
Table S1 

The main markers of macrophages, their biological properties and association with colorectal cancer 

 

Marker, 
Localization  

polarizat
ion state 

Biological effects Associations with CRC  References 

F4/80 (adhesion 
G protein-
coupled receptor 
E, EMR1), 
cell membrane 

M0 induction of efferent CD8+ T 
cells necessary for peripheral 
tolerance 

EMR1 is abnormally expressed in colorectal 
cancer (CRC) and is a risk factor for liver 
metastasis (LM) and poor RFS in patients with 
CRC. Inducing EMR1 in macrophages may 
promote LNM and CRC progression via 
JAK2/STAT1,3 signaling upregulation. 
 
EMR1 is significantly associated with CD68+ 
CD163+ macrophages, and CRC with a high 
combined EMR1+CD68+CD163+ score 
showed worse recurrence-free survival (RFS). 

[1, 2, 3]    

CCR2 (C-C 
chemokine 
receptor type 2 
for the 
chemokine 
CCL2),  
cell membrane 

M0 involved in the recruitment of 
monocytes to sites of 
inflammation 

Aberrant expression of CCR2 is associated 
with negative outcomes in inflammatory bowel 
disease (IBD), and colon-related metastasis. 
CCR2 inhibition can reduce the recruitment of 
myeloid-derived suppressor cells and decrease 
lung metastasis in breast cancer models 
Endothelial CCR2 expression has been linked 
to promoting tumor cell extravasation and 
pulmonary metastasis, highlighting its 
significance in cancer progression. 

 
[4, 5, 6] 

CD14, 
cell membrane 

M0 co-receptor for bacterial LPS High CD14 expression in CRC is associated 
with microsatellite instability, BRAF 
mutations. High CD14 expression predicts 
worse outcomes in CRC. High density of 
CD14+HLA-DR- cells (immature monocytic 

[7, 8, 9] 
 
https://www.proteinatlas.org/ENS
G00000170458-CD14 



phenotype) in intraepithelial regions is 
associated with higher CRC-specific mortality, 
however, high density of CD14+HLA-DR+ 
cells (mature monocytic phenotype) in both 
intraepithelial and stromal regions is associated 
with lower CRC-specific mortality.  

CD68 
(SCARD1-
Scavenger 
Receptor Class 
D Member 1 
GP110, 
LAMP4),  
lysosomes, 
endosomes, cell 
membrane 

M0 
 

A transmembrane glycoprotein 
that binds to tissue- and organ-
specific lectins or selectins, 
clear cellular debris, promote 
phagocytosis, and mediate the 
recruitment and activation of 
macrophages 

CD68+ cells are predominantly found at the 
invasive front of the tumor compared to the 
intratumoral area or adjacent normal mucosa. 
There is a moderate correlation between CD68 
and CD163 staining, suggesting that tumors 
with higher CD68+ infiltration also tend to 
have higher CD163+ cell infiltration.  
Prognostic associations in CRC are 
contradictory.  
High infiltration of CD68+ TAMs, especially in 
the tumor stroma, correlates with worse RFS 
and OS in late-stage CRC patients receiving 
bevacizumab combined with chemotherapy. 
Specifically, in stage III CRC, higher 
infiltration of CD68+ cells in the intratumoral 
area was associated with reduced overall 
survival (OS). A high CD206+/CD68+ ratio is 
associated with improved survival in adjuvant 
chemotherapy. 
High CD68+/tumor cell ratio was linked to 
better survival in 205 CRC patients. 

