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Abstract

Target therapy is effective for epidermal growth factor receptor (EGFR) mutation in non-small cell lung cancer
(NSCLC). However, resistance often occurs after treatment for several months. Macrophages have difficulty in
devouring resistant cells. Ganoderma immunomodulatory protein (GMI) exhibits anti-tumour and
immunomodulatory activities. This study aimed to investigate whether GMI overcomes Osimertinib (Tagrisso)
and Gefitinib (Iressa) resistance via enhancing macrophage polarization. GMI attenuated signal transducer and
activator of transcription 3 (STAT3) phosphorylation and downstream CD47 expression in parental and
resistant cells via Western blot and RT-qPCR. Overexpressed STAT3 restored GMI-induced apoptosis and
GMl-reduced transcription of CD47 in HCC827 and HI1975 lung cancer cells. Phospho-STAT3 inhibitor
(W1131) also reduced the expression of CD47 in NSCLC cells. The interaction between GMI and W1131 was
effective in reducing phosphorylated STAT3 and CD47. ImageXpress Pico analysis revealed that GMI enhanced
phagocytotic activity of macrophages toward tumour cells with Red CMTPX and Green CMFDA dyes. The
results showed that GMI enhanced macrophage phagocytosis of lung cancer cells by inhibiting STAT3 and
reducing CD47 expression. In addition, GMI enhanced M1 inhibition of M2 polarization but had no effect on M1
differentiation. This is the first study to demonstrate that GMI enhances macrophage phagocytosis and
modulates the STAT3-CD47 axis to overcome EGFR-TKI resistance in NSCLC, highlighting its potential as a
novel adjunct immunotherapeutic agent.

Keywords: Ganoderma immunomodulatory protein, Epidermal growth factor receptor, Signal transducer and activator of
transcription 3, CD47, Phagocytotic, Lung cancer.

1. Introduction

Lung cancer remains the first most prevalent
human malignancy and represents a leading cause of

GLOBOCAN estimates [1]. Several phase III clinical
trials have established that gefitinib and erlotinib

cancer-related deaths worldwide in the latest (first-generation tyrosine kinase inhibitors [TKIs]), as
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well as afatinib (a second-generation TKI),
significantly outperform conventional chemotherapy
in terms of progression-free survival and overall
response rates for patients with EGFR mutation [2].
These mutated epidermal growth factor receptors are
recognised as well-known biomarkers for targeted
therapy. Despite the high response rate of
first-generation TKIs such as gefitinib, most patients
will experience disease progression after 9-13 months
of treatment [3, 4]. This situation has been described
as ‘acquired resistance’ to TKIs.

The most common resistance mechanism to
first-generation TKIs is the p.Thr790Met point
mutation (T790 M), accounting for almost 50% [5].
Osimertinib, an irreversible third-generation TKI
designed to overcome resistance to T790M, also
covers sensitising EGFR mutations (19Del and
21L858R) [6]. There is an urgent need to understand
the mechanisms underlying resistance to Osimertinib.

Fungal immunomodulatory proteins (FIPs) are a
family of peptides that can regulate immunity, fight
inflammation, fight allergies and fight cancer. To date,
more than 38 types of FIPs have been discovered [7].
Ganoderma microsporum immunomodulatory protein
(GMI) belongs to the family of FIPs. Previous studies
have also confirmed that GMI has various
anti-inflammatory, tumour metastasis-inhibiting and
anti-cancer effects [8, 9].

Signal transducer and activator of transcription
(STAT) proteins are a family of cytoplasmic
transcription factors,[10] of which family member
STATS3 is involved in many biological processes such
as cell proliferation, survival, differentiation and
angiogenesis [11-13]. Many recent papers have
pointed out that STAT3 becomes overexpressed in
most human cancers and is associated with poor
clinical prognosis such as tumour formation,
metastasis and drug resistance [14, 15]. Therefore,
STATS3 is considered a potential therapeutic target for
cancer treatment [16, 17].

