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Abstract 

Prostate cancer (PCa) is a major health problem worldwide with variable incidence, progression and 
outcomes depending on genetic, environmental and socio-economic factors. This study compares gene 
expression profiles in PCa patients from South Africa (RSA) and the United States (USA) using RNA 
sequencing in whole blood and pathway analyses. Whole blood samples were collected in Wren RNA 
stabilization tubes from RSA-PCa (n = 6), RSA-controls (n = 6), USA-PCa (n = 7) and USA-Controls (n = 
11). RNA sequencing revealed 1,627 differentially expressed genes (DEGs) in RSA-PCa vs. RSA-controls, 
and 2,193 DEGs in USA-PCa vs. USA-Controls. Pathway analyses identified geographical region-specific 
variations; RSA-PCa had upregulated myeloid suppressor cell pathways and immunosuppressive markers 
while USA-PCa samples exhibited upregulated cytokine signaling and inflammatory pathways. 
Comparative analysis of healthy controls revealed 2,280 DEGs, which indicated significant differences in 
molecular profile of the geographic locations. qRT-PCR undertaken on 27 biomarkers related to PCa in 
whole blood (PROSTest) identified that 26 (96%) of the marker genes were commonly expressed. 
RNAseq and normalized PCR gene expression of these markers were well-correlated (r = 0.44, p = 
0.0012, n = 30 pairs). The results of this study indicate that there are geographic differences in 
blood-based gene expression in both controls and individuals with PCa. Genes associated with a clinically 
validated molecular assay (PROSTest) were identified in both populations, but significant differences in 
gene expression relevant to tumor pathobiology were identified. These immune-associated signaling 
pathways suggest differences between these two cohorts in blood-based molecular architecture related 
to PCa. They also suggest the need to consider population-specific biomarkers to better understand this 
disease. Ultimately, optimizing blood-based molecular diagnostic and therapeutic approaches will require 
population-level studies. 

  

Introduction 
Prostate cancer (PCa) is a significant public 

health concern and one of the most frequently 
diagnosed malignancies in men worldwide. It is the 
second most common cancer in men after lung cancer, 
and ~1.5 million new cases were diagnosed in 2022 
[1]. The United States has the highest incidence; 313, 
780 new cases were diagnosed in 2025, and the 
lifetime risk of being diagnosed with PCa is about 1 in 

8 [2]. 
PCa risk varies significantly across geographic, 

socioeconomic, and racial contexts. Predominant risk 
factors include age (from ~5% in < 30-year-old males 
to ~60% by age of 80), lifestyle (BMI and high alcohol 
intake, socioeconomic status), genetic burden (family 
history, inherited mutations in DNA damage and 
mismatch repair genes), and ethnicity [3-5]. Men of 
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African descent have a significantly elevated risk 
(2-3-fold) of having PCa compared to Caucasian, 
Hispanic/Latino and Asian men [6]. In South Africa, 
PCa is the most commonly diagnosed cancer in 
African men, with a 60% increase in new cases 
reported between 2002 and 2018 [7]. This is attributed 
to increasing life expectancy, improved diagnostic 
capabilities, lifestyle changes, and environmental 
exposures [8]. Disparities in healthcare access, such as 
unequal availability of diagnostic tools and treatment 
facilities, further exacerbate mortality rates in 
low-resource regions. These differences underscore 
the need for equitable diagnostic strategies and 
region-specific research to address the unique genetic 
and environmental factors influencing PCa [7]. 

Advances in next-generation sequencing (NGS) 
have transformed PCa research, offering insights into 
the molecular mechanisms of the disease [9]. NGS 
facilitates comprehensive profiling of genetic and 
transcriptomic alterations, enabling the discovery of 
novel biomarkers for early detection, disease 
monitoring, and personalized treatment. Molecular 
testing, typically used at a tissue level, includes the 
development of several mRNA-based tools e.g., 
Oncotype Dx, that are now used in PCa management. 
Peripheral blood, however, provides an alternative 
testing compartment for RNA-based assays [10]. 
CTCs and cfRNA are detectable in PCa blood [11], 
while platelets are a well-known source of 
tumor-derived mRNA [12]. Whole blood-derived 
gene expression assays have been described [13, 14]; 
different immune-related 6- and 9-gene or PCa tumor- 
associated 5-gene assays are available for research 
purposes [13-15]. PROSTest is a clinically validated 
liquid biopsy that is a minimally invasive, 
mRNA-based diagnostic (27 target genes) with > 90% 
sensitivity that leverages molecular profiling of gene 
expression in whole blood samples [16, 17]. While 
providing a source of “tumor signal”, peripheral 
blood also offers an opportunity to interrogate 
molecular information from circulating immune cells. 
This may provide insights into host and 
environmental responses. 

In this study, we evaluated whether blood-based 
gene expression patterns in PCa between Caucasian 
US and Black South African populations was 
different. We posited than any differences could 
reflect variations in underlying genetic and 
environmental factors which are known to exist [8, 18, 
19]. Using RNA sequencing and liquid biopsy 
technologies, we compared transcriptomic signatures 
in two age- and tumor biology-matched sample sets 
as well as the clinically validated PROSTest 
PCR-based signature across these populations. The 
objective was to use these tools to provide insights 

into geographic/ethnic-specific disease pathobiology 
of PCa. We undertook this global approach but also 
focused on genes and pathways e.g., AR-signaling, 
known to differ between these ethnicities [20-22]. 