 
[10-15] 
 
 
https://www.proteinatlas.org/ENS
G00000129226-CD68 
https://doi.org/10.1158/1538-
7445.AM2022-2530 
 

CSF1R 
(receptor for 
colony-
stimulating 

M0 CSF1R promotes the release of 
pro-inflammatory chemokines 
in response to IL-34 and CSF-1, 
contributing to homeostasis in 
the colon. CSF1R-expressing 

The CSF1/CSF1R axis is essential for the 
survival and differentiation of M2 tumor 
associated macrophages (TAM) in CRC. 
CSF1R expression is enriched in TAMs within 
CRC tumors, and its expression in 

 
[16] 
 



factor 1, 
CD115),  
cell membrane 

macrophages are involved in 
tissue repair processes in the 
colon. 

macrophages is associated with poor prognosis 
in CRC patients. 

https://www.ncbi.nlm.nih.gov/gen
e/1436proteinatlas.org/ENSG000
00182578-CSF1R 
 

Ly6C1 
(lymphocyte 
antigen 6 family 
member C1), 
cell membrane 

M0 Ly6C1, a member of the Ly-6 
superfamily, plays a crucial role 
in immune responses and cell 
signaling. Ly6C1 is anchored to 
the cell membrane through a 
glycosyl-phosphatidylinositol 
(GPI) lipid anchor, allowing 
them to localize to specific 
membrane domains called lipid 
rafts. Cross-linking of Ly-6 
proteins like Ly-6A/Sca-1 can 
trigger simultaneous 
stimulatory and inhibitory 
responses in cells, leading to 
cytokine production, growth 
inhibition, and apoptosis. 
Additionally, Ly6C1 may be 
involved in regulating 
complement activation and 
pathogen clearance, 
highlighting its importance in 
host defense mechanisms. 

Ly6C-high macrophages contribute to  tumor 
initiation and malignant progression in CRC.  
Participate in the creation of a pre-metastatic 
niche and subsequent colonization of 
metastatic sites by tumor cells. 
 
 
 

 
[17, 18] 
Klikněte nebo klepněte sem a zadejte 
text. 

PPARG  
(Peroxisome 
Proliferator-
Activated 
Receptor 
Gamma),  

M0 a type II nuclear receptor,  a 
transcription factor.  PPARG is 
an important regulator of 
macrophage polarization, with 
PPARG activation driving the 
M2 phenotype through 

High PPARG expression in tumors was not 
significantly associated with worse prognosis 
in CRC patients, as indicated by a study 
analyzing PPARG gene expression in CRC 
tumors and adjacent normal tissues. However, 
in lung adenocarcinoma, low PPARG 

[19-23] 
https://www.proteinatlas.org/ENS
G00000132170-PPARG 
 



nucleus, 
cytoplasm 

upregulation of Arg1 and Mgl1 
genes. 

expression was linked to poor prognosis. The 
study on hypopharyngeal squamous cell 
carcinoma (HSCC) revealed that PPARG 
expression variations were significantly 
associated with the tumor node metastasis 
(TNM). Role of PPARG expression in cancer 
prognosis and metastasis can vary depending 
on the specific cancer type. 

CX3CR1 (C-
X3-C Motif 
Chemokine 
Receptor 1 for  
CX3CL1),  
cell membrane 

M0 Involved in the adhesion and 
migration of monocytes, 
macrophages, and other 
immune cells 

CX3CR1 expression is significantly elevated in 
poorly differentiated CRC compared to 
moderate-well-differentiated tumors. Higher 
CX3CR1 expression is associated with 
advanced clinical stages, metastasis, and 
recurrence within 3 years.  

 
[24, 25] 
 

ITGAM 
(Integrin alpha 
M subunit, 
CD11b),  
cell membrane 
 

M0 Cell adhesion, migration, and 
phagocytosis 

The concentration of ITGAM-positive 
exosomes is lower in both primary CRC and 
metastatic CRC compared to the healthy 
control. ITGAM expression is highest in 
healthy control, followed by colonic adenomas, 
and lowest in primary CRC and CRC with 
hepatic metastases. 

 
[26, 27] 
https://www.proteinatlas.org/ENS
G00000169896-ITGAM 
 

FCGRIA (Fc 
Gamma 
Receptor Ia, 
CD64),  
cell membrane 

M1  antibody-dependent cell-mediated 
cytotoxicity (ADCC), antibody-
dependent cellular phagocytosis 
(ADCP) 

High infiltration of CD64+ macrophages in 
CRC, particularly at the tumor front, is 
associated with improved patient survival. 
Mediates ADCC by macrophages against 
tumor cells. 

