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Abstract 

Isoginkgetin (IGG), a naturally occurring biflavonoid found in the leaves of many medicinal plants, is 
known to inhibit pre-mRNA splicing and display anti-cancer characteristics. However, knowledge 
regarding the use of IGG on oral squamous cell carcinoma (OSCC) lags behind that on the other 
common malignancies. The aim of this study is to explore whether IGG hinders OSCC proliferation 
and further investigated its oncostatic actions. We demonstrated that exposure of OSCC cell lines 
(HSC-3 and SCC-9) to IGG significantly diminished cell viability and induced apoptotic cell death. 
Furthermore, levels of several tentative apoptosis suppressors (cIAP-1 and XIAP) were decreased 
in IGG-treated HSC-3 and SCC-9 cells, accompanied with increased cleavage of caspases. Of note, 
such activation of caspase cascades by IGG was reduced by pharmaceutical inhibition of c-Jun 
N-terminal kinase (JNK) via a specific kinase antagonist, suggesting a functional connection of JNK 
activity with caspase activation during IGG-induced oral cancer cell apoptosis. In conclusion, we 
exhibited that IGG hampered cell viability and stimulated apoptotic events in OSCC, driven by a 
JNK-dependent pathway of caspase activations. Our findings present new insights into applications 
of a natural biflavonoid compound in fighting oral carcinogenesis. 
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Introduction 
Oral squamous cell carcinoma (OSCC) is the 

most common type of oral cancer, representing 
approximately 90% of oral malignancies [1]. In 
patients with OSCC, surgery in combination with 
radiotherapy or chemotherapy are the primary 
treatment of choice. In addition, the use of an 
antagonist for the epidermal growth factor receptor 
(EGFR) has improved disease outcomes in OSCC 

patients receiving radiotherapy [2]. Besides, immune 
checkpoint inhibitors that restore anti-cancer 
immunity have been demonstrated to extend patients’ 
survival as combined with chemotherapy or 
radiotherapy [3-5]. Yet, these treatment strategies did 
not significantly leverage the survival rate (roughly 
50%) [6], mainly due to tumor recurrence and 
metastasis. This emphasizes the imperative to 
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investigate complementary therapeutic modalities 
that can tackle these challenges. In this regard, the 
exploration of phytoconstituents that manifest 
favorable responses but minimal undesirable effects 
for the management of OSCC has come to the fore as a 
pivotal filed of research. 

Isoginkgetin (IGG), originally extracted from the 
leaves of Metasequoia glyptostroboides (Dawn redwood, 
family: Taxodiaceae), is a naturally occurring 
biflavonoid shown to suppress cell invasion and 
migration by inhibiting the production of the matrix 
metalloproteinase 9 (MMP-9) [7, 8]. Pharmacological 
investigations revealed that IGG functions as an 
effective inhibitor for transcription elongation [9] and 
pre-mRNA splicing [10], to some degree providing 
the mechanistic basis of its anti-cancer activity. Such 
inhibition of the splicing machinery by IGG in cancer 
cells enhanced the antigen presentation by MHC class 
I [11], thereby facilitating the adaptive immune 
response against tumor antigens [12]. In addition, IGG 
was found to disturb protein homeostasis, eventually 
leading to cancer cell death [13]. Intriguingly, IGG 
may induce cytotoxic autophagy in hepatocellular 
carcinoma via directly binding to the N terminus of 
cyclin-dependent kinase 6 (CDK6) and promoting its 
subsequent degradation [14]. Although these in vitro 
and in vivo results have unveiled distinct anti-cancer 
features of this natural biflavonoid, beneficial effects 
of IGG on oral tumorigenesis are mostly unknown. In 
this study, we aimed to investigate whether IGG 
hampers OSCC progression and further explored the 
underlying mechanisms. Our findings highlight 
potential avenues for the use of a natural compound 
in the management of OSCC.  

