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Abstract

Prostate cancer (PCa) is a major health problem worldwide with variable incidence, progression and
outcomes depending on genetic, environmental and socio-economic factors. This study compares gene
expression profiles in PCa patients from South Africa (RSA) and the United States (USA) using RNA
sequencing in whole blood and pathway analyses. Whole blood samples were collected in Wren RNA
stabilization tubes from RSA-PCa (n = 6), RSA-controls (n = 6), USA-PCa (n = 7) and USA-Controls (n =
1T). RNA sequencing revealed 1,627 differentially expressed genes (DEGs) in RSA-PCa vs. RSA-controls,
and 2,193 DEGs in USA-PCa vs. USA-Controls. Pathway analyses identified geographical region-specific
variations; RSA-PCa had upregulated myeloid suppressor cell pathways and immunosuppressive markers
while USA-PCa samples exhibited upregulated cytokine signaling and inflammatory pathways.
Comparative analysis of healthy controls revealed 2,280 DEGs, which indicated significant differences in
molecular profile of the geographic locations. qRT-PCR undertaken on 27 biomarkers related to PCa in
whole blood (PROSTest) identified that 26 (96%) of the marker genes were commonly expressed.
RNAseq and normalized PCR gene expression of these markers were well-correlated (r = 0.44, p =
0.0012, n = 30 pairs). The results of this study indicate that there are geographic differences in
blood-based gene expression in both controls and individuals with PCa. Genes associated with a clinically
validated molecular assay (PROSTest) were identified in both populations, but significant differences in
gene expression relevant to tumor pathobiology were identified. These immune-associated signaling
pathways suggest differences between these two cohorts in blood-based molecular architecture related
to PCa. They also suggest the need to consider population-specific biomarkers to better understand this
disease. Ultimately, optimizing blood-based molecular diagnostic and therapeutic approaches will require
population-level studies.

Introduction

Prostate cancer (PCa) is a significant public

8 [2].

health concern and one of the most frequently
diagnosed malignancies in men worldwide. It is the
second most common cancer in men after lung cancer,
and ~1.5 million new cases were diagnosed in 2022
[1]. The United States has the highest incidence; 313,
780 new cases were diagnosed in 2025, and the
lifetime risk of being diagnosed with PCa is about 1 in

PCa risk varies significantly across geographic,
socioeconomic, and racial contexts. Predominant risk
factors include age (from ~5% in < 30-year-old males
to ~60% by age of 80), lifestyle (BMI and high alcohol
intake, socioeconomic status), genetic burden (family
history, inherited mutations in DNA damage and
mismatch repair genes), and ethnicity [3-5]. Men of
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African descent have a significantly elevated risk
(2-3-fold) of having PCa compared to Caucasian,
Hispanic/Latino and Asian men [6]. In South Africa,
PCa is the most commonly diagnosed cancer in
African men, with a 60% increase in new cases
reported between 2002 and 2018 [7]. This is attributed
to increasing life expectancy, improved diagnostic
capabilities, lifestyle changes, and environmental
exposures [8]. Disparities in healthcare access, such as
unequal availability of diagnostic tools and treatment
facilities, further exacerbate mortality rates in
low-resource regions. These differences underscore
the need for equitable diagnostic strategies and
region-specific research to address the unique genetic
and environmental factors influencing PCa [7].

Advances in next-generation sequencing (NGS)
have transformed PCa research, offering insights into
the molecular mechanisms of the disease [9]. NGS
facilitates comprehensive profiling of genetic and
transcriptomic alterations, enabling the discovery of
novel biomarkers for early detection, disease
monitoring, and personalized treatment. Molecular
testing, typically used at a tissue level, includes the
development of several mRNA-based tools e.g.,
Oncotype Dx, that are now used in PCa management.
Peripheral blood, however, provides an alternative
testing compartment for RNA-based assays [10].
CTCs and cfRNA are detectable in PCa blood [11],
while platelets are a well-known source of
tumor-derived mRNA [12]. Whole blood-derived
gene expression assays have been described [13, 14];
different immune-related 6- and 9-gene or PCa tumor-
associated 5-gene assays are available for research
purposes [13-15]. PROSTest is a clinically validated
liquid biopsy that is a minimally invasive,
mRNA-based diagnostic (27 target genes) with > 90%
sensitivity that leverages molecular profiling of gene
expression in whole blood samples [16, 17]. While
providing a source of “tumor signal”, peripheral
blood also offers an opportunity to interrogate
molecular information from circulating immune cells.
This may provide insights into host and
environmental responses.