Cluster of differentiation 47 (CD47) is a key
anti-phagocytic signal for macrophages in the innate
immune system [18]. The innate immune system
plays an important role in tumour surveillance,
primarily via the phagocytic activity of macrophages
[19, 20]. In the early stages of tumour formation,
macrophages actively infiltrate tumour tissues and
phagocytose tumour cells; subsequently, their
phagocytic ability is gradually inhibited by tumour-
derived inhibitory signals [21]. As the most studied
anti-phagocytic signal in the tumour
microenvironment (TME), CD47 has been shown to be
overexpressed on the surface of multiple types of
cancer cells. Binding of CD47 to its receptor signal
regulatory protein a (SIRPa) on macrophages inhibits

macrophage-mediated phagocytosis [22-24].

This study aimed to investigate the role of
macrophage reprogramming by GMI treatment and
overcome resistance in Osimertinib- and gefitinib-
treated lung cancer cells.

2. Methods and Materials

2.1. Cell culture and chemicals

THP-1 cells were sourced from the Bioresource
Collection and Research Center (BCRC, Taiwan).
H1975 cells (L858R/T790M mutation), HCC827 cells
(exon 19 deletion), gefitinib-resistant HCC827/GR
cells and Tagrisso-resistant H1975/TR cells were
provided by Dr. Ching-Chow Chen (National Taiwan
University, Taiwan). HCC827/GR cells and
H1975/TR cells were maintained with 2 pM gefitinib
or Tagrisso. All cells were grown at 37 °C with 5%
CO; in RPMI-1640 medium (Gibco) supplemented
with 10% foetal bovine serum (FBS), 100 pg/mL
penicillin and 2 mmol/L L-glutamine. GMI™,
manufactured by Mycomagic Biotechnology Co., Ltd.,
(Taipei, Taiwan), was generated and ameliorated
from G. microsporum and then stored at —20 °C until
use. W1131 (HY-153190, MCE, USA) was prepared as
a 3 mM stock solution in dimethyl sulphoxide
(DMSO) for storage at —20 °C until use. DMSO and
polybrene were acquired from Sigma-Aldrich (St.
Louis, MO, USA).

2.2. Macrophages induce polarization

THP-1 cells were polarised into MO, M1 and M2
macrophages as previously described. The cells were
cultured to 100 ng/mL PMA (19661, Caymen, Ann
Arbor, MI, USA) for 72 h to obtain MO macrophage.
M1land M2 were obtained from 20 ng/mL IFN-y (300-
02, PeproTech, Rehovot, ISR, USA) plus 100 ng/mL
LPS (L2280, Sigma-Aldrich, St. Louis, MO, USA) and
20 ng/mL IL-4 (200-04, PeproTech, Rehovot, ISR,
USA) plus 20 ng/mL IL-13 (200-13, PeproTech,
Rehovot, ISR, USA) for 48 h, respectively.

2.3. Plasmid constructions, cell transfection
and virus infection

The pBabe-based vectors for the ectopic
expression of N-terminal hemagglutinin epitope
(HA)-tagged  dominant-active STAT3  mutant
(STAT3-C) were coined as pBabe-HA-STAT3-C, and
they have been previously described [25, 26].

2.4. VZV-G pseudotyped lentivirus-shRNA
system, cell transfection and virus infection

The knockdown of CD47 was accomplished
using lentiviral-based RNAi reagents that were
obtained from the National RNAi Core Facility
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located at the Institute of Molecular Biology/Genomic
Research Center, Academia Sinica. Lentiviral infection
of the HCC827 and H1975 cell lines was used to stably
integrate and express short hairpin RNA (shRNA)
targeting the CD47 mRNA sequences. The
knockdown of CD47 was accomplished by lentiviral-
specific short-hairpin RNA (shRNA) delivery, and the
knockout of CD47 was accomplished by lentiviral
delivery. The primer sequences were GCCITGG
TTTAATTGTGACTT, which were then used to infect
HCC827 and H1975 cells in the presence of polybrene
(8 pg/mL) to improve infection efficiency. Two days
after infection, cells were subjected to positive
selection by puromycin (2 pg/mL) for 48 h, followed
by immunoblotting to confirm the ectopic expression
of shCD47.