Materials and methods 
Cell culture and reagents  

Two cell lines of OSCC, SCC-9 and HSC-3, were 
obtained from the American Type Culture Collection 
(Manassas, VA, USA) and propagated in MEM 
medium (Life Technologies, Grand Island, NY, USA) 
as described previously [15]. SCC-9 is derived from a 
human tongue squamous cell carcinoma and HSC-3, 
also originating from tongue carcinoma, is known for 
its highly aggressive behavior. Isoginkgetin (IGG) of 
HPLC grade with ≥ 98% purity was commercially 
acquired from Sigma-Aldrich. U0126 and JNK-IN-8 
were purchased from Sigma-Aldrich (St. Louis, MO, 
USA), and SB203580 was obtained from Cell Signaling 
Technology (Danvers, MA, USA). 

Assessment of cell viability 
Viability of OSCC cells in response to IGG was 

measured with a MTT (3-(4,5-dimethylthiazol-2-yl) 

-2,5-diphenyltetrazolium bromide) colorimetric assay 
(Sigma-Aldrich) as described previously [16]. In brief, 
cells were cultured in the presence of IGG at various 
concentrations for 24 hr and assessed for cell viability 
by using MTT. Levels of cell proliferation/viability 
were evaluated according to the chemical yield of 
formazan following solubilization with isopropanol, 
which was spectrophotometrically measured at 
563 nm.  

Flow cytometric analysis 
Apoptotic cell populations were analyzed by 

monitoring the levels of annexin V flipping via flow 
cytometry as previously described [17]. In brief, cells 
exposed to various concentrations of IGG for 24 hr 
were assessed for the levels of annexin V on the outer 
leaflet of the plasma membrane with an FITC-labeled 
Annexin-V/PI Apoptosis Detection kit (BD 
Biosciences, San Jose, CA, USA). The proportions of 
annexin V- or propidium iodide (PI)-positive cells 
were evaluated by using flow cytometry (Accuri C6 
Plus flow cytometer, BD Biosciences, San Diego, CA, 
USA). 

Profiling of apoptotic proteome 
Apoptosis-related protein markers in 

IGG-treated OSCC cells were profiled through a 
Proteome Profiler Human Apoptosis Array Kit (R&D 
Systems, Minneapolis, MN, USA) [18]. This 
membrane-based antibody array allows the 
simultaneous detection of 35 human apoptosis-related 
proteins, including both pro-apoptotic and 
anti-apoptotic factors. Protein lysates of OSCC cell 
lines treated with and without IGG were collected and 
applied to the protein array analysis according to 
manufacturer’s instructions. Pixel density for 
apoptotic markers was measured and normalized to 
that of reference array spots. 

Western blot 
Protein lysates of cells under various conditions 

were harvested and subjected to SDS-PAGE assays. 
Individual protein targets were detected via a series of 
specific primary antibodies. These include 
Anti-cleaved Caspase-3 (ab2302), Anti-cleaved 
Caspase-8 (ab25901), Anti-pro-caspase-3 (ab32150), 
Anti-pro-caspase-8 (ab108333), and Anti-β-actin 
(ab8226) antibodies from Abcam (Cambridge, UK), 
Anti-Caspase-9 (#9502), Anti-cleaved Caspase-9 
(#9505), Anti-PARP (#9542), Anti-Phospho-Erk1/2 
(#4370), Anti-Erk1/2 (#9102), and Anti-c-IAP1 
(#7065) antibodies from Cell Signaling Technology 
(Danvers, MA, USA), as well as Anti-Phospho-JNK 
(sc-6254), Anti-JNK (sc-7345), Anti-phospho-p38 
(sc-166182), Anti-p38 (sc-7972), and Anti-XIAP 
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(sc-55550) antibodies from Santa Cruz Biotechnology 
(Dallas, TX, USA). Visualization was conducted by 
hybridization with HRP-conjugated secondary 
antibodies (Dako Corporation, Carpinteria, CA, USA). 
Densitometry of immunoblots was analyzed via the 
ImageJ software. 

Immunofluorescence 
Cells were grown on coverslips, treated with 

IGG for 24 hr, fixed, and permeabilized. Cell cultures 
were stained with a primary antibody against cleaved 
caspase 3 (#9661, Cell Signaling Technology, Danvers, 
MA, USA), visualized by hybridization with a 
fluorescence-labeled secondary antibody (#4412, Cell 
Signaling Technology), washed, fixed, and mounted 
in Fluoromount-G (Electron Microscopy Sciences) 
[19]. Images were acquired by Olympus IX73 inverted 
fluorescence microscope using cellSENS microscope 
imaging software. 