In this study, we evaluated whether blood-based
gene expression patterns in PCa between Caucasian
US and Black South African populations was
different. We posited than any differences could
reflect variations in underlying genetic and
environmental factors which are known to exist [8, 18,
19]. Using RNA sequencing and liquid biopsy
technologies, we compared transcriptomic signatures
in two age- and tumor biology-matched sample sets
as well as the clinically validated PROSTest
PCR-based signature across these populations. The
objective was to use these tools to provide insights

into geographic/ethnic-specific disease pathobiology
of PCa. We undertook this global approach but also
focused on genes and pathways e.g., AR-signaling,
known to differ between these ethnicities [20-22].

Materials and Methods

Clinical Samples: Based on established
protocols for RNAseq-based DEGs [23], we focused
on a minimum of 6 biological samples from each of
the 4 groups (PCa-USA, PCa-RSA, Con-USA,
Con-RSA), that we wanted to evaluate. Whole blood
samples were collected between 2020-24 [United
States (USA-PCa: 7, USA-Control: 11), Republic of
South Africa (RSA-PCa: 6, RSA-Control: 6)] in
accordance with respective guidelines and regulations
of both countries (United States: WIRB20191743
approved by the Western Institutional Review/WCG
Board; South Africa: 389/2020 approved by the
Research Ethnics Committee of the University of
Pretoria, Reference number: GP202009 032 on the
South African Health Research Database) and with
the Helsinki declaration of 1975, as revised in 2013. All
samples were collected from adult participants [USA
median age: 61.5 yrs (USA-PCa: 66 yrs; USA-Controls:
57 yrs); RSA median age: 57.5 yrs (RSA-PCa: 63 yrs;
RSA-Controls: 66 yrs)] and informed consent was
obtained from all subjects in accordance with ethnical
guidelines. All patients age, ethnicity, Gleason scores,
disease status with various stages in Table 1.

RNA isolation: Total RNA was extracted from
whole blood (at Wren Laboratories LLC, USA) using
TRIzol (Thermofisher) and cleaning further by
RNeasy Mini isolation kit (Qiagen) [24, 25]. Briefly,
150 pl of whole blood was added to 750 pl of TRIzol
LS, incubated for 5 minutes, vortexed with 200 pl of
chloroform, and centrifuged at 13,000 rpm for 12
minutes. The aqueous phase was transferred to a new
2 ml sample tube and RNA isolation and purification
was carried out using the QIACube MDx instrument
(Qiagen) with RNeasy Mini Kit according to the
manufacturer’s instructions. RNA was eluted in 80 pl
of nuclease-free water.

RNA-seq quality control: RNA quality was
assessed using the A260/A280 and A260/A230 ratios
measured by a NanoDrop spectrophotometer. RNA
integrity was evaluated with an Agilent Bioanalyzer
2100, and samples with RIN values of 6.5 or greater
were included in library preparation.

RNA seq library prep: mRNA was enriched
from approximately 50 ng of total RNA using
oligo-dT beads and fragmented by incubation at 94°C
in the presence of Mg?* (Kapa mRNA Hyper Prep).
First-strand cDNA synthesis was performed using
random primers, followed by second-strand synthesis
and A-tailing with dUTP to generate strand-specific
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sequencing libraries. Adapter ligation with 3 dTMP
overhangs were ligated to library insert fragments.
Library amplification amplifies fragments carrying
the appropriate adapter sequences at both ends.
Strands marked with dUTP were not amplified.
Libraries were sequenced on an Illumina NovaSeq
6000 platform to generate 25 million reads per sample
for further analysis (Yale University Core, USA).

