasatinib exhibits higher anticancer activity in PDAC cells that highly express PD-L1. (A) Protein expressions of PD-L1, IRF1, p-STAT3, and STAT3 in 
HPAC, BxPC-3, AsPC-1, and PANC-1 cells were compared using a Western blot analysis. (B) HPAC, BxPC-3, AsPC-1, and PANC-1 cells were treated with various 
concentrations of dasatinib for 72 h. Cell viability was determined by an MTT assay. (C) Scatter plots show correlations of dasatinib drug activity with PD-L1, IRF1, and STAT3 
mRNA expressions in PDAC cell lines. 
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Figure 3. Dasatinib drug sensitivity was not correlated with SRC expression. (A) Scatter plots show correlations between drug activity of SRC inhibitors (dasatinib, 
saracatinib, KX2-391, and bosutinib) and PD-L1 mRNA expression in PDAC cell lines. (B) Protein expressions of p-Y416-SRC and SRC in HPAC, BxPC-3, AsPC-1, and PANC-1 
cells were compared using a Western blot analysis. (C) HPAC, BxPC-3, AsPC-1, and PANC-1 cells were treated with the indicated concentrations of dasatinib for 24 h. A 
Western blot analysis was performed to determine expressions of the p-Y416-SRC and SRC proteins. 

 

Dasatinib inhibited PD-L1 expression via a 
proteasome-dependent pathway 

    Since dasatinib effectively reduced cell 
viability in PD-L1-positive/high HPAC and BxPC-3 
cells (Fig. 2B), we investigated whether dasatinib also 
affects PD-L1 expression. Notably, dasatinib inhibited 
PD-L1 protein expression, and this effect was 
diminished by the proteasome inhibitor, MG-132 (Fig. 
4A), but not by the lysosome inhibitor chloroquine 
(Fig. 4B). Additionally, dasatinib did not significantly 
alter PD-L1 mRNA levels (Fig. 4C). These results 
suggest that dasatinib reduces PD-L1 expression by 
promoting its proteasomal degradation. Given that 
cancer cells use PD-L1 to evade the immune system, 
drugs that downregulate PD-L1 expression are 
believed to enhance the effectiveness of cancer 
immunotherapy [30-32]. Furthermore, PD-L1-positive 
PDAC patients have significantly worse prognoses 
compared to PD-L1-negative patients [33]. Therefore, 

we propose that dasatinib could be a promising 
treatment for PD-L1-high PDAC patients when 
combined with ICIs. 

Conclusions 
Our study reveals a novel mechanism by which 

dasatinib downregulates PD-L1 expression in PDAC 
cells via a proteasome-dependent pathway. The 
correlation between PD-L1 expression and dasatinib 
sensitivity suggests that PD-L1 could serve as a 
biomarker for predicting the response to dasatinib 
treatment. While previous clinical trials showed 
limited efficacy of dasatinib in PDAC, its ability to 
modulate PD-L1 expression opens new avenues for 
combination therapies, particularly with ICIs. Future 
studies should focus on validating these findings in in 
vivo models and clinical settings to assess the potential 
of dasatinib in overcoming PDAC resistance to 
immunotherapy.
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Figure 4. Dasatinib promotes the proteasomal degradation of the PD-L1 protein. (A) HPAC and BxPC-3 cells were treated with the indicated concentrations of 
dasatinib with or without 1 μM MG132 for 24 h. A Western blot analysis was performed to determine PD-L1 protein expression. Data from three independent experiments were 
quantified and plotted, and *p < 0.05 indicates statistical significance between treatments with and without MG132. (B) HPAC and BxPC-3 cells were treated with the indicated 
concentrations of dasatinib with or without 15 μM chloroquine (CQ) for 24 h. A Western blot analysis was performed to determine PD-L1 protein expression. Data from three 
independent experiments were quantified and plotted. (C) HPAC and BxPC-3 cells were treated with the indicated concentrations of dasatinib for 24 h. A real-time qPCR was 
performed to determine PD-L1 mRNA expression. 
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