Statistical analysis 
Data represent mean ± standard deviation (SD) 

from at least two separate experiments. Significant 
difference was based on a p value of < 0.05 by 
Student's t-test. 

Results 
IGG stimulates cytotoxicity and apoptosis in 
OSCC cells  

To clarify the potential of IGG on affecting OSCC 
progression, the viability of SCC-9 and HSC-3 cells 
treated with various concentrations of IGG (5 to 80 
μM) was tested. We observed a reduction in cell 
viability of OSCC cells in response to 10 μM of IGG 
(Figure 1). Such cytotoxic effect appeared to be 
dose-dependent, as 40 and 80 μM of IGG profoundly 
interfered with cell proliferation of SCC-9 and HSC-3. 
This finding is in accordance with its anti-cancer 
properties noted in other tumor types [7, 12-14], 
unveiling a suppressive effect of IGG on oral 
carcinogenesis. Since a dose-dependent effect of IGG 
on influencing OSCC proliferation was demonstrated, 
we next examined whether IGG alters apoptotic 
responses in oral cancer. By monitoring the levels of 
annexin V flipping from the inner side to the outer 
leaflet of the plasma membrane, an increased 
proportion of apoptotic cell populations under the 
treatment of 40 and 80 μM IGG was detected in both 
cell lines (Figures 2A-C), revealing an elevation in 
OSCC apoptosis by IGG. These data suggest that the 
anti-cancer potential of IGG on oral tumorigenesis is 
attributed to induction of cytotoxicity and apoptosis. 

 

 
Figure 1. IGG triggers cytotoxicity to OSCC cell lines. (A) Structural formula of isoginkgetin (IGG). (B-C) IGG is cytotoxic to OSCC cells. SCC-9 (B) and HSC-3 cells 
(C) were cultured in the presence of indicated concentrations of IGG for 24 hr and evaluated for cell viability. Data represent the average ± SD from three separate experiments. 
*p < 0.05, in comparison with untreated cells using Students t-test. 
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Figure 2. IGG triggers apoptotic events in OSCC. (A) SCC-9 and HSC-3 cells were maintained in the presence of indicated concentrations of IGG (10-80 μM) for 24 hr, 
stained with PI and annexin V, and assessed for apoptotic cell death by flow cytometry. Data are representative of three independent experiments. (B-C) Comparison of 
apoptotic responses among IGG-treated SCC-9 (B) and HSC-3 cells (C). The proportion of annexin V-positive cells was measured, and data represent the average ± SD from 
three independent experiments. *p < 0.05, in comparison with untreated cells using Students t-test. 

 

IGG reshapes apoptosis-related proteome in 
OSCC  

We subsequently aimed to investigate the profile 
of apoptosis-related proteins in IGG-treated OSCC 
cells by surveying 35 known protein markers of 
programmed cell death. A consistent shift in the 
expression levels of these markers was detected 
between two cell lines in response to IGG (Figures 
3A-D). In particular, the levels of X-linked inhibitor of 
apoptosis protein (XIAP) and cellular inhibitor of 
apoptosis protein-1 (cIAP-1) in SCC-9 and HSC-3 cells 
were decreased under the treatment with IGG, 

whereas the signal intensities of cleaved caspase-3 
were augmented in the same scenario. Further 
verification demonstrated that treatment with IGG 
downregulated XIAP and cIAP-1 in a dose-dependent 
manner (Figures 3E-F). These results indicate that 
IGG attunes the apoptotic proteome in OSCC cells, as 
manifested by downregulation of tentative apoptosis 
inhibitors. 