Flow cell preparation and sequencing: Sample
concentrations were normalized to 1.2 nM and loaded
onto an Illumina NovaSeq flow cell at a density
targeting 2 million passing filter clusters per sample.
Sequencing was performed using 100 bp paired-end
reads in accordance with Illumina protocols. A 10 bp
unique dual index was used for sample identification.
Positive control libraries (PhiX, 0.3%) were spiked in
to monitor sequencing quality.

Data extraction: Signal intensities are converted
to individual base calls during a run using the
system's Real-Time Analysis software. Base calls were
transferred from the machine's dedicated personal
computer to the Yale High Performance Computing

Table 1. Clinical information of recruited patients

cluster via a 1 Gigabit network mount for
downstream analysis. Primary analysis, including
demultiplexing and genome alignment, was
conducted using CASAVA 1.8.2 software.

mRNA-seq data analysis: FASTQ mRNA-Seq
files were processed with Partek Flow® software,
version 11.0.23.0918 (Partek, Inc., St. Louis, MO) on a
Linux-based high performance computing system at
Partek (40 cores, 503 GB RAM, 4TB disk space). The
adapter was removed with CUTADAPT v4.2 and
remapped into the human hg38 genome using the
BWA aligner (v0.7.17) with default settings (minimum
bases 24 read length) for read mapping [24, 26, 27].
Gene annotation was performed using Ensembl v109,
and transcript abundance was normalized with
DESeq?2 for statistical analysis with FDR correction.
DEGs were identified using a threshold of p < 0.05
and fold-change > 2 [24]. Partek Flow is commercially
available graphical interface web-based application,
which allows the choice of variables and parameters
for typical data analysis.

Patient No Age  Diagnosis Ethnicity Status Stage at Gleason Grade at Staging (T) Staging (N) Staging (M)
Diagnosis Score Diagnosis

USA-P1 76 PCa C ND IC 7A GG2 cTlc NX N/A

USA-P2 68 PCa C ND 1B 7B GG3 cT2b cNO MO

USA-P3 60 PCa C ND IC 7B GG3 cTlc NX N/A

USA-P4 58 PCa C AS I 6 GG1 cT1 cNO MO

USA-P5 64 PCa C AS I 6 GG1 pT1c3 NO Mo

USA-P6 57 PCa C ND N/A 7A GG2 pT3a pNO N/A

USA-P7 44 PCa C ND N/A 7A GG2 pT2 NO N/A

RSA-P1 60 PCa B ND T2A 6 GG1 pT2 NO N/A

RSA-P2 68 PCa B ND T1C 6 GG1 pT2 NO N/A

RSA-P3 61 PCa B AS T2C 7A GG2 pT3a pNO N/A

RSA-P4 58 PCa B AS T1C 6 GG1 cT1 cN1 MO

RSA-P5 66 PCa B AS T4 7A GG2 pT3a pNO N/A

RSA-P6 66 PCa B AS T4 8 G4 pT3a pNO N/A

USA-Healthy1 52 Control C

USA-Healthy2 57 Control C

USA-Healthy3 56 Control C

USA-Healthy4 54 Control C

USA-Healthy5 65 Control C

USA-Healthy6 58 Control C

USA-Healthy7 64 Control C

USA-Healthy8 54 Control C

USA-Healthy9 78 Control C

USA-Healthy10 45 Control C

USA-Healthy11 63 Control C

RSA-Healthy1 83 Control B

RSA-Healthy2 60 Control B

RSA-Healthy3 64 Control B

RSA-Healthy4 64 Control B

RSA-Healthy5 57 Control B

RSA-Healthy6 83 Control B

GG = Gleason Grade, ND = no data, C = Caucasian, B = Black, AS = Active Surveillance; ND = Newly Diagnosed, N/A = not available.
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Pathway analysis: Pathway analysis was carried
out using publicly available tools, including
Metascape, Gene Ontology (GO), SRplots [28, 29] and
g:Profiler. Functional analysis encompassed GO
Molecular Functions, Biological Processes, Cellular
Components, and pathway enrichment analysis were
carried out on clusterProfiler and pathview [27, 30,
31]. The results provided insights into molecular
dysregulations associated with PCa across USA and
RSA cohorts.