 
[28, 29] 
Klikněte nebo klepněte sem a zadejte 
text. 

CD80, 
cell membrane 

M1 CD80 is an inducible co-
stimulatory molecule on APC. 
Interacts with CD28 and 
CTLA-4 on T cells to regulate T 
cell activation and tolerance. 

CD80+ macrophages are more prevalent in less 
invasive T1 tumors compared to more 
advanced stages. CD80+ macrophages, 
although present at low numbers, are associated 
with better prognosis in CRC.  

 
[30-31] 
https://www.proteinatlas.org/ENS
G00000121594-CD80 



In stage III colorectal tumors, a lower 
CD80/CD163 ratio is associated with 
decreased OS. 

CD86,  
cell membrane 

M1, 
M2b 

co-stimulatory molecule related 
to CD80 

Lower infiltration of CD86+ macrophages is 
associated with more advanced tumor stages 
and higher rates of tumor recurrence and 
mortality. Stage II-III CRC patients with a low 
CD86/CD163 ratio had shorter RFS and OS.  

 
 
[32-34] 
https://www.proteinatlas.org/ENS
G00000114013-CD86 

CD40, 
cell membrane, 
secreted 
 

M1 type I transmembrane protein 
on antigen-presenting cells and 
is required for their activation. 
Promotes pro-inflammatory 
and anti-tumor responses when 
activated on macrophages 

High CD40 expression in CRC tissues is 
associated with better OS and DFS.  

 
[30, 35] 
proteinatlas.org/ENSG000001010
17-CD40 
 

iNOS,  
cytoplasm 
 

M1, 
M2d 

Produces nitric oxide (NO) with 
a cytotoxic activities against 
pathogens and tumor cells 

M1 macrophages, which express iNOS, have 
anti-tumor effects. 
In a study of 205 CRC patients, iNOS+ 
macrophages did not demonstrate any 
significant benefit to patient outcomes.  
Also, infiltration of CD68+/iNOS TAMs in the 
tumor stroma is a negative prognostic factor. 

[10, 36-39] 
Klikněte nebo klepněte sem a zadejte 
text. 

MHC-II, 
cell membrane 

M1, 
M2a 
M2b 

antigen presentation to CD4+ T 
cells 

In primary CRC, increased MHC-II expression 
is associated with increased tumor-infiltrating 
lymphocytes and improved prognosis. Low 
MHC-II expression may reflect poor  
interactions between antigen-presenting cells 
(APC) and helper T-cell and reduced cytotoxic 
T lymphocytes mediated anti-tumor activity. 

 
[40-43] 
Klikněte nebo klepněte sem a zadejte 
text. 

TLR2 
TLR4 (Toll-
Like Receptor 2 
and 4), cell 

M1, M2c Recognize a wide range of 
pathogen-associated molecular 
patterns (PAMPs) from gram-

Among stage III patients a strong TLR2 
expression associates with a better prognosis. 
Among patients with stage II CRC, a strong 
TLR4 expression associate with a worse DSS. 

 
[30, 44-46] 
https://www.proteinatlas.org/sear
ch/TLR2 



membrane, 
cytoplasm 
 

positive bacteria, mycobacteria, 
fungi, and viruses 

 

IL1R1  
(Interleukin-1 
Receptor Type 
1), cell 
membrane 

M1 
M2b 

receptor for IL-1α and IL-1ß, 
pro-inflammatory cytokines 
that initiate inflammatory 
responses and mediate innate 
immunity against pathogens 

Patients with progressive CRC present higher 
levels of IL-1R1 in the pCRC tissue than 
patients responsive to the therapy or with a 
stable disease.  
IL-1R1 this is a maker of poor prognosis in 
CRC  

 
[47, 48] 
 