2.5. Clonogenicity assay

H1975, HCC827, HCC827/GR and H1975/TR (4
x 105 /60 mm dish) were treated with GMI (0, 0.6 and
1.2 pM) for 24 h. The cells were trypsinised and
replated at a density of 200 cells/60 mm-well plates to
grow into colonies in drug-free media for 10-14 days.
The cells were fixed with 95% ethanol and stained
with a 20% Giemsa solution (1.09204.0500, Merck, DA,
DE), and the numbers of colonies was scored as stated
previously [27].

2.6. Flow cytometry

H1975, HCC827, HCC827/GR and H1975/TR (8
x 105 cells/60 mm dish) were treated with GMI (0, 0.6
and 1.2 uM) for 24 h. Cells were washed with
precooled PBS, trypsinised and incubated with a
binding buffer containing annexin V-fluorescein
isothiocyanate and propidium iodide (BioVision).
Flow cytometry analysis was performed using FACS
Calibur Flow Cytometer (BD Biosciences). At least
10,000 cells were analysed per sample and illustrated
as a dot plot using CellQuest Pro software.

2.7. Western blot

Proteins were extracted from cells using RIPA
buffer (RP05-10, Visual Protein, Taiwan) and
supplemented with phosSTOP (04906845001, Roche)
and protease inhibitors (04906837001, Roche). Protein
lysates were determined with Bio-Rad Protein Assay
Kit (500-0006, Bio-Rad, CA, USA). Proteins were
separated by 10% SDS-PAGE and transferred to
polyvinylidene  fluoride  (PVDF) membranes
(IPVHO00010, Millipore, USA) and incubated in 4 °C
overnight with primary antibodies. Secondary
antibodies were incubated in room temperature for 2
h. The PVDF membranes with target protein were
exposed in Bio-rad Chemidoc MP system.

2.8 Antibodies

HA-tag (#3724), STAT3 (#9139) and phospho-
STAT3 (Y705) (#9131) were purchased from Cell
Signaling Technology (Boston, MA, USA). CD86
(A1199), CD206 (A11192), SIRP-alpha (A9001),
Arginase 1 (ARG1; A22410) and CD163 (A23023) were
purchased from ABclonal (USA, MA). B-actin was
from Sigma (AC-40).

2.9. Quantitative RT-PCR

Total RNA was extracted from cultured cells
using Rare-RNA (GRPO2, GENEPURE
TECHNOLOGY CO., Taichung Taiwan), and cDNA
was synthesised by using High-Capacity cDNA
Reverse Transcription Kits (4368813, Applied
Biosystem). cDNA was used for quantitative RT-PCR
by using SYBR Green (PT-GL-SQGLR-V3, Protech).
The primer sequences for qRT-PCR analysis are listed
in Table S1, and the primers were synthesised by
Protech Technology Enterprise (Taiwan).

2.10. Phagocytosis assay in vitro

Macrophages were developed from THP-1 by
PMA (100 ng/mL) and prepared for in witro
phagocytosis assay. Macrophages were cultured in
serum-free medium for 2 h and co-cultured with
tumour cells after treatment, which were labelled with

CellTracker™  Green CMTPX Dye (C7025,
Invitrogen™). CellTracker™ Red CMTPX Dye
(C34552, Invitrogen™) was wused to label

macrophages. ImageXpress Pico was used to detect
phagocytosis. The phagocytic index was calculated as
the number of phagocytosed cells.

2.11. In vivo experiments

The in vivo mouse experiments were performed
in accordance with the protocol approved by the
Institution Animal Care and Use Committee (IACUC)
of Chung Shan Medical University (protocol No.
2608). The five-week-old nude male mice
(BALB/cAnN.Cg-Foxnlnu/CrlNarl) were obtained
from BioLASCO (Taipei, Taiwan). To establish
HCC827/GR tumour xenografts, mice were injected
s.c., with 3x 10 ¢ HCC827/GR cells (75ul) plus 75 pl
Matrigel (BD Biosciences, 354234). Mice bearing
HCC827/GR tumours were randomly separated into
two independent groups (n = 3 for each group),
including the control and GMI groups. Five days after
cell implantation, mice in the control group were
treated with 100 pl PBS by gavage once every day and
served as controls. The GMI group was administered
with 160 pg per mouse GMI diluted in 100 pl PBS by
gavage once every day. Tumour sizes were measured
every 3 days after 11 days of cell injection, and tumour
volume was calculated by the formula 0.5x larger
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diameter (mm) x small diameter (mm) 2. At the end of
the in vivo experiments, all mice were euthanized
using CO2 and the subcutaneous HCC827/GR
tumours were excised.