Real-Time qPCR: The above clinical samples
RNA was converted into cDNA using High-Capacity
cDNA Reverse Transcriptase Kit (ThermoFisher).
Real-time PCR was carried out on pre-spotted
TagMan PCR primer plates [27 PROSTest genes (list
of genes in Table 3)] using 200 ng of cDNA/well [16,
17]. Positive controls were used on every spotted
plate. Target transcript levels were normalized to
ALGY, TOX4 and TPT1 and quantified using aaCr.

Immune cell analysis: Immune infiltration
estimations for gene expression data was carried out
using web-based tools including Immunedevconv
with TIMER 2.0, CIBERSORT, quanTlseq, xCell,
MCP-counter and EPIC algorithms [32-35].

Statistics and data visualization: All
experiments were minimum of triplicates to validate
reproducibility and p-value < 0.05 considered
statistically significant (for RN A-seq, FDR corrected).
Circos plots were used as they are a powerful
visualization tool wused to display complex
relationships within large-scale RNA-seq data in
circular layout with chromosome number and
transcript position to identify gene expression
hotspots [36].

Results

Clinical Data: A total of 13 PCa (7 USA, 6 RSA)
and 17 controls (11 USA, 6 RSA) were evaluated.
There was no significant difference in median ages
(USA-PCa: 60 yrs, RSA-PCa: 63.5 yrs, USA-Con:
57 yrs, RSA-Con: 64 yrs; Kruskal-Wallis test: p = 0.18).
PCa patients were comparable in the two cohorts. The
distribution of low grade (GG1-2) Gleason grade
(USA-PCa: 5/7; RSA-PCa: 5/6) and stage I-1I disease
(USA-PCa: 5/7; RSA-PCa4/6) were similar in both
cohorts. All patients were newly diagnosed (7/13
[54%]) or in an active surveillance program (6/13
[46%]). None were currently being treated.

Cancer-related peripheral blood differences

We initially compared RSA-PCa and USA-PCa
sample sets to identify differences in blood-derived
gene expression between subjects with PCa from
these two different geographic regions. A total of

7,149 genes were identified to be differentially
expressed with a FC > 2 (p < 0.05) (Figure 1A). The
five most significant genes that were upregulated in
RSA-PCa with the highest fold changes included
CERS6-AS1  (FC:238.1), MTCO1P40 (FC:107.5),
ATP6V1G2-DDX39B (FC:53.4), MTND4P12 (FC:34.0),
RMRP (FC:30.1), while the most down regulated
genes were GVINP1 (FC:-702.0), ENSG00000273217
(FC:-56.3; Rap Guanine Nucleotide Exchange Factor 6,
associated with obesity and cholesterol metabolism),
ENSG00000263244 (FC:-29.2; a novel transcript, 3'
overlapping Chromosome 16 ORF72, associated with
obesity and cholesterol metabolism), LY75-CD302
(FC:-26.5) and CXCL8 (FC:-10.6).

Figure 1B is a Circos plot that identified DEG
hotspots in Chromosome 1, 2, and 17. None of these
are associated with known genetic (GWAS)
differences between Caucasians and Blacks [37] or
were associated with the 27 PROSTest marker genes.

Pathway analyses (Figure 1C) identified the
differences in Molecular adapter activity (signaling
pathways), Molecular Carrier Activity (biomolecular
transport), and Ubiquitin-Ubiquitin Ligase Activity.
Biological processes including Cell Division,
Mitochondrial Electron Transport: Growth Hormone
Receptor Signaling and Fibroblast Proliferation were
also noted to be different. These processes can all
influence the tumor microenvironment, potentially
impacting PCa development and progression.