IL-10R 
(Interleukin-10 
Receptor), cell 
membrane 

M1 
M2b 

IL-10R signaling helps 
maintain immune homeostasis 
by suppressing excessive 
inflammatory responses, as IL-
10 is a crucial 
immunosuppressive agent. 
Also, IL-10R signaling can 
modulate the expression of 
MHC class II and co-
stimulatory molecules, 
affecting antigen presentation 
by macrophage 

Elevated IL-10 levels within the tumor 
microenvironment or in the systemic 
circulation contribute to an 
immunosuppressive milieu in colorectal cancer 
by dampening antigen presentation, reducing 
cytotoxic T-cell and NK-cell activity, and 
promoting tumor cell proliferation and 
chemoresistance, all of which are associated 
with unfavorable clinical outcomes . Activation 
of the IL-10 receptor complex (IL-10RA/IL-
10RB) further enhances STAT3- and NF-κB-
dependent signaling pathways, supporting 
tumor cell survival, epithelial to mesenchymal 
transition, and metastatic progression in CRC . 
Consequently, increased IL-10 expression or 
IL-10R activation is considered a negative 
prognostic indicator and a potential therapeutic 
target in CRC. 

 
[49-52] 
https://www.proteinatlas.org/sear
ch/IL-10R+ 

CD163,  
cell membrane 

M2a, 
M2c 

Scavenger receptor involved in 
clearance of hemoglobin-
haptoglobin complexes and 
anti-inflammatory functions 

High levels of CD163 expression in serum and 
tumor tissues have been associated with a 
worse prognosis. High expression levels 
correlate with lower OS rates. 

 
[53-55] 
https://www.proteinatlas.org/ENS
G00000177575-CD163 



CD206 
(Mannose 
Receptor),  
cell membrane 

M2a, 
M2c 

a C-type lectin,  Involved in 
pathogen recognition and tissue 
remodeling 

Higher density of CD206+ macrophages is 
associated with poorer prognosis in CRC. A 
high ratio of CD206+/CD68+ macrophages is 
significantly associated with poor survival in 
stage II CRC patients.  
Adjuvant chemotherapy significantly improved 
RFS and OS for patients with a high 
CD206+/CD68+ ratio of TAMs.  
 

 
[10, 33, 56] 
https://www.proteinatlas.org/ENS
G00000260314-MRC1/pathology 
 

CLEC7A 
(CD301) 
(Dectin-1),  
cell membrane 

M2a C-type lectin receptor, is a key 
innate immune receptor 
involved in coordinating host 
defense against fungi. It 
recognizes β-1,3-glucan, a 
major structural component of 
fungal cell walls, induces anti-
fungal responses. 

CLEC7A promotes pro-tumor functions of 
macrophages.  
CLEC7A promotes tumor progression by 
regulating the immune microenvironment. 
Depletion of Clec7a in macrophages in vivo 
increases the infiltration of tumor tissue by 
CD4+ and CD8+ T-cells. 
An analysis of the literature did not 
demonstrate the role of CLEC7A as a 
prognostic marker in CRC.  

 
[57, 58] 
https://www.proteinatlas.org/ENS
G00000172243-CLEC7A 
 
 

CD36,  
cell membrane 

M2a scavenger receptor that 
mediates the uptake of oxidized 
lipids and apoptotic cells. 
Promotes inflammatory 
responses and phagocytosis. 
CD36 may interact with other 
receptors, such as integrins, 
TLRs, or tetraspanins.  

High CD36 mRNA levels are associated with 
reduced 5-year survival in CRC patients.  
CD36 expression is highest in macrophages in 
the liver, particularly in metastasis-associated 
macrophages (MAMs) within metastatic liver 
tumors 
 

 
[59-61] 
https://www.proteinatlas.org/ENS
G00000135218-
CD36/pathology/colorectal+canc
er 
 

CD209 (DC-
SIGN)(Dendriti
c Cell-Specific 
Intercellular 
adhesion 

M2a, 2b, 
2c, 2d 

a C-type lectin receptor is 
present on the surface of both 
macrophages and dendritic 
cells. Involved in antigen 
uptake and presentation. 