2.12. Statistical analysis

All data derived from three separate
experiments were shown as the mean * standard
deviation. Student’s t-test was used to analyse
comparisons between two individual groups.
One-way or two-way analysis of variance (ANOVA)
was employed for comparisons involving multiple
groups and/or conditions. p < 0.05 was considered as
statistically significant.

3. Results

3.1. GMI inhibits STAT3/CD47 signaling and
suppresses tumor growth in TKI-Resistant
lung adenocarcinoma

Numerous studies have highlighted that
aberrant activation of STAT3 is prevalent in lung
cancer and various other malignancies. The
transcription factor STAT3 regulates a multitude of
genes associated with tumorigenesis, cell proliferation
and metastasis, and its dysregulation is linked to poor
prognosis. Therefore, we investigated whether GMI
can reduce STAT3 and its downstream target CD47 in
TKI-resistant cells. Western blot analysis was
performed to assess the levels of phosphorylated
STAT3 (p-STAT3, Tyr705) as a marker of activated
STATS3 in lung adenocarcinoma cell lines treated with
GML The results indicated that TKI-resistant cell lines
HCCB827 gefitinib-resistant (HCC827/GR) and H1975
Osimertinib and Tagrisso-resistant (H1975/TR)
exhibited higher levels of p-STAT3 and CD47
compared with their parental cell lines. GMI also
reduced p-STAT3 and CD47 among four cell lines
(Figs. 1A and 1B). GMI could decrease CD47 mRNA
expression in a dose-dependent manner (Fig. 1C). To
evaluate the anti-cancer effect of GMI, an in vivo
antitumor study was performed using a nude mice
xenograft model subcutaneously inoculated with
HCC827/GR cells. The average tumour volume of the
treatment group (receiving GMI at 160 pg/mouse
weight by gavage administration, N = 3) was
statistically lower than that of the control group at day
23 (Fig. 1D). The mice were sacrificed at day 50. The
tumour volume and the tumour weight of the GMI
group is lower than the control group at day 50 (Fig.
1E). Immunohistochemical analysis revealed that the
expression level of p-STAT3 was markedly reduced in
the GMI-treated group compared to the control group
(Fig. 1F and 1G).

3.2. Effect of Apoptosis and Cell Viability in
STAT3 Overexpression Cells under GMI
Treatment

To clarify the role of STAT3 in GMI-induced
apoptosis, we stably introduced a constitutively active
STAT3 mutant (STAT3 A661C/N663C) with an
N-terminal HA tag (HA-STAT3) into H1975 and
HCC827 cell lines. Western blot analysis with an
anti-HA antibody confirmed the sustained activation
of STATS3 in these lung cancer cell lines (Fig. 2A). Flow
cytometry was conducted following GMI treatment.
The data showed 32.9%#0.7% and 37%=%0.6% of
apoptosis in H1975 and HCC827 cells, respectively.
Overexpression of STAT3 ameliorated apoptosis to
0.5%+0.3% and 0.2%+0.2% (Fig. 2B). Cell viability was
assessed via colony formation assay. The results
showed that GMI treatment led to a significant
decrease to 13%+2% and 2%*1% of un-infected cells
(Vector). These values increased to 61%+2% and
9%+3% in constitutively STAT3-infected cells (Fig.
2C). Overall, these findings clearly confirmed that
inhibition of STAT3 activation played an important
role for GMI in inducing apoptosis in human lung
adenocarcinoma cells.