PCa-associated genes known to be differentially
expressed (between Caucasians and Blacks) at a tissue
level [20] was then examined in the blood samples.
We focused on the 10 most differentially expressed
(up/down) identified by Kim ef al. [20]. Seven of the
20 were differentially expressed in blood (Figure 1D,
Supplementary Table 1). Elevated expression
(consistent with tumor tissue) was noted for IGKV2-29
(FC: 4.39), a B cell/ plasma cell-related gene associated
with the tumor microenvironment. STEAP4 (FC:
-1.44) and SH3KBP1 (FC: -1.26) were decreased. Both
are associated with regulating PCa proliferation [38,
39]. Kim et al., also identified 10 AR-associated
master-regulators (at a tissue level) associated with
PCa in Black subjects. Four were differentially
expressed in blood; all were decreased in peripheral
blood of Black RSA patients (Figure 1E,
Supplementary Table 1).

Singh et al., [21] have previously defined a series
of genes linked to racial differences in PCa. We
examined these genes identifying upregulation of
CYP3A5 (FC: +1.78), genes involved in HSD17B (FC:
+1.34 to +1.93) and a decreased in BCL-apoptosis
genes (FC: -1.49 to - 1.91) (Supplementary Figure 1
and Supplementary Table 2).
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Figure 1. Differential Gene Expression Analysis in Blood Samples from RSA and USA PCa Patients. 1A. Hierarchal clustering (heatmap) of gene expression
profiles in blood samples from RSA-PCa vs USA-PCa. The heatmap was generated on Partek Flow® software, version 11.0.23.0918 (www.partek.com). 1B. Circos plots to
visualize gene expression pattern in chromosomes between RSA and USA samples. Hotspots were identified in Chromosomes 1, 2, and 17. 1C. Comparative visualization of
pathways between RSA-PCa and USA-PCa groups highlights oxidative phosphorylation and disease-related pathways. 1D. Peripheral blood expression of ethnic-associated tissue
DEGs. The Immunoglobulin Kappa Variable 2D gene 29 was upregulated in blood, while both SH3KBP| and STEAP4 were downregulated. These changes are consistent with
tissue-based evaluations [20]. 1E. Four of ten previously identified master regulator transcription factors identified in PCa tumor tissues of Black men were downregulated in
peripheral blood including CTCF, EP300, NR3CI and SMARCA4.
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Figure 2. Differential gene expression analysis in blood samples from RSA and USA controls. 2A. Hierarchal clustering (heatmap) of gene expression profiles in
blood samples from RSA-controls compared to USA controls. 2B. Circos plots to visualize gene expression pattern in chromosomes between RSA and USA samples. Hotspots
were noted in Chromosomes 1, 2, 5, 14, 17, and 19. 2C. Comparative visualization of pathways between RSA-controls and USA-control groups highlights Protein Binding
(Enzyme Regulatory Activity, mRNA Binding, and Zinc lon Binding), Cell Division, and Cellular Responses to Insulin Stimulus. 2D. Peripheral blood expression of
ethnic-associated tissue DEGs. Changes in controls were similar to those in PCa blood samples (see Figure 1D). 2E. The same master transcription factors as identified in PCa
blood were downregulated in Black controls but ESR] was additionally identified to be decreased in expression.
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Interrogation of the PCa receptor cistrome [22]
has identified that androgen signaling may contribute
to changes in lipid metabolism and the immune
response including cytokine signaling. Androgen
receptor expression is known to be differentially
expressed (between Caucasians and Blacks) [20, 40].
We evaluated families of genes for each of these
pathways to evaluate whether the differences could
be observed in peripheral blood (Supplementary
Table 3). An evaluation of genes involved in lipid
metabolism identified decreased expression of the
majority of genes in Black PCa subjects but elevated
expression of FABP5 (a known PCa marker [41]; FC:
+2.15) was identified. LPL was also upregulated (FC:
+2.24) in Black men. The majority of immune response
genes had increased expression in Caucasian blood
samples except for the CCL genes which was
increased in Black men (FC: +1.43 to +3.68). COX2 was
downregulated in Black men (FC: -2.44).