Materials and Methods 
Clinical Samples: Based on established 

protocols for RNAseq-based DEGs [23], we focused 
on a minimum of 6 biological samples from each of 
the 4 groups (PCa-USA, PCa-RSA, Con-USA, 
Con-RSA), that we wanted to evaluate. Whole blood 
samples were collected between 2020-24 [United 
States (USA-PCa: 7, USA-Control: 11), Republic of 
South Africa (RSA-PCa: 6, RSA-Control: 6)] in 
accordance with respective guidelines and regulations 
of both countries (United States: WIRB20191743 
approved by the Western Institutional Review/WCG 
Board; South Africa: 389/2020 approved by the 
Research Ethnics Committee of the University of 
Pretoria, Reference number: GP202009 032 on the 
South African Health Research Database) and with 
the Helsinki declaration of 1975, as revised in 2013. All 
samples were collected from adult participants [USA 
median age: 61.5 yrs (USA-PCa: 66 yrs; USA-Controls: 
57 yrs); RSA median age: 57.5 yrs (RSA-PCa: 63 yrs; 
RSA-Controls: 66 yrs)] and informed consent was 
obtained from all subjects in accordance with ethnical 
guidelines. All patients age, ethnicity, Gleason scores, 
disease status with various stages in Table 1. 

RNA isolation: Total RNA was extracted from 
whole blood (at Wren Laboratories LLC, USA) using 
TRIzol (Thermofisher) and cleaning further by 
RNeasy Mini isolation kit (Qiagen) [24, 25]. Briefly, 
150 μl of whole blood was added to 750 μl of TRIzol 
LS, incubated for 5 minutes, vortexed with 200 μl of 
chloroform, and centrifuged at 13,000 rpm for 12 
minutes. The aqueous phase was transferred to a new 
2 ml sample tube and RNA isolation and purification 
was carried out using the QIACube MDx instrument 
(Qiagen) with RNeasy Mini Kit according to the 
manufacturer’s instructions. RNA was eluted in 80 μl 
of nuclease-free water. 

RNA-seq quality control: RNA quality was 
assessed using the A260/A280 and A260/A230 ratios 
measured by a NanoDrop spectrophotometer. RNA 
integrity was evaluated with an Agilent Bioanalyzer 
2100, and samples with RIN values of 6.5 or greater 
were included in library preparation. 

RNA seq library prep: mRNA was enriched 
from approximately 50 ng of total RNA using 
oligo-dT beads and fragmented by incubation at 94°C 
in the presence of Mg2+ (Kapa mRNA Hyper Prep). 
First-strand cDNA synthesis was performed using 
random primers, followed by second-strand synthesis 
and A-tailing with dUTP to generate strand-specific 
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sequencing libraries. Adapter ligation with 3’ dTMP 
overhangs were ligated to library insert fragments. 
Library amplification amplifies fragments carrying 
the appropriate adapter sequences at both ends. 
Strands marked with dUTP were not amplified. 
Libraries were sequenced on an Illumina NovaSeq 
6000 platform to generate 25 million reads per sample 
for further analysis (Yale University Core, USA). 

Flow cell preparation and sequencing: Sample 
concentrations were normalized to 1.2 nM and loaded 
onto an Illumina NovaSeq flow cell at a density 
targeting 2 million passing filter clusters per sample. 
Sequencing was performed using 100 bp paired-end 
reads in accordance with Illumina protocols. A 10 bp 
unique dual index was used for sample identification. 
Positive control libraries (PhiX, 0.3%) were spiked in 
to monitor sequencing quality. 

Data extraction: Signal intensities are converted 
to individual base calls during a run using the 
system's Real-Time Analysis software. Base calls were 
transferred from the machine's dedicated personal 
computer to the Yale High Performance Computing 

cluster via a 1 Gigabit network mount for 
downstream analysis. Primary analysis, including 
demultiplexing and genome alignment, was 
conducted using CASAVA 1.8.2 software. 

mRNA-seq data analysis: FASTQ mRNA-Seq 
files were processed with Partek Flow® software, 
version 11.0.23.0918 (Partek, Inc., St. Louis, MO) on a 
Linux-based high performance computing system at 
Partek (40 cores, 503 GB RAM, 4TB disk space). The 
adapter was removed with CUTADAPT v4.2 and 
remapped into the human hg38 genome using the 
BWA aligner (v0.7.17) with default settings (minimum 
bases 24 read length) for read mapping [24, 26, 27]. 
Gene annotation was performed using Ensembl v109, 
and transcript abundance was normalized with 
DESeq2 for statistical analysis with FDR correction. 
DEGs were identified using a threshold of p < 0.05 
and fold-change > 2 [24]. Partek Flow is commercially 
available graphical interface web-based application, 
which allows the choice of variables and parameters 
for typical data analysis. 

 

Table 1. Clinical information of recruited patients  

Patient No Age Diagnosis Ethnicity Status Stage at 
Diagnosis 

Gleason 
Score 

Grade at 
Diagnosis 

Staging (T) Staging (N) Staging (M) 

USA-P1 76 PCa C ND IC 7A GG2 cT1c NX N/A 
USA-P2 68 PCa C ND IIB 7B GG3 cT2b cN0 M0 
USA-P3 60 PCa C ND IC 7B GG3 cT1c NX N/A 
USA-P4 58 PCa C AS I 6 GG1 cT1 cN0 cM0 
USA-P5 64 PCa C AS I 6 GG1 pT1c3 N0 M0 
USA-P6 57 PCa C ND N/A 7A GG2 pT3a pN0 N/A 
USA-P7 44 PCa C ND N/A 7A GG2 pT2 N0 N/A 
RSA-P1 60 PCa B ND T2A 6 GG1 pT2 N0 N/A 
RSA-P2 68 PCa B ND T1C 6 GG1 pT2 N0 N/A 
RSA-P3 61 PCa B AS T2C 7A GG2 pT3a pN0 N/A 
RSA-P4 58 PCa B AS T1C 6 GG1 cT1 cN1 cM0 
RSA-P5 66 PCa B AS T4 7A GG2 pT3a pN0 N/A 
RSA-P6 66 PCa B AS T4 8 G4 pT3a pN0 N/A 
USA-Healthy1 52 Control C 

  
 

    

USA-Healthy2 57 Control C 
  

 
    

USA-Healthy3 56 Control C 
  

 
    