3.3. CD47 mRNA and protein are regulated by
STAT3

Activated STAT3 translocates to the nucleus to
regulate gene expression. The above results indicated
that GMI could inhibit STAT3 activation and CD47
expression. Phosphorylated STAT3 binds to the CD47
promoter and mediates CD47 expression. We
observed that GMI affected CD47 protein levels.
Western blot assay confirmed high levels of p-STAT3
and CD47 in constitutively active HA-STAT3 cells
(Fig. 3A). When cells were treated with 3 pM STAT3
inhibitor W1131 in combination with GMI, STAT3 and
CD47 protein levels were also reduced (Fig. 3B). The
CD47 mRNA expression in overexpressd-STAT3
H1975 and HCC827 cells with GMI treatment was
more pronounced than in H1975 and HCC827 vector
cells. The difference in CD47 expression between the
H1975/HCC827  vector and  H1975/HCC827
overexpressed-STAT3 cells was more significant for
cells treated with GMI than in other cells (Fig. 3C).
The same results were obtained on quantitative PCR
assay of mRNA of CD47. Treatment with 3 pM W1131
reduced CD47 mRNA. However, co-treatment with
GMI significantly eliminated the expression of CD47
mRNA in H1975, HCC827, H1975/TR and
HCC827/GR cells (Fig. 3D). Collectively, these results
proved that inhibition of STAT3 activation regulated
the downstream expression of CD47.
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Figure 1. Expression of STAT3 and CD47 in Parental and TKI-Resistant Lung Cancer Cells, and Tumor Growth In Vivo. (A) After treatment of various
concentrations of GMI (0, 0.6 and 1.2 uM) for 24 h, total cell lysates of H1975, HI975/TR, HCC827 and HCCB827/GR cells (4 x 105 cells in a 60 mm dish) were analysed by
Western blot assay to detect the protein expression levels of p-STAT3(Y705) and CD47. (B) Protein densitometric quantifications of Western blot were performed using Image
] software. (C) Quantitative RT analyses were performed to analyse CD47 gene expression. (D) Approximately 3 x10¢ HCC827/GR cells were s.c., injected into studied mice
to initiate tumour growth. Five days after cell implantation, the control group continued to receive sterilized PBS, whereas animals in GMI group received GMI protein (160
pg/mouse, N = 3, respectively). PBS and GMI protein were administered to mice by gavage once every day. Eleven days after cell transplantation, tumour sizes were measured
every 3 days and the tumour volume was calculated. ***p < 0.001 with student’s t-test. (E) The tumour weight of PBS group and GMI group were measured after mice sacrifice
at day 50. Values are the mean * SD on triplicate measurements. (F) H&E staining and IHC staining of p-STAT3 in tumor tissues. (G) Quantification of IHC staining were
performed using Imagej software. *p < 0.05; **p < 0.01; **p < 0.001. * compared with untreated cells.; # compared with parental and resistant cells.
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3.4. GMI Enhances Phagocytic Function of
Macrophages Towards Lung Adenocarcinoma
Cell Lines and Their Drug-Resistant Variants

Previous literature has established that CD47
interacts with the macrophage receptor SIRPa to
initiate the ‘Do Not Eat Me’ signal, which inhibits
phagocytosis and allows cells to evade engulfment.
As observed in previous results, GMI reduces CD47
protein and mRNA levels. When the cells were
damaged and phagocytosed, red macrophages
progressively engulfed the damaged cells, resulting in
yellow fluorescence due to the overlap of red
(macrophage) and green (tumour cells) signals. The
results indicated that the GMI promoter facilitated
phagocytosis in four cells. Phagocytosis was activated
to a lesser extent in Osimertinib-resistant cell (H1975/
TR) and Gefitinib-resistant cells (HCC827/GR) (Fig.
4A and 4B). Furthermore, after treating cells with 0 or
1.2 uM GMI for 6, 12 and 24 h, we assessed phagocytic
activity using ImageXpress Pico. The data revealed
that phagocytic ability increased in a time-dependent
manner to reach optimal for 24 h (Fig. 4C).
Additionally, we observed a decrease in the number
of green fluorescently labelled cancer cells over time,
indicating enhanced phagocytosis. Phagocytic activity
plateaued at 6 h in HCC827/GR (Fig. 4D).