Differences between controls

We next compared gene expression in
individuals in the control groups from RSA and the
USA. Our analysis found 7,545 genes, with FC > 2 (p <
0.05) (Figure 2A). The five most significantly
upregulated genes in RSA-Healthy controls were:
IGHGI (FC: 10.3), IGKV3-15 (FC: 8.6), IFI27 (FC: 8.5),
MTCO1P40 (FC: 6.8) and RMRP (FC: 6.6) and the five
most downregulated genes included GVINP1 (FC:
-574.1), LY75-CD302 (FC: -313.4), ENSG00000263244
(FC: -109.8; a novel transcript, 3' overlapping
Chromosome 16 ORF72, associated with obesity and
cholesterol metabolism [also downregulated in RSA-
PCa vs. USA-PCal]), ENSG00000272410 (FC: -20.0; a
novel, uncharacterized protein associated with BMI)
and HTATSF1P2 (FC: -17.0).

Figure 2B informs differences at the “healthy”
control level and identify those differences that occur
at baseline (in the absence of disease) with hotspots
noted in Chromosome 1, 2, 5, 14, 17, and 19. These
differences may reflect genetic, environmental or
lifestyle differences that are associated with the RSA
and USA populations.

Pathway analysis (Figure 2C) identified the
following GO molecular functions including: Protein
Binding (Enzyme Regulatory Activity, mRNA
Binding, and Zinc Ion Binding). Cell Division,
Microtubule Nucleation, Cell Polarity and Cellular
Response to Insulin Stimulus were also identified
(Supplementary Figure 2).

We next examined whether the tumor-associated
gene expression differences [20], racial disparity genes
[21] and AR-signaling gene differences [22] were also
evident in controls. Levels and differences were
similar as noted for PCa blood (see Figure 2D and 2E,

and Supplementary Tables 1-3). The AR-master
regulator associated transcription factor ESRI was
decreased in Black men (FC: -1.85). In the immune
profile, IL15 and IL23 were upregulated (FC: +1.34 to
+1.98).

Ethnic differences (PCa versus controls)

Given the differences between cancers (RSA vs.
USA) and between controls from the two countries,
our next approach was to compare and evaluate DEGs
between cancers and control blood samples from the
same country. A total of 16,533 transcripts were
commonly detected (Supplementary Figure 3A).
After statistical filtering (FC > 2, p < 0.05), we
identified that ~10% of genes were commonly
expressed (Supplementary Figure 3B).

RSA-PCa vs Controls: We identified 1,627 genes
that were differentially expressed in PCa and control
subjects with statistical significance (p-value < 0.05)
and a fold change (FC) of > 2 (Supplementary Figure
4A-D). The five most differentially expressed genes
include: ENSG00000270149 (FC: 7.2; a novel
protein-coding transcript: TSTD1-F11R read-through
linked to cholesterol metabolism), HBZ (FC: 5.9),
ENSG00000288894 (FC: 5.6; a novel protein-coding
transcript linked to cardiac and lipid metabolism),
CHIT1 (FC: 5.05), ENSG00000263798 (FC: 4.9; a Inc
RNA associated with cholesterol metabolism). The
five most down regulated genes in RSA-PCa blood
included ENSG00000287510 (FC: -10.2; IncRNA
antisense to the LAPTMb5 gene and related to immune
function), AGBL3 (FC:-4.16), ENSG00000228748
(FC:-4.1; a IncRNA, associated with cardiovascular
function), ENSG00000290680 (FC:-3.8; linked to BMI
and obesity) and LINC02470 (FC:-3.8; a IncRNA that
regulates bladder tumorigenicity). Circos identified
hotspots in Chromosome 1, 15, 16 and 17.

The significant top five pathways were identified
as ribosome biogenesis in eukaryotes, mitophagy,
spliceosome, ribosomal related genes and
hematologic cell lineages. The results indicate an
increased activity or sensitivity of hematological cells
in RSA-PCa. This could be a sign of an immune
activity or modulation or other immune responses
that may be associated with tumor biology in this
ethnic group.