USA-Healthy4 54 Control C 
  

 
    

USA-Healthy5 65 Control C 
  

 
    

USA-Healthy6 58 Control C 
  

 
    

USA-Healthy7 64 Control C 
  

 
    

USA-Healthy8 54 Control C 
  

 
    

USA-Healthy9 78 Control C 
  

 
    

USA-Healthy10 45 Control C 
  

 
    

USA-Healthy11 63 Control C 
  

 
    

RSA-Healthy1 83 Control B 
  

 
    

RSA-Healthy2 60 Control B 
  

 
    

RSA-Healthy3 64 Control B 
  

 
    

RSA-Healthy4 64 Control B 
  

 
    

RSA-Healthy5 57 Control B 
  

 
    

RSA-Healthy6 83 Control B 
  

 
    

GG = Gleason Grade, ND = no data, C = Caucasian, B = Black, AS = Active Surveillance; ND = Newly Diagnosed, N/A = not available. 
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Pathway analysis: Pathway analysis was carried 
out using publicly available tools, including 
Metascape, Gene Ontology (GO), SRplots [28, 29] and 
g:Profiler. Functional analysis encompassed GO 
Molecular Functions, Biological Processes, Cellular 
Components, and pathway enrichment analysis were 
carried out on clusterProfiler and pathview [27, 30, 
31]. The results provided insights into molecular 
dysregulations associated with PCa across USA and 
RSA cohorts. 

Real-Time qPCR: The above clinical samples 
RNA was converted into cDNA using High-Capacity 
cDNA Reverse Transcriptase Kit (ThermoFisher). 
Real-time PCR was carried out on pre-spotted 
TaqMan PCR primer plates [27 PROSTest genes (list 
of genes in Table 3)] using 200 ng of cDNA/well [16, 
17]. Positive controls were used on every spotted 
plate. Target transcript levels were normalized to 
ALG9, TOX4 and TPT1 and quantified using ΔΔCT. 

Immune cell analysis: Immune infiltration 
estimations for gene expression data was carried out 
using web-based tools including Immunedevconv 
with TIMER 2.0, CIBERSORT, quanTIseq, xCell, 
MCP-counter and EPIC algorithms [32-35]. 

Statistics and data visualization: All 
experiments were minimum of triplicates to validate 
reproducibility and p-value < 0.05 considered 
statistically significant (for RNA-seq, FDR corrected). 
Circos plots were used as they are a powerful 
visualization tool used to display complex 
relationships within large-scale RNA-seq data in 
circular layout with chromosome number and 
transcript position to identify gene expression 
hotspots [36]. 

Results 
Clinical Data: A total of 13 PCa (7 USA, 6 RSA) 

and 17 controls (11 USA, 6 RSA) were evaluated. 
There was no significant difference in median ages 
(USA-PCa: 60 yrs, RSA-PCa: 63.5 yrs, USA-Con: 
57 yrs, RSA-Con: 64 yrs; Kruskal-Wallis test: p = 0.18). 
PCa patients were comparable in the two cohorts. The 
distribution of low grade (GG1-2) Gleason grade 
(USA-PCa: 5/7; RSA-PCa: 5/6) and stage I-II disease 
(USA-PCa: 5/7; RSA-PCa4/6) were similar in both 
cohorts. All patients were newly diagnosed (7/13 
[54%]) or in an active surveillance program (6/13 
[46%]). None were currently being treated.  

Cancer-related peripheral blood differences 
We initially compared RSA-PCa and USA-PCa 

sample sets to identify differences in blood-derived 
gene expression between subjects with PCa from 
these two different geographic regions. A total of 

7,149 genes were identified to be differentially 
expressed with a FC > 2 (p < 0.05) (Figure 1A). The 
five most significant genes that were upregulated in 
RSA-PCa with the highest fold changes included 
CERS6-AS1 (FC:238.1), MTCO1P40 (FC:107.5), 
ATP6V1G2-DDX39B (FC:53.4), MTND4P12 (FC:34.0), 
RMRP (FC:30.1), while the most down regulated 
genes were GVINP1 (FC:-702.0), ENSG00000273217 
(FC:-56.3; Rap Guanine Nucleotide Exchange Factor 6, 
associated with obesity and cholesterol metabolism), 
ENSG00000263244 (FC:-29.2; a novel transcript, 3' 
overlapping Chromosome 16 ORF72, associated with 
obesity and cholesterol metabolism), LY75-CD302 
(FC:-26.5) and CXCL8 (FC:-10.6).  

Figure 1B is a Circos plot that identified DEG 
hotspots in Chromosome 1, 2, and 17. None of these 
are associated with known genetic (GWAS) 
differences between Caucasians and Blacks [37] or 
were associated with the 27 PROSTest marker genes. 

Pathway analyses (Figure 1C) identified the 
differences in Molecular adapter activity (signaling 
pathways), Molecular Carrier Activity (biomolecular 
transport), and Ubiquitin-Ubiquitin Ligase Activity. 
Biological processes including Cell Division, 
Mitochondrial Electron Transport: Growth Hormone 
Receptor Signaling and Fibroblast Proliferation were 
also noted to be different. These processes can all 
influence the tumor microenvironment, potentially 
impacting PCa development and progression. 

PCa-associated genes known to be differentially 
expressed (between Caucasians and Blacks) at a tissue 
level [20] was then examined in the blood samples. 
We focused on the 10 most differentially expressed 
(up/down) identified by Kim et al. [20]. Seven of the 
20 were differentially expressed in blood (Figure 1D, 
Supplementary Table 1). Elevated expression 
(consistent with tumor tissue) was noted for IGKV2-29 
(FC: 4.39), a B cell/plasma cell-related gene associated 
with the tumor microenvironment. STEAP4 (FC: 
-1.44) and SH3KBP1 (FC: -1.26) were decreased. Both 
are associated with regulating PCa proliferation [38, 
39]. Kim et al., also identified 10 AR-associated 
master-regulators (at a tissue level) associated with 
PCa in Black subjects. Four were differentially 
expressed in blood; all were decreased in peripheral 
blood of Black RSA patients (Figure 1E, 
Supplementary Table 1). 