3.5. STAT3 Influences Macrophage Phagocytic
Activity

We adapted from CD47 silencing and confirmed
successful knockdown via Western blot analysis,
which demonstrated a down-regulation of CD47
expression in HCC827 and H1975 cells (Fig. 5A). The
results showed that silencing of CD47 significantly
reduced the differences in phagocytosis between
H1975 and HCC827 cells, as well as their drug-
resistant mutant H1975/TR and HCC827/GR.
Furthermore, GMI treatment enhanced phagocytosis
in these cell lines (Figs. 5B and S2A). Given that
STAT3 mediates CD47 expression, we further
explored this relationship by using stable cell lines
with constitutively active STAT3. After treating these
cells with different concentrations of GMI, we
assessed phagocytic activity. The phagocytic activity
was restored in cells with STAT3 overexpression
(Figs. 5C and S2B). Overall, these findings
demonstrated that up-regulation of STAT3 and CD47
contributed to the evasion of tumour cells from
macrophage-mediated phagocytosis.

3.6. Effects of GMI on Macrophage Polarization
to M0, M1 and M2 Phenotypes

We aimed to investigate whether GMI influences
macrophage differentiation and its impact on M1l

(pro-inflammatory and anti-tumour) and M2
(anti-inflammatory and pro-tumour) macrophages in
response to cancer cells. To this end, we established a
macrophage polarization model using THP-1 cells.
Initially, =~ we  differentiated monocytes into
macrophages by treating them with phorbol
12-myristate 13-acetate (PMA). Once differentiated
into M0 macrophages, we further polarised them by
incubating with IL-4 and IL-13 to obtain M2
macrophages, or with IFN-y and LPS to activate
classical M1 macrophages. Western blot analysis was
then performed to assess the protein levels of CD206
(an M2 marker) and CD86 (an M1 marker). The results
showed the successful polarisation of macrophages,
with GMI effectively reducing CD206 protein levels in
M2 macrophages and increasing CD86 protein levels
in M1 macrophages (Fig. S3A). To further validate
these findings, we analysed mRNA expression of MO,
M1 and M2 macrophages by RT-PCR. Measurement
of several classic M1 and M2 markers confirmed the
successful polarisation of macrophages, as evidenced
by significant increases in M1 markers (CD86 and
i-NOS) and M2 markers (CD163 and CD206; Fig. 6A).
Furthermore, GMI treatment led to an increase in
i-NOS mRNA levels in M1 macrophages and a
decrease in CD206 mRNA levels in M2 macrophages,
confirming that GMI enhanced pro-inflammatory and
anti-tumour M1 macrophages while reducing the
anti-inflammatory and pro-tumour M2 macrophages
(Fig. 6B). Specifically, GMI increased the phagocytic
ability of M1 macrophages towards H1975,
H1975/TR, HCC827 and HCCB827/GR cells (Figs. 6C
and 6D).

4. Discussion

In this study, the results showed that
up-regulation of STAT3 and CD47 helped tumour
cells escape phagocytosis by macrophages, and GMI
could participate in the inhibition of the STAT3-CD47
signalling axis. These results support GMI as a
potential drug for cell-targeted treatment of lung
cancer.

We used GMI to treat H1975 and HCC827 cells
and its drug-resistant strains H1975/TR and
HCCB827/GR; they all had exhibited remarkable
ability to inhibit cell survival. In addition, STAT3 is
associated with many cancers [28, 29]. A large amount
of evidence has been published in many papers
showing that activation of STAT3 plays a key role in
the process of malignant transformation [30, 31].
Therefore, STAT3 is an extremely important
oncogenic factor and is crucial to tumour progression
and the formation of the TME [32]. Evidence from
other laboratories suggested that STAT3 is selectively
active in response to TKI target drugs [33]. GMI can
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also regulate p-STAT3 (STAT3 activation state) in
lung cancer cells. These results were consistent with
the discovery of the mechanism of GMI in oral cancer