USA-PCa vs Controls: In this cohort, we identified
2,193 genes with significantly different expression
when compared to controls groups, with a FC > 2 and
a p-value < 0.05 (Supplementary Figure 5A-D). Of the
genes that were upregulated in USA-PCa, the five
most differentially expressed were: G0S2 (FC: 10.4),
EGR1 (FC: 8.4), ENSG00000248993 (FC: 6.8; a novel
MHC Class II Beta Chain N-Terminal Domain-
Containing Protein associated with obesity),
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ENSG00000279753 (FC: 5.8; an uncharacterized gene
associated with cholesterol metabolism) and OSM
(FC: 4.4). The five most down regulated genes were:
ENSG00000287510 (FC: -59.5; IncRNA antisense to the
LAPTMb5 gene and related to immune function),
C4BPA (FC: -12.7), MTND4P12 (FC: -6.4), ENSG
00000280205 (FC: -6.0; an uncharacterized gene
related to height) and AIRN (FC: -5.5). Circos
identified hotspots in Chromosomes 1, 5, 6, 15 and 19.

Pathway analysis identified three major
pathways (protein binding, microRNA binding, and
ribonucleoprotein complex binding). When the focus
was on biological processes, four major areas were
discerned, these included cellular localization, cell
cycle, cellular response to stress and apoptosis. These
pathways differ from those in the RSA samples
(RSA-PCa vs. RSA-controls) identifying some
intriguing ethnic differences in blood-derived cell
activity in PCa.

Immune cell landscape analysis in USA and
RSA populations

Given these findings, we next examined the
peripheral blood immune landscape to better
understand the population-based differences in the
immune cell gene expression. For this, we performed
global and myeloid immune cell analysis in RSA and
USA cohorts based on DEGs. Figure 3A-B
demonstrates global immune cell identification and

A. Global immune cell map
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B. Myeloid Immune cell Map
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Figure 3. Exploring global immune cell maps in RSA and USA populations. 3A. Immune cell map analysis in RSA-PCa vs RSA-Controls (top) and USA-PCa vs
USA-Controls(bottom) based on gene expression. Gene expression associated with various cell types and their log TPM values are included. The red lines are set at 0.15 as the
scales are different. This provides for a comparison between the two groups which identifies over-expression of specific cell types including dendritic cells, macrophages and B
cell types in Caucasian PCa peripheral blood. 3B. Myeloid immune cell map (top: RSA-PCa vs controls; bottom: USA-PCa vs. controls) of gene expression. The red lines are set
at the same value (0.15) for ease of comparison. Dendritic cells, monocytes, and macrophage cell types are increased in Caucasian samples.

Table 2. Summary of molecular pathway differences and biomarker validation across RSA and USA cohorts

Category RSA-PCa USA-PCa RSA-Controls USA-Controls Clinical/ Translational Implications
Hematopoietic 1 Enrichment of - - - Suggests tumor-driven immune reprogramming
Lineages hematopoietic cell pathways detectable in blood.

Immune Gene
Expression

Ribosome Biogenesis
& RNA Splicing

ER Stress & Protein
Export

Oxidative
Phosphorylation
(OXPHOS)
Baseline Molecular
Signatures

Fatty Acid
Metabolism

Testosterone and
Estrogen regulation

PROSTest Validation

Geographic &
Socio-Economic
Factors

(systemic immune
modulation)

1 CCL genes
1 IL7R, ILIS8RAP, IL32

1 Increased expression of
ribosomal genes and splicing
machinery

1 Elevated ER stress and
unfolded protein response
(UPR) pathways

Distinctive differences vs.
USA cohort

Down-regulated compared
to USA except for

1 FABP5 and LPL

1 CYP3A5 and HDS17B
family of genes

26-gene panel validated;
consistent RNAseq-qPCR
correlation

Greater influence of genetic
ancestry, environment, and
infection exposure

1 Multiple interleukins and 1 IL15,

NLRP genes

Similar but less
pronounced

Distinctive differences vs.
RSA cohort

Upregulated

26-gene panel validated;
consistent RNAseq-qPCR
correlation

Greater influence of
lifestyle (diet, obesity,
insulin signaling) and
healthcare access

IL23A, IL32

1 Cell cycle, mRNA
binding pathways

Similar but less
pronounced as
RSA-PCa

1 HDS17B family
of genes

Similar but less
pronounced as
USA-PCa

1 Insulin response
pathways

Similar but less
pronounced as
USA-PCa

Suggests interleukin gene expression differences
between ethnic groups

Onco-ribosomes and aberrant splicing promote
tumor aggressiveness; blood-based detection
may allow early stratification of high-risk
patients.