Expression is increased in metastatic CRC cell 
lines and patient tissues.  
Higher DC-SIGN expression is associated with 
reduced OS in CRC patients.  

 
[62-64] 
 



molecule-3-
Grabbing Non-
integrin), 
cell membrane 

DC-SIGN facilitates CRC metastasis both in 
vitro and in vivo. It forms a complex with Lyn 
and p85, promoting metastasis by increasing 
PI3K/Akt/β-catenin signaling.  
 
Soluble DC-SIGN (sDC-SIGN) levels in serum 
are significantly higher in CRC patients with 
distant metastasis compared to non-metastatic 
patients.  

FCGR3A  (Fc 
Gamma 
Receptor IIIa, 
low ffinity Fc 
receptor, CD16),  
cell membrane, 
secreted 

M2a, 2c mediates antibody-dependent 
cell-mediated cytotoxicity 
(ADCC) and antibody-
dependent phagocytosis (ADP) 

Genetic polymorphisms in FcγRIIIa have been 
associated with response to anti-EGFR 
antibody therapy in metastatic CRC patients. 
Patients carrying the FcγRIIIa-158F/F 
genotype tend to had a less favorable prognosis 
compared to those with V/V or V/F genotypes. 
Survival analysis indicated that FCGR3A 
serves as a prognostic risk factor in most types 
of cancer. 

 
[65-66] 
Klikněte nebo klepněte sem a zadejte 
text. 

MSR1 (CD204) 
cell membrane 

M2a, 2b, 
2c, 2d 

a scavenger receptor that 
recognizes and clears modified 
lipoproteins and bacterial 
products. 

Higher infiltration of CD204-positive 
macrophages into colorectal tumors is 
associated with shorter OS and RFS in patients 
with stage II and III CRC. 
Also, in vitro studies have shown that M2-
polarized macrophages with high CD204 
expression enhance the proliferation and 
invasion of CRC cell lines. 

 
[67-69] 



TIMD4 TIMD4 
(T-cell 
immunoglobulin 
and mucin 
domain 
containing 4),  
cell membrane 

M2a a phosphatidylserine receptor 
involved in recognition and 
clearance of apoptotic cells. 

TIMD4 expression on macrophages may serve 
as a marker for a subset of tissue-resident 
macrophages with immunosuppressive 
functions in CRC. The presence of TIMD4-
positive macrophages in CRC is associated 
with worse clinical outcomes, including 
increased tumor growth and metastasis. 

 
[70, 71] 

CLEC10A (C-
type lectin 
domain family 
10 member A 
receptor, 
CD301),  
cell membrane  

M2a recognizes and binds to various 
glycan structures. 

CLEC10A expression has been correlated with 
clinical outcomes in several cancers, including 
CRC. Higher expression levels of CLEC10A 
ligands on tumor cells have been associated 
with poorer disease-free survival in stage III 
CRC patients. The presence of CLEC10A-
positive macrophages in the tumor 
microenvironment may indicate a more 
aggressive tumor phenotype and poorer 
prognosis. 

 
[72-74] 

FIZZ1 (RELM-
α) (RELM-α) 
(Resistin-Like 
Molecule Alpha 
or RELM-α),  
cell membrane 

M2a FIZZ1 is a resistin-like 
molecule involved in wound 
healing and tissue repair 
processes. 
 

Some studies have explored the presence of 
FIZZ1 in stool samples from American patients 
with CRC, suggesting its potential as a 
biomarker for CRC detection. 
No prognostic associations in CRC have been 
established yet. 

 
[75-78] 
 

Arg1 (Arginase-
1), 
cytoplasm 

M2a An enzyme involved in the urea 
cycle, catalyzing the conversion 
of L-arginine to L-ornithine and 
urea. 