IGG promotes proteolytic cleavage of caspase 
substrates in OSCC 

Cleavage of caspase substrates is a hallmark of 
cell apoptosis that generates many forms of active 
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fragments to mediate cell membrane blebbing, cell 
body shrinkage, and DNA fragmentation [20]. 
Therefore, the effect of IGG on the cleavage of caspase 
substrates was explored in OSCC cells. We found that 
treatment of SCC-9 and HSC-3 cells with IGG, 
especially at 40 and 80 μM, reduced the levels of 
precursor (inactive) forms of caspase-3, -8, -9 and poly 
(ADP-ribose) polymerase-1 (PARP), accompanied 
with increased production of cleaved (active) forms of 

these apoptotic mediators in both lines (Figures 
4A-D). In addition, activation of caspase 3 by IGG was 
further validated by immunofluorescence labeling of 
cleaved caspase 3 in SCC-9 and HSC-3 cells treated 
with IGG at different concentrations (Figure 4E). 
These results further support the observation that IGG 
acts as an inducer of apoptotic cell death in oral 
malignancy. 

 

 
Figure 3. Profiling of apoptosis-related proteins in IGG-treated OSCC cells. (A-B) Representative dot plots corresponding to the levels of 35 apoptosis-related 
protein markers in IGG-untreated and -treated SCC-9 (A) and HSC-3 cells (B). Markers with differential expression proteins are marked, labelled, and further verified. (C-D) 
Heatmaps depicting relative expression of selected dots from SCC-9 (C) and HSC-3 samples (D). (E-F) Verification of apoptotic marker expression. SCC-9 (E) and HSC-3 cells 
(F) were maintained in the presence of indicated concentrations of IGG (10-80 μM) for 24 hr and assayed for the levels of indicated apoptosis markers by Western blot. 
Densitometric analyses of protein bands were conducted, normalized with internal controls (β-actin), compared, and shown underneath. Data represent the mean ± SD of three 
independent experiments. *p < 0.05, in comparison with untreated controls using Students t-test. 
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Figure 4. Effect of IGG on promoting proteolytic cleavage of caspase substrates in OSCC. SCC-9 and HSC-3 cells were maintained in the presence of indicated 
concentrations of IGG (10-80 μM) for 24 hr and assayed for the levels of precursor (A, C) and cleaved forms (B, D) of individual caspase substrates by Western blot. 
Densitometric analyses and signal comparisons are shown in the right. Data represent the mean ± SD of three separate experiments. *p < 0.05, compared with untreated controls 
using Students t-test. (E) Representative immunofluorescence images of cleaved caspase-3 in IGG-treated OSCCs. SCC-9 and HSC-3 cells were treated with IGG and stained 
with an antibody against cleaved forms of caspase-3. Bar = 50 μm. 
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JNK contributes to IGG-stimulated caspase 
activations in OSCC 

Mitogen-activated protein kinases (MAPKs) are 
known to function as a key regulator to direct 
apoptotic responses to various external stresses 
[21-23]. In the context of OSCC, dysregulation of 
MAPK signaling has been implicated in tumor 
progression and resistance to therapy [21, 24, 25]. We 
next tried to dissect whether MAPKs are functionally 
involved in the activation of caspase cascades in 
IGG-treated OSCC cells. Our survey of MAPK 
phosphorylation status revealed that JNK, ERK, and 
p38-MAPK were highly phosphorylated in both 
OSCC cell lines as treated with 40 and 80 μM IGG 
(Figures 5A-D), indicating a promotive effect of IGG 
on MAPKs activation in oral cancer. To further 

unravel whether there is a functional link between 
MAPK phosphorylation and caspase activation in the 
process of IGG-induced apoptosis, we tested the 
influence of kinase inhibitions on caspase cleavages in 
IGG-treated OSCC cells. Our results demonstrated 
that blockage of JNK activation with JNK-IN-8, a 
specific JNK inhibitor, significantly diminished the 
induction of cleaved (active) caspase-3, caspase-8, and 
caspase-9 in IGG-treated SCC-9 and HSC-3 cells 
(Figures 6A-D). Yet, pharmaceutical inhibition of ERK 
and p38-MAPK did not affect IGG-induced cleavage 
of pro-caspase-3, -8, and -9 in both cell lines. These 
findings connect JNK activity with activation of 
caspase cascades during IGG-stimulated oral cancer 
cell apoptosis. 