[34, 35]. GMI can inhibit STAT3 and the growth of
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(right panel) of macrophage (yellow)/tumour cells (green) treated with 1.2 uM GMI for different times (h) in H1975 and HI1975/TR cells. (Macrophages: red; tumour cells: green;
and yellow: phagocytosed cells. Scale bar, 200 pm. The phagocytic index was calculated as the ratio of the number phagocytosed cells of macrophages). (D) The above same
conditions were shown in HCC827 and HCC827/GR. Values are the mean % SD of triplicate measurements. ns p > 0.05, *p < 0.05; **p < 0.01; ***p < 0.001 compared with
untreated cells.
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We have several inferences about how GMI
inhibits STAT3. Among them, EGFR mutations are a
key therapeutic target and are common in NSCLC
[38]. Significant progress has been made in the clinical
management of EGFR mutations through targeted
therapy. These TKIs in cancer cells block EGFR
tyrosine kinase phosphorylation and downstream
signalling pathways such as MAPK and AKT [39, 40].
This inhibits tumour proliferation, promotes
apoptosis and resists angiogenesis, ultimately
achieving anti-tumour effects.

We observed a positive correlation between
STAT3 and CD47 expression in lung cancer.
Therefore, we screened CD47 at four recognised
checkpoints in phagocytic cells in EGFR-TKI-resistant
NSCLC. In this study, we found that phosphorylated
STAT3 and CD47 were significantly up-regulated in
drug-resistant cells. This phenomenon may be the
reason why drug-resistant cells are resistant. Other
studies also mentioned that a large number of STAT3
expressions are related to drug resistance. The
positive correlation between STAT3 and CD47
expression in lung cancer was consistent with
previous findings, as Kang et al. (2023) demonstrated
that the a5-nAChR/STAT3/CD47 axis promotes lung
adenocarcinoma progression and immune evasion,
supporting a role for STAT3 as a direct regulator of
CD47 expression. [41] Shrestha et al. (2025) reported
that combined inhibition of STAT3 and CD47
effectively =~ suppressed lung  metastasis in
osteosarcoma, highlighting the therapeutic relevance
of targeting this pathway [42]. In clinical studies, the
SIRPa receptor is expressed on macrophages and is an
inhibitory immune receptor. After binding to the
CD47 protein, it sends a ‘do not eat me’ signal. Given
that CD47 is often overexpressed in cancer cells to
avoid clearance by macrophages, treatments targeting
CD47/SIRPa have been actively investigated [43, 44].
We found that CD47 was significantly up-regulated in
drug-resistant cells, which further demonstrated that
the up-regulation of CD47 helped tumour cells escape
phagocytosis by macrophages. GMI inhibited STATS3,
reduced macrophage M2 polarization and SIRPa
levels and enhanced their immune and anti-tumour
functions.

The clinical application of EGFR-TKIs faces
many challenges. Although numerous highly
selective drugs and combination treatment strategies
targeting EGFR protein mutation sites have been
developed, acquired TKI resistance has not been
effectively solved. The TME is a comprehensive
system formed by the interaction of tumour cells with
surrounding tissues and immune cells. Cells in the
TME are reprogrammed to adapt to the environment
during drug treatment. In recent years, the role of the

TME in acquired TKI resistance has attracted
increasing attention [45]. Macrophages are one of the
main components of the TME and may be closely
related to tumour occurrence and drug resistance. In
other papers, down-regulation of macrophage
phagocytosis and up-regulation of macrophage M2
polarization were found to be associated with NSCLC
drug resistance, indicating that TAM plays an
important role in drug resistance [46].

In conclusion, our data proved that GMI
enhanced phagocytosis, which influenced TAMs and
modulated the STAT3-CD47-SIRPa signalling axis
involved in EGFR-TKI resistance. Thus, GMI
represents a novel therapeutic strategy to overcome
EGFR-TKI resistance in lung cancer. The observed
acquired resistance to TKIs underscores the potential
of GMI as a targeted therapeutic agent for lung cancer
cell lines and drug-resistant variants. The findings of
this study warrant further investigation into the
development of GMI as an anti-cancer agent.
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