Singh et al., [21] have previously defined a series 
of genes linked to racial differences in PCa. We 
examined these genes identifying upregulation of 
CYP3A5 (FC: +1.78), genes involved in HSD17B (FC: 
+1.34 to +1.93) and a decreased in BCL-apoptosis 
genes (FC: -1.49 to – 1.91) (Supplementary Figure 1 
and Supplementary Table 2). 
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Figure 1. Differential Gene Expression Analysis in Blood Samples from RSA and USA PCa Patients. 1A. Hierarchal clustering (heatmap) of gene expression 
profiles in blood samples from RSA-PCa vs USA-PCa. The heatmap was generated on Partek Flow® software, version 11.0.23.0918 (www.partek.com). 1B. Circos plots to 
visualize gene expression pattern in chromosomes between RSA and USA samples. Hotspots were identified in Chromosomes 1, 2, and 17. 1C. Comparative visualization of 
pathways between RSA-PCa and USA-PCa groups highlights oxidative phosphorylation and disease-related pathways. 1D. Peripheral blood expression of ethnic-associated tissue 
DEGs. The Immunoglobulin Kappa Variable 2D gene 29 was upregulated in blood, while both SH3KBP1 and STEAP4 were downregulated. These changes are consistent with 
tissue-based evaluations [20]. 1E. Four of ten previously identified master regulator transcription factors identified in PCa tumor tissues of Black men were downregulated in 
peripheral blood including CTCF, EP300, NR3C1 and SMARCA4. 

 

 
Figure 2. Differential gene expression analysis in blood samples from RSA and USA controls. 2A. Hierarchal clustering (heatmap) of gene expression profiles in 
blood samples from RSA-controls compared to USA controls. 2B. Circos plots to visualize gene expression pattern in chromosomes between RSA and USA samples. Hotspots 
were noted in Chromosomes 1, 2, 5, 14, 17, and 19. 2C. Comparative visualization of pathways between RSA-controls and USA-control groups highlights Protein Binding 
(Enzyme Regulatory Activity, mRNA Binding, and Zinc Ion Binding), Cell Division, and Cellular Responses to Insulin Stimulus. 2D. Peripheral blood expression of 
ethnic-associated tissue DEGs. Changes in controls were similar to those in PCa blood samples (see Figure 1D). 2E. The same master transcription factors as identified in PCa 
blood were downregulated in Black controls but ESR1 was additionally identified to be decreased in expression. 
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Interrogation of the PCa receptor cistrome [22] 
has identified that androgen signaling may contribute 
to changes in lipid metabolism and the immune 
response including cytokine signaling. Androgen 
receptor expression is known to be differentially 
expressed (between Caucasians and Blacks) [20, 40]. 
We evaluated families of genes for each of these 
pathways to evaluate whether the differences could 
be observed in peripheral blood (Supplementary 
Table 3). An evaluation of genes involved in lipid 
metabolism identified decreased expression of the 
majority of genes in Black PCa subjects but elevated 
expression of FABP5 (a known PCa marker [41]; FC: 
+2.15) was identified. LPL was also upregulated (FC: 
+2.24) in Black men. The majority of immune response 
genes had increased expression in Caucasian blood 
samples except for the CCL genes which was 
increased in Black men (FC: +1.43 to +3.68). COX2 was 
downregulated in Black men (FC: -2.44). 

Differences between controls 
We next compared gene expression in 

individuals in the control groups from RSA and the 
USA. Our analysis found 7,545 genes, with FC > 2 (p < 
0.05) (Figure 2A). The five most significantly 
upregulated genes in RSA-Healthy controls were: 
IGHG1 (FC: 10.3), IGKV3-15 (FC: 8.6), IFI27 (FC: 8.5), 
MTCO1P40 (FC: 6.8) and RMRP (FC: 6.6) and the five 
most downregulated genes included GVINP1 (FC: 
-574.1), LY75-CD302 (FC: -313.4), ENSG00000263244 
(FC: -109.8; a novel transcript, 3' overlapping 
Chromosome 16 ORF72, associated with obesity and 
cholesterol metabolism [also downregulated in RSA- 
PCa vs. USA-PCa]), ENSG00000272410 (FC: -20.0; a 
novel, uncharacterized protein associated with BMI) 
and HTATSF1P2 (FC: -17.0).  

Figure 2B informs differences at the “healthy” 
control level and identify those differences that occur 
at baseline (in the absence of disease) with hotspots 
noted in Chromosome 1, 2, 5, 14, 17, and 19. These 
differences may reflect genetic, environmental or 
lifestyle differences that are associated with the RSA 
and USA populations. 

Pathway analysis (Figure 2C) identified the 
following GO molecular functions including: Protein 
Binding (Enzyme Regulatory Activity, mRNA 
Binding, and Zinc Ion Binding). Cell Division, 
Microtubule Nucleation, Cell Polarity and Cellular 
Response to Insulin Stimulus were also identified 
(Supplementary Figure 2). 

We next examined whether the tumor-associated 
gene expression differences [20], racial disparity genes 
[21] and AR-signaling gene differences [22] were also 
evident in controls. Levels and differences were 
similar as noted for PCa blood (see Figure 2D and 2E, 

and Supplementary Tables 1-3). The AR-master 
regulator associated transcription factor ESR1 was 
decreased in Black men (FC: -1.85). In the immune 
profile, IL15 and IL23 were upregulated (FC: +1.34 to 
+1.98). 

Ethnic differences (PCa versus controls) 
Given the differences between cancers (RSA vs. 