 

 
Figure 5. Promotive effect of IGG on MAPK phosphorylation in OSCC cells. SCC-9 (A) and HSC-3 cells (B) were incubated with IGG at indicated concentrations and 
tested for the levels of phosphorylation on individual MAPKs via Western blot. (C-D) Quantification and comparison of relative phosphorylation status for ERK1/2 (ERK), JNK, 
and p38-MAPK in each condition of SCC-9 (C) and HSC-3 cells (D). The values represent the mean ± SD of three independent experiments. *p < 0.05, compared with untreated 
controls using Students t-test. 
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Figure 6. Functional connection of JNK to IGG-activated caspase cascades in OSCC. SCC-9 (A-B) and HSC-3 cells (C-D) were pretreated with individual MAPK 
antagonists for 2 hr and subsequently incubated with IGG for 24 hr, followed by assessment for the degree of caspase cleavage via Western blot. Densitometric analyses of SCC-9 
(B) and HSC-3 data (D) were conducted, and relative expression levels were normalized to internal controls (β-actin). Data represent the mean ± SD of three separate 
experiments. *p < 0.05, compared with untreated controls using Students t-test. #p < 0.05, compared with IGG-treated cells using Students t-test.  

 

Discussion 
Despite the observations that contemporary 

therapeutic methods have generated favorable 
outcomes in patients with early-stage oral 
malignancy, the survival rate and prognostic response 
of patients bearing late-stage OSCC still present an 
enormous burden. The application of complementary 
treatment options, thus, is needed to deal with the 
clinical challenge. It is widely accepted that natural 
constituents isolated from herbal plants can be 
beneficial for cancer treatment as given in 
combination with other standard cares [26]. In our 
investigation, we demonstrated that IGG, a naturally 
occurring biflavonoid found in the leaves of ginkgo 
(Ginkgo biloba), effectively induced apoptotic 
responses in OSCC cell lines. Furthermore, the 
molecular mechanism underlying IGG-stimulated cell 
apoptosis involves downregulation of several 
apoptotic inhibitors and a JNK-dependent activation 
of caspase pathways (Figure 7). Our results highlight 
a potential of IGG in improving the management of 
OSCC.  

Several studies of phytomedicine have 
documented a tumor-suppressive effect of IGG on 
various malignant diseases [7, 10, 13, 14, 27-29]. Such 

anti-cancer activity relies upon multiple cell 
type-specific or general mechanisms and affects a 
variety of molecular targets. Firstly, IGG is a general 
inhibitor of spliceosome to block pre-mRNA splicing, 
thereby interfering with tumor growth [10]. Unlike 
other anti-cancer natural compounds (e.g. 
pladienolide and spliceostatin A) that target the 
splicing factor SF3b to prevent the assembly of 
prespliceosome (A complex) [30, 31], the presence of 
IGG promotes accumulation of A complex and 
mediates its progression into B complex, a 
catalytically active form of spliceosome [10]. Although 
these spliceosome inhibitors have distinct core 
structures and affect different steps of splicing, 
disruption of mRNA splicing leads to generation of 
aberrant proteins and triggers apoptotic cell death [32, 
33]. These findings are in accordance with our data 
showing a promotive effect of IGG on apoptotic 
responses in OSCC. Intriguingly, these 
spliceosome-targeted agents elicit double-stranded 
RNA responses via induction of widespread 
intron-retained transcripts to drive not only extrinsic 
apoptosis but also adaptive immune signaling in 
fighting cancer [34]. Consistently, inhibition of the 
splicing machinery by IGG in malignant cells 
augmented the antigen presentation by MHC class I 
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[11], thereby boosting the downstream adaptive 
immune response against tumor antigens [12]. In 
addition to mRNA processing, IGG was also reported 
to inhibit transcription elongation, further 
highlighting its impact on regulation of gene 
expression [9]. Moreover, IGG has been shown to 
sensitize cancer cells to apoptosis via impairment of 
protein clearance through directly inhibiting activities 
of 20S proteosome [13]. The 20S proteosome simply 
degrades unfolded or misfolded proteins to maintain 
proper protein dynamics, and its inhibition could 
stimulate the unfolded protein response (UPR) [35], a 
signal transduction pathway that is activated by 
accumulation of excessive unfolded proteins and 
eventually renders the vulnerability of malignant cells 
to death [36]. These findings, together with our data, 
implicate the use of IGG as a promising OSCC 
therapy. 