The expression levels of Arg-1 is significantly 
higher in CRC compared to the corresponding 
normal colon tissues. Increased Arg-1 
expression is associated with stage III-IV 
tumors. Arg-1 overexpression was associated 
with shorter OS and DFS in advanced CRC 
stages (III + IV) , but not at early stages (I + II) 
in multivariate analysis.  

 
[79-81] 
https://www.proteinatlas.org/ENS
G00000118520-ARG1 
 



The activation of ARG1 is also associated with 
the migration ability and metastatic 
colonization of colon cancer cells, and blocking 
this process may be a novel strategy for 
controlling malignancies. 

CD155 
(poliovirus 
receptor (PVR), 
cell membrane, 
secreted 

M2a  
- 

Macrophages in the CRC tissue express high 
levels of CD155 compared to those from 
adjacent normal tissues. The expression level 
of macrophage CD155 was higher in stage 
III/IV CRC compared to stage I/II and was 
negatively associated with the survival of CRC 
patients. Additionally, CD155+ macrophages 
promote migration, invasion, and growth of 
CRC cells. 

 
[82, 83] 
https://www.proteinatlas.org/ENS
G00000073008-PVR 
 

VEGF (Vascular 
Endothelial 
Growth Factor), 
VEGFR1 
(VEGF 
receptor), cell 
membrane 
 

M2d VEGF stimulates endothelial 
cell proliferation, migration, 
and survival, facilitating the 
formation of new blood vessels. 
The VEGF receptor (VEGFR1) 
is a family of three closely 
related, membrane-spanning 
peptides containing seven 
extracellular immunoglobulin-
like domains and two 
intracellular tyrosine kinases.  
Binding of VEGF to VEGFR1 
stimulates endothelial cell 
migration, and may mediate 
vascular organization. 

VEGF overexpression in CRC is associated 
with poor OS.  While VEGFR1 expression in 
primary CRC tumor patients did not predict 
prognosis; high percentage of VEGFR1+ cells 
in liver metastasis was associated with worse 
patient outcome. VEGFR1+ metastasis-
associated macrophages contribute to 
metastasis in CRC and were identified as a 
potential new prognostic marker for disease 
recurrence. 

 
[84-86] 
https://www.proteinatlas.org/ENS
G00000112715-
VEGFA/pathology 
 

SIGLEC1 
(CD169), 
Sialoadhesin, 

Non 
M1/M2  

Cell adhesion molecule. 
Antigen presentation and the 
modulation of T-cell responses 

A high density of CD169+ macrophages in 
RLNs is significantly associated with longer 
OS in CRC patients. CD169+ cells to CD68+ 

 
[87-90] 



Plasmatic 
membrane, 
intracellular 

cells ratio in RLNs was an independent 
prognostic factor for CRC. The number of 
CD169+ sinus macrophages in regional lymph 
node (RLN) decreased in CRC patients with 
lymph nodes metastasis.  Also, the density of 
CD169+ macrophages in RLNs positively 
correlates with the number of CD8+ cytotoxic 
T cells infiltrating tumor tissues.  CD169+ 
macrophages in RLNs are thought to promote 
CD8+ T-cell-mediated antitumor immunity, 
contributing to a better prognosis for CRC 
patients.  
In primary CRC, CD169 macrophages can 
exhibit protumor effects. 

https://www.proteinatlas.org/ENS
G00000088827-
SIGLEC1/pathology 
 

CD63, 
membranes of 
intracellular 
vesicles 
(constituitive), 
cell membrane 
(inducible) 

Non 
M1/M2  

CD63 is a member of the 
tetraspanin superfamily of 
activation-linked cell surface 
antigens. Regulates 
phagocytosis, antigen 
presentation, and secretion of 
inflammatory mediators 

High CD63 expression in CRC is associated 
with advanced stages of the disease, poor 
differentiation, mucinous histology and EMT-
associated secretory phenotype. It predicts an 
unfavorable prognosis in CRC patients, 
including those with metastatic disease in 
pCRC. CD63 immunohistochemistry can be 
used to identify patients with an increased risk 
of recurrence who might benefit from adjuvant 
therapy. 