USA) and between controls from the two countries, 
our next approach was to compare and evaluate DEGs 
between cancers and control blood samples from the 
same country. A total of 16,533 transcripts were 
commonly detected (Supplementary Figure 3A). 
After statistical filtering (FC > 2, p < 0.05), we 
identified that ~10% of genes were commonly 
expressed (Supplementary Figure 3B). 

RSA-PCa vs Controls: We identified 1,627 genes 
that were differentially expressed in PCa and control 
subjects with statistical significance (p-value < 0.05) 
and a fold change (FC) of > 2 (Supplementary Figure 
4A-D). The five most differentially expressed genes 
include: ENSG00000270149 (FC: 7.2; a novel 
protein-coding transcript: TSTD1-F11R read-through 
linked to cholesterol metabolism), HBZ (FC: 5.9), 
ENSG00000288894 (FC: 5.6; a novel protein-coding 
transcript linked to cardiac and lipid metabolism), 
CHIT1 (FC: 5.05), ENSG00000263798 (FC: 4.9; a lnc 
RNA associated with cholesterol metabolism). The 
five most down regulated genes in RSA-PCa blood 
included ENSG00000287510 (FC: -10.2; lncRNA 
antisense to the LAPTM5 gene and related to immune 
function), AGBL3 (FC:-4.16), ENSG00000228748 
(FC:-4.1; a lncRNA, associated with cardiovascular 
function), ENSG00000290680 (FC:-3.8; linked to BMI 
and obesity) and LINC02470 (FC:-3.8; a lncRNA that 
regulates bladder tumorigenicity). Circos identified 
hotspots in Chromosome 1, 15, 16 and 17. 

The significant top five pathways were identified 
as ribosome biogenesis in eukaryotes, mitophagy, 
spliceosome, ribosomal related genes and 
hematologic cell lineages. The results indicate an 
increased activity or sensitivity of hematological cells 
in RSA-PCa. This could be a sign of an immune 
activity or modulation or other immune responses 
that may be associated with tumor biology in this 
ethnic group. 

USA-PCa vs Controls: In this cohort, we identified 
2,193 genes with significantly different expression 
when compared to controls groups, with a FC > 2 and 
a p-value < 0.05 (Supplementary Figure 5A-D). Of the 
genes that were upregulated in USA-PCa, the five 
most differentially expressed were: G0S2 (FC: 10.4), 
EGR1 (FC: 8.4), ENSG00000248993 (FC: 6.8; a novel 
MHC Class II Beta Chain N-Terminal Domain- 
Containing Protein associated with obesity), 
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ENSG00000279753 (FC: 5.8; an uncharacterized gene 
associated with cholesterol metabolism) and OSM 
(FC: 4.4). The five most down regulated genes were: 
ENSG00000287510 (FC: -59.5; lncRNA antisense to the 
LAPTM5 gene and related to immune function), 
C4BPA (FC: -12.7), MTND4P12 (FC: -6.4), ENSG 
00000280205 (FC: -6.0; an uncharacterized gene 
related to height) and AIRN (FC: -5.5). Circos 
identified hotspots in Chromosomes 1, 5, 6, 15 and 19. 

Pathway analysis identified three major 
pathways (protein binding, microRNA binding, and 
ribonucleoprotein complex binding). When the focus 
was on biological processes, four major areas were 
discerned, these included cellular localization, cell 
cycle, cellular response to stress and apoptosis. These 
pathways differ from those in the RSA samples 
(RSA-PCa vs. RSA-controls) identifying some 
intriguing ethnic differences in blood-derived cell 
activity in PCa. 

Immune cell landscape analysis in USA and 
RSA populations 

Given these findings, we next examined the 
peripheral blood immune landscape to better 
understand the population-based differences in the 
immune cell gene expression. For this, we performed 
global and myeloid immune cell analysis in RSA and 
USA cohorts based on DEGs. Figure 3A-B 
demonstrates global immune cell identification and 

variations in the PCa patients and the controls from 
RSA and the USA. We observed prominent 
differences in global immune cell landscape between 
these two populations. In general, the majority of the 
cell lineages were higher expressed in USA 
population (especially, ABCs, DC1, DC2, 
Erythrophagocytic Macrophages, Memory B cells and 
Naive B cells) compared to RSA (Figure 3A-B). The 
myeloid immune cell landscape using Myeloid 
Immune Cell mapping confirmed these differences 
(Macrophages, monocytes and dendritic cell types, 
Figure 3C-D). 

Table 2 includes a summary of the molecular 
pathway differences across RSA and USA Cohorts. 
These range from hematopoietic cell development to 
differences in lipid biosynthesis and inflammatory 
responses and immune cell populations. 

Evaluation of PROSTest genes in RNA-seq and 
qPCR 

Lastly, we evaluated the expression of the 27 
PROSTest genes (Table 3), which serves as 
established biomarkers of PCa identified in earlier 
studies at Wren Laboratories, in whole blood samples 
[16]. This was undertaken to evaluate whether this 
tissue-derived gene signature was detectable in blood 
and whether there were any significant differences in 
expression of the marker genes. 
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Figure 3. Exploring global immune cell maps in RSA and USA populations. 3A. Immune cell map analysis in RSA-PCa vs RSA-Controls (top) and USA-PCa vs 
USA-Controls(bottom) based on gene expression. Gene expression associated with various cell types and their log TPM values are included. The red lines are set at 0.15 as the 
scales are different. This provides for a comparison between the two groups which identifies over-expression of specific cell types including dendritic cells, macrophages and B 
cell types in Caucasian PCa peripheral blood. 3B. Myeloid immune cell map (top: RSA-PCa vs controls; bottom: USA-PCa vs. controls) of gene expression. The red lines are set 
at the same value (0.15) for ease of comparison. Dendritic cells, monocytes, and macrophage cell types are increased in Caucasian samples. 