Beside caspase activation, IGG-induced OSCC 
apoptosis was accompanied with downregulation of 
several putative apoptosis inhibitors. One such 
example is XIAP (X-linked inhibitor of apoptosis 
protein), an E3 ubiquitin ligase that has been shown to 
promote resistance to therapy-induced apoptosis and 
confer poor outcome in cancer patients [37]. Different 
biological functions of XIAP localized at distinct 
cellular compartments, such as cytoplasm, 

mitochondria, and nucleus, have been documented. 
Cytoplasmic XIAP can physically interact with 
caspase-3, -7, and -9 and subsequently restrain 
activation of these caspases to counteract apoptosis 
[38, 39], whereas nuclear XIAP acts to modulate many 
oncogenic pathways [40-42], irrelevant to its 
caspase-inhibitory cytoplasmic function. Although 
cellular localization of XIAP was not investigated in 
our experiments, our observation that IGG 
downregulated XIAP and activated caspase cascades 
during OSCC apoptosis is largely in agreement with 
the anti-apoptotic function of cytotoxic XIAP. In 
addition, another IGG-downregulated proteins, 
cIAP-1 (cellular inhibitor of apoptosis protein 1), is 
also an E3 ubiquitin ligase that has a key role in 
regulating NF-κB signaling and programmed cell 
death via the ubiquitylation of major components of 
TNF receptor complexes [43]. cIAP-1 is a substrate for 
caspase-8, and its degradation by caspase-8 is 
associated with TNF-related apoptosis [44]. 
Furthermore, cIAP-1 binds to the apoptosome and 
sterically hinders the access of pro-caspase-3 to the 
catalytic center of the Apaf-1-caspase-9 complex, 
thereby inhibiting the processing and activation of 
pro-caspase-3 [45]. These IGG-downregulated 
apoptosis mediators appear to act upstream or 
downstream of multiple caspase cascades, 

cooperatively contributing to IGG-stimulated 
apoptotic events in OSCC. 

JNK signaling is known to mediate the 
extrinsic apoptotic pathway initiated by death 
receptors as well as the intrinsic pathway 
initiated at the mitochondria [46]. In our study, 
IGG triggered apoptotic responses in OSCC, 
employing a JNK-dependent activation of 
caspase cascades. Consistently, such 
involvement of JNK activities in 
phytomedicine-induced caspase activation and 
apoptosis was observed in oral cancer [47, 48] 
and other cancer types [49-51]. Our findings 
reiterate that JNK signaling behaves as a critical 
hub in caspase-dependent apoptosis of 
IGG-treated oral cancer cells. 

Even though anti-cancer effects of IGG on 
oral carcinogenesis were observed, there are 
some limitations to this study. One weakness is 
that both OSCC cell lines tested in our 
experiments originated from tongue cancer. It is 
proposed that cancers developed at distinct 
anatomical locations of the mouth (e.g. tongue, 
buccal mucosa, lip, and gingiva) tends to be 
correlated with different mutational signatures, 
oncogenic pathways, and survival rates [52]. 
Thus, the generalizability of this study can be 
reinforced if additional OSCC cell lines derived 

 

 
Figure 7. Proposed mechanism of IGG-induced cell apoptosis in OSCC. 
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from other anatomical positions are examined to 
explore IGG’s actions. Another concern is that the 
influence of this biflavonoid compound might be 
incongruous in animal studies, despite our in vitro 
finding that IGG rendered a tumor-suppressive effect 
on oral cancer progression. As IGG has exhibited 
promising oncostatic characteristics in mouse cancer 
models [12, 14], future experiments in in vivo settings 
could further clarify the impact of IGG on oral 
carcinogenesis. 

In conclusion, we showed that IGG effectively 
triggered apoptotic cell death in OSCC, employing a 
JNK-dependent pathway of caspase activations. Our 
findings implicate this natural compound as a 
tentative therapeutic modality against oral 
malignancies. 
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