 
[91-93] 
https://www.proteinatlas.org/ENS
G00000135404-CD63/pathology 
 

 

Abbreviations: APC: antigen-presenting cells; CRC: colorectal cancer; IBD: inflamatory bowel desease; LN: lymph node; LM: lymph metastasis; 
MAM: metastasis-associated macrophages; OS: overall survival; RLNs; regional lymph nodes; RFS: recurence free survival; TAMs: tumor-
associated macrophages; TNM: tumor node metastasis. 
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Table S2 

Key differences between Kupffer cell s in Normal liver and LM 

 

Feature, 
Function, 
Role 

Normal Liver Reference Tumor microenvironment of 
metastasis 

Reference 

Morphology Kupffer cell (KCs) are 
amoeboid-shaped and are 
attached to the sinusoidal 
endothelial cells. 

spindle or stellate-shaped 
cytoplasm, components of 
liver vascular walls  

KCKC maintain a normal, 
non-activated state. 

[1, 2] 

 

KCs may become activated in 
response to tumor cells,  leading 
to hypertrophy (enlargement) of 
the cells. Activated KCs may 
show increased cytoplasmic 
vacuoles 

KCs and other macrophages 
were found to leave the 
sinusoids and migrate to sites of 
potential tumor development 
where they interacted with 
tumor cells and intimately 
wrapped their processes around 
fat storing cells 

[2-4] 

 

 

 

Phenotypic 
polarization 

KCs typically exhibit an M1-
like phenotype (CD80, 
CD86, Ly6C1) and Pan 
macrophages (CD68, CD14, 
CCR2, CD163)  

[5-6] KCs often undergo polarization 
towards an M2-like phenotype 
(CD36, LCD206, CD209, 
CD163) 

[5-7] 

Recruitment 
and 
polarization 

KCs are maintained through 
self-renewal and local 
proliferation, with minimal 
recruitment from circulating 
monocytes 

[5] 

 

In colorectal cancer liver 
metastasis (CRC LM), there is 
increased recruitment of 
monocyte-derived 
macrophages, which 
differentiate into M2-like KCs. 

[6, 8] 
      

Phagocytic 
Activity 

KCs exhibit robust 
phagocytic activity, clearing 
pathogens, cellular debris, 
and potentially tumor cells in 
the early stages of 
metastasis. 

[9] 
 

The phagocytic activity of KCs 
can be impaired or altered, 
potentially contributing to 
tumor cell survival and 
metastatic progression. 

[4, 10] 

Interactions 
with other 
cells 

KCs interact with resident 
liver cells, such as 
hepatocytes and stellate cells 

[9] 
 

KCs interact with cancer cells, 
cancer-associated fibroblasts 
(CAFs), and other immune cells  

[4, 10, 11] 



Cytokine and 
Chemokine 
Production: 

KCs produce a balanced 
array of cytokines and 
chemokines to maintain 
immune homeostasis and 
regulate inflammatory 
responses. 

[4] 

 
 

KCs often produce higher levels 
of immunosuppressive 
cytokines (e.g., IL-10, TGF-β) 
and pro-angiogenic factors 
(e.g., VEGF), promoting tumor 
growth and metastasis. 

[4] 

 

 

 

 

Functional 
roles 

Crucial role in clearing 
pathogens, removing cellular 
debris, and maintaining liver 
homeostasis through their 
phagocytic and 
immunomodulatory 
functions 

[4, 12] 
 

Formation of premetastatic 
niches. 

KCs can exhibit both pro-tumor 
and anti-tumor functions, 
depending on the stage of 
metastasis and the specific 
microenvironmental cues.  

contribute to an 
immunosuppressive 
microenvironment  

[4] 
 

 

Abbreviations: CAFs: cancer-associated fibroblasts; CRC LM:colorectal cancer liver 
metastasis; KCs: Kupffer cellls;  
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