 

Table 2. Summary of molecular pathway differences and biomarker validation across RSA and USA cohorts 

Category RSA-PCa USA-PCa RSA-Controls USA-Controls Clinical/Translational Implications 
Hematopoietic 
Lineages 

↑ Enrichment of 
hematopoietic cell pathways 
(systemic immune 
modulation) 

– – – Suggests tumor-driven immune reprogramming 
detectable in blood. 

Immune Gene 
Expression 

↑ CCL genes 
↑ IL7R, IL18RAP, IL32 

↑ Multiple interleukins and 
NLRP genes 

↑ IL15,  
IL23A, IL32 

Similar but less 
pronounced as 
USA-PCa 

Suggests interleukin gene expression differences 
between ethnic groups 

Ribosome Biogenesis 
& RNA Splicing 

↑ Increased expression of 
ribosomal genes and splicing 
machinery 

Similar but less 
pronounced 

– – Onco-ribosomes and aberrant splicing promote 
tumor aggressiveness; blood-based detection 
may allow early stratification of high-risk 
patients. 

ER Stress & Protein 
Export 

↑ Elevated ER stress and 
unfolded protein response 
(UPR) pathways 

– – – Links proteostasis stress to tumor growth and 
therapy resistance; potential therapeutic target. 

Oxidative 
Phosphorylation 
(OXPHOS) 

Distinctive differences vs. 
USA cohort 

Distinctive differences vs. 
RSA cohort 

– – Reflects population-specific mitochondrial 
metabolism; supports heterogeneity in cancer 
energetics and treatment response. 

Baseline Molecular 
Signatures 

– – ↑ Cell cycle, mRNA 
binding pathways 

↑ Insulin response 
pathways 

Highlights genetic/environmental influences; 
critical for biomarker panel calibration across 
populations. 

Fatty Acid 
Metabolism 

Down-regulated compared 
to USA except for 
↑ FABP5 and LPL 

Upregulated Similar but less 
pronounced as 
RSA-PCa 

Similar but less 
pronounced as 
USA-PCa 

Metabolic differences between ethnic groups 

Testosterone and 
Estrogen regulation 

↑ CYP3A5 and HDS17B 
family of genes 

– ↑ HDS17B family 
of genes 

– Ethnic differences in Androgen regulation 

PROSTest Validation 26-gene panel validated; 
consistent RNAseq–qPCR 
correlation 

26-gene panel validated; 
consistent RNAseq–qPCR 
correlation 

– – Robust across populations, but necessitates 
broader validation to ensure global utility. 

Geographic & 
Socio-Economic 
Factors 

Greater influence of genetic 
ancestry, environment, and 
infection exposure 

Greater influence of 
lifestyle (diet, obesity, 
insulin signaling) and 
healthcare access 

– – Socio-economic and geographic context strongly 
modulate molecular signatures; must be 
integrated into biomarker development 
strategies. 
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Figure 4. Identification of PROSTest gene signature in RNA-seq data and comparison of qPCR ratios in RSA and USA clinical samples. RNA-seq data 
identified 26 of 27 PROSTest genes and validated these genes via qPCR on same clinical samples that were sequenced. We observed all 26 genes via qPCR and bar graphs were 
prepared based on ratios in USA and RSA samples. 

 

Table 3. PROSTest genes identified in RNA-seq data in USA and RSA patients. 
 

RNA Sequencing 
  USA-PCa vs USA-Controls RSA-PCa vs RSA-Controls USA-PCa vs RSA-PCa USA-Controls vs RSA-Controls 
Gene name P-value FDR Ratio  P-value FDR Ratio  P-value FDR Ratio  P-value FDR Ratio  
AAMP 0.161 0.608 1.142 0.876 0.983 1.018 0.336 0.499 1.078 0.763 0.847 0.966 
AR 0.110 0.533 1.574 0.376 0.843 1.378 0.725 0.825 1.128 0.981 0.990 0.993 
CHTOP 0.334 0.755 0.925 0.262 0.789 0.914 0.186 0.328 0.935 0.439 0.583 0.928 
EDC4 0.010 0.213 1.232 0.265 0.791 1.167 0.000 0.000 1.497 0.002 0.009 1.425 
FXYD7 0.241 0.689 1.330 0.087 0.613 0.501 0.313 0.474 1.398 0.024 0.066 0.523 
FYCO1 0.013 0.244 1.210 0.419 0.869 1.116 0.000 0.000 1.432 0.015 0.044 1.329 
HNRNPU 0.035 0.354 0.866 0.530 0.908 0.949 0.000 0.001 1.187 0.002 0.007 1.308 
KRT23 0.008 0.202 0.517 0.033 0.471 1.618 0.033 0.088 0.663 0.008 0.027 2.098 
MAN2B2 0.779 0.946 0.972 0.858 0.981 1.027 0.000 0.000 1.709 0.000 0.000 1.819 
MAX 0.990 0.997 0.999 0.869 0.982 1.019 0.889 0.933 1.015 0.711 0.812 1.041 
MRPS25 0.257 0.702 0.884 0.006 0.305 0.758 0.005 0.019 1.338 0.202 0.334 1.154 
NDUFS2 0.892 0.975 0.992 0.699 0.953 1.031 0.717 0.820 1.024 0.343 0.491 1.072 
PPRC1 0.028 0.325 1.337 0.541 0.911 1.163 0.003 0.013 1.747 0.018 0.051 1.530 
RAD23A 0.409 0.801 0.858 0.012 0.379 1.907 0.055 0.132 0.631 0.089 0.181 1.415 
REPIN1 0.276 0.716 1.116 0.867 0.982 0.976 0.001 0.007 1.399 0.112 0.216 1.232 
SDR39U1 0.390 0.787 0.886 0.013 0.385 0.629 0.397 0.560 0.874 0.004 0.015 0.623 
SETBP1 0.343 0.760 1.134 0.433 0.876 1.155 0.274 0.432 1.169 0.274 0.417 1.192 
SLC14A1 0.084 0.491 0.485 0.060 0.558 1.957 0.050 0.123 0.616 0.050 0.116 2.497 
SLC18A2 0.912 0.979 0.976 0.498 0.898 0.704 0.204 0.350 1.605 0.647 0.764 1.164 
SMC4 0.102 0.522 0.824 0.083 0.606 0.803 0.000 0.001 0.630 0.000 0.001 0.618 
SPARC 0.892 0.975 0.968 0.024 0.443 1.788 0.056 0.134 0.612 0.606 0.731 1.135 
SQLE 0.000 0.004 1.661 0.145 0.693 0.774 0.000 0.002 1.507 0.023 0.062 0.705 
STRIP1 0.380 0.780 0.943 0.560 0.917 0.947 0.074 0.165 1.147 0.055 0.124 1.160 
STX12 0.471 0.835 0.946 0.551 0.914 1.060 0.863 0.916 1.012 0.148 0.267 1.140 
UNC45A 0.045 0.390 1.165 0.212 0.753 1.184 0.977 0.987 1.003 0.760 0.845 1.028 
XPC 0.288 0.722 0.899 0.131 0.677 1.186 0.001 0.003 1.407 0.000 0.000 1.869 

 
We employed two complementary methods, 

qPCR and RNA-seq. One of the 27 marker genes, HPN 
(hepsin), was not detected in the RNA-seq data and 
was excluded from analysis. Both qPCR and RNA-seq 
gave similar results for 26 PROSTest genes in the 
clinical samples (Pearson correlation: r=0.44, p=0.0012, 
n=30 pairs). This identified that these biomarkers are 
well and reproducibly detected irrespective of the 
method used (Figure 4, Table 3). The 26 PROSTest 
gene signature, was highly detectable in both 
populations with 100% sensitivity for differentiating 
PCa from healthy subjects (PROSTest genes and their 
RNA quantifications are listed in Table 3).  

Discussion 
The research pilot study examined gene 

expression patterns in peripheral whole blood 
samples collected from PCa patients and healthy 
donors from South Africa and the United States. The 
cohorts were chosen to meet appropriate standards 
for RNAseq studies (a minimum of 6 samples/cohort 
[23]), had similar ages (median ~60 years), were not 
being treated (either newly diagnosed or in active 
surveillance) and had similar Gleason grades and 
stages. This allowed us to minimize potential 
confounders and focus on evaluating differences in 
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biology related to ethnicity and the environment. 
RNA-seq data in these patients with localized, 

non-advanced tumors identified differential 
molecular variations between the two populations in 
terms of global gene expression patterns, pathway 
enrichment analysis and especially cell types involved 
in immune responses. These findings highlight some 
of the differences that genetic, environmental and 
socio-economic factors may have on PCa biology. 
They also suggest population-specific mechanisms 
that may be related or associated with disease 
(summarized in Table 3). We noted that PROSTest 
gene expression was similar between US and RSA 
PCa. 

Authors have evaluated tumor samples for 
ethnic-associated gene and molecular pathway 
differences between Caucasia and Black PCa 
populations [20-22]. Black men show increased 
activity of inflammation, steroid hormone responses, 
and cancer progression-related pathways. Ethnic- 
based androgen and androgen receptor (AR) pathway 
differences are known to occur. We evaluated 
differences at a global level and then focused on some 
of the previously identified genes and pathways 
known to differ.  

At a global level, increased expression of genes 
in blood that were involved in biosynthesis of 
ribosomes, splicing of RNA, and hematopoietic cell 
lineages in the RSA cohort compared to US patients 
was identified. These pathways have been extensively 
studied in solid tumors. Alterations in ribosomal 
biogenesis and splicing (at a tissue level) are known to 
be correlated with tumor development including 
aggressiveness and metastasis [42, 43]. PCa blood 
samples showed enhanced activity of pathways 
involved endoplasmic reticulum protein (ER) export 
stress which may be a key player in supporting tumor 
growth and treatment resistance [44]. The oxidative 
phosphorylation and disease-specific pathways were 
also distinguished as different between the RSA and 
USA groups. These findings accord with research 
work showing geographical and genetic 
heterogeneity in the function of the mitochondria and 
its relationship to cancer metabolism [45, 46]. An ER 
stress response leads to tumor cell activation which 
produces exosomes that contain UPR proteins which 
modify macrophage function and suppress T-cell 
activity [47]. Our data demonstrates that elevated ER 
stress/export pathways serve as biomarkers which 
reveal proteostatic stress caused by tumors while 
linking protein folding needs to cancer progression 
levels. 

We also observed striking differences in the 
baseline gene expressions between the RSA-Controls 
and USA-Controls further highlighting the 

importance of population variation. RSA controls 
demonstrated over-representation of cell cycle and 
mRNA binding pathways whereas USA controls 
showed enrichment in insulin response signaling. 
Such divergence in baseline expression indicates the 
differences in the basic molecular activity which could 
be due to different genetic background and 
environmental factors of the two populations. For 
example, populations with higher prevalence of 
metabolic syndrome or obesity (USA) may 
demonstrate enhanced insulin signaling, while 
subjects of African genetic heritage (RSA) may 
preferentially express proliferative and translational 
machinery activation [48-50]. These baseline 
variations are similar to previously published large 
scale studies demonstrating significant ethnic 
variability in transcriptomes [51-54].  

When we focused on specific genes and pathway 
differences noted at a tumor tissue level [20-22], we 
identified some intriguing overlaps between 
tissue-based expression and what was detectable in 
peripheral blood. Our study identified several 
tissue-associated differences were recapitulated in 
peripheral blood. For example, FABP5 was 
over-expressed in RSA-PCa blood. This co-ordinates 
lipid signaling to promote PCa metastasis [55]. 
Lipoprotein Lipase (LPL) is also linked to PCa by 
facilitating the uptake of fatty acids, which fuel tumor 
growth and proliferation [56]. This gene similarly was 
upregulated in RSA blood compared to Caucasian 
blood. The NF-κB pathway was also upregulated in 
Black subjects; this controls progression of PCa to 
androgen-independent growth [57]. Several genes 
transcribing interleukins were similarly upregulated 
in RSA-PCa samples. IL32 has a complex role in PCas, 
acting as a pro-tumor factor in metastatic disease by 
recruiting macrophages that promote tumor growth 
and metastasis through the CTSZ-TRA2A/ 
IL-32/ITGA5 axis [58]. The IL7R (Interleukin-7 
Receptor) was also upregulated and is implicated in 
PCa progression and potential therapeutic resistance 
[59]. Chemokine signaling plays a significant role in 
PCa progression, metastasis, and the tumor 
microenvironment by recruiting immune cells and 
promoting tumor cell survival and growth. CCL4 
signaling promotes tumorigenesis, invasion, and 
recurrence by recruiting macrophages and 
influencing the tumor microenvironment [60], while 
CCL5 promotes tumor growth, metastasis, 
angiogenesis (new blood vessel formation), drug 
resistance, and the self-renewal of cancer stem cells 
through its receptor CCR5 [60]. Both genes were 
upregulated in Black subjects the expression and role 
of Suppressor of Cytokine Signaling (SOCS) proteins 
are complex and can be tumor-promoting or 
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tumor-suppressive depending on the specific SOCS 
protein and cellular context [61]. Genes encoding 
proteins in this signaling pathway were upregulated 
too. Signals produced by tumors may affect blood cell 
development through mechanisms that lead to 
increased myeloid-derived suppressor cell (MDSC) 
numbers and altered lymphoid cell distribution [62, 
63]. The process of immunologic reprogramming is a 
key factor that drives cancer development and 
determines treatment outcomes. The immune- 
associated differences in peripheral blood suggest 
some fundamental differences in hematopoietic 
pathways between Caucasian and Black subjects; this 
may potentially impact on PCa development and 
progression. 

PROSTest Biomarker Validation: The 
PROSTest biomarker panel containing 26 genes 
showed consistent results between RSA and USA 
cohorts identifying that these genes are reliable and 
stable biomarkers across these two populations. Our 
results also reveal the necessity of global population 
validation since molecular differences do occur in 
blood-based markers. Previous studies have 
highlighted the issues in the biomarker validation 
across the various populations with an emphasis on 
the impact of genetics, environment and socio- 
economic factors on biomarker performance [64-67]. 
qPCR is a sensitive method that allows for the 
quantification of specific target genes, while RNA-seq 
offers the ability to confirm the presence and quantify 
the levels of expression of these genes in a global 
transcriptome setting [68].  

Geographical and Socio-Economic 
Considerations: The differences in molecular 
signatures and the immune response DEGs (which 
likely translates to immune sub-population 
differences) between the RSA and USA cohorts are 
probably due to a genetically determined response to 
environmental exposures modulated by socio- 
economic factors. The fact that PCa has been noted to 
have different presentations in different geographical 
locations and ethnic groups has been well-established 
[69]. This has been shown in the androgen receptor 
signaling, metabolic pathways and the immune 
response of the cancer varies between populations 
[70-75]. Other factors that include diet (obesity, 
cholesterol metabolism, cardiovascular disease), 
infections and exposure to infectious agents and 
access to health care may also play a role in 
modulating gene expression and immunodynamics 
[76-80].  

Our pilot study does have some limitations. The 
sample sizes are relatively small and uneven although 
we have attempted to meet requirements for RNAseq 
studies. One additional limitation was recruiting 

diverse ethnic groups, including RSA Caucasian and 
USA Black patients, to participate in the pilot study. 
Large-scale studies could further identify differences 
between these two groups (USA vs. RSA) and diverse 
racial pools, thereby enhancing generalizability and 
broader applicability. There may be a potential 
confounding by age, comorbidities, clinical stage 
distribution or sample handling differences but we 
have attempted to minimize these as far as possible. 
While no functional experiments, e.g., interleukin 
measurements in blood, were undertaken to confirm 
transcriptomic observations, these are being 
undertaken as part of a separate study. The qPCR vs. 
RNAseq expression of PROSTest genes, however, is a 
strength, that identifies the validity of the approach 
we used. 

Conclusion 
The present pilot study highlights the need to 

perform population-specific analysis in any 
blood-based molecular research in order to develop 
biomarker and therapeutic strategies. This study also 
demonstrates the heterogeneity of immunological and 
cellular pathways among two different geographic 
(and ethnic) populations highlighting the need to 
consider these differences when evaluating PCa 
pathobiology. For instance, RSA-PCa samples were 
found to have characteristics suggestive of an 
impaired antigen presentation which may impact the 
effectiveness of the immune system in identifying and 
eradicating cancerous cells. Conversely, USA-PCa 
samples displayed an inflammatory immune 
signature suggesting an overall immune activation 
(monocyte, dendritic cells and macrophage DEGs). 
These suggest that blood samples from PCa are 
associated with different immune profiles, depending 
on the population. Such differences should be 
considered in studies as well as in clinical practice. In 
biomarker development, inclusion of subjects from 
different countries should be a principal focus in 
future genomic studies. Increasing the participation of 
different populations will help to increase the 
transferability of biomarkers and the interventions 
thus making them relevant to a wider population. 
Such inclusivity is especially important for the 
development of precision medicine which aims at 
providing individualized treatment based on the 
patient’s genetic background as well as socio- 
economic environment. 

Clinical Implications 
The determination of population attributable 

gene expression and immune signatures is important 
in PCa diagnosis and management. The alterations 
suggest different immune:cancer relationships that 
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may have an impact on presentation, development 
and treatment of PCa. The confirmation of the 
PROSTest genes in both ethnic populations identifies 
that this non-invasive liquid biopsy-based diagnostic 
is a viable and effective tool for PCa. 
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