Links proteostasis stress to tumor growth and
therapy resistance; potential therapeutic target.

Reflects population-specific mitochondrial
metabolism; supports heterogeneity in cancer
energetics and treatment response.

Highlights genetic/environmental influences;
critical for biomarker panel calibration across
populations.

Metabolic differences between ethnic groups

Ethnic differences in Androgen regulation

Robust across populations, but necessitates
broader validation to ensure global utility.

Socio-economic and geographic context strongly
modulate molecular signatures; must be
integrated into biomarker development
strategies.
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Figure 4. Identification of PROSTest gene signature in RNA-seq data and comparison of qPCR ratios in RSA and USA clinical samples. RNA-seq data
identified 26 of 27 PROSTest genes and validated these genes via qPCR on same clinical samples that were sequenced. We observed all 26 genes via qPCR and bar graphs were

prepared based on ratios in USA and RSA samples.

Table 3. PROSTest genes identified in RNA-seq data in USA and RSA patients.

RNA Sequencing

USA-PCa vs USA-Controls RSA-PCa vs RSA-Controls USA-PCa vs RSA-PCa USA-Controls vs RSA-Controls
Gene name P-value FDR Ratio P-value FDR Ratio P-value FDR Ratio P-value FDR Ratio
AAMP 0.161 0.608 1.142 0.876 0.983 1.018 0.336 0.499 1.078 0.763 0.847 0.966
AR 0.110 0.533 1.574 0.376 0.843 1.378 0.725 0.825 1.128 0.981 0.990 0.993
CHTOP 0.334 0.755 0.925 0.262 0.789 0.914 0.186 0.328 0.935 0.439 0.583 0.928
EDC4 0.010 0.213 1.232 0.265 0.791 1.167 0.000 0.000 1.497 0.002 0.009 1.425
EXYD7 0.241 0.689 1.330 0.087 0.613 0.501 0.313 0.474 1.398 0.024 0.066 0.523
FYCO1 0.013 0.244 1.210 0.419 0.869 1116 0.000 0.000 1.432 0.015 0.044 1.329
HNRNPU 0.035 0.354 0.866 0.530 0.908 0.949 0.000 0.001 1.187 0.002 0.007 1.308
KRT23 0.008 0.202 0.517 0.033 0.471 1.618 0.033 0.088 0.663 0.008 0.027 2.098
MAN2B2 0.779 0.946 0.972 0.858 0.981 1.027 0.000 0.000 1.709 0.000 0.000 1.819
MAX 0.990 0.997 0.999 0.869 0.982 1.019 0.889 0.933 1.015 0.711 0.812 1.041
MRPS25 0.257 0.702 0.884 0.006 0.305 0.758 0.005 0.019 1.338 0.202 0.334 1.154
NDUEFS2 0.892 0.975 0.992 0.699 0.953 1.031 0.717 0.820 1.024 0.343 0.491 1.072
PPRC1 0.028 0.325 1.337 0.541 0.911 1.163 0.003 0.013 1.747 0.018 0.051 1.530
RAD23A 0.409 0.801 0.858 0.012 0.379 1.907 0.055 0.132 0.631 0.089 0.181 1.415
REPIN1 0.276 0.716 1.116 0.867 0.982 0.976 0.001 0.007 1.399 0.112 0.216 1.232
SDR39U1 0.390 0.787 0.886 0.013 0.385 0.629 0.397 0.560 0.874 0.004 0.015 0.623
SETBP1 0.343 0.760 1.134 0.433 0.876 1.155 0.274 0.432 1.169 0.274 0.417 1.192
SLC14A1 0.084 0.491 0.485 0.060 0.558 1.957 0.050 0.123 0.616 0.050 0.116 2497
SLC18A2 0.912 0.979 0.976 0.498 0.898 0.704 0.204 0.350 1.605 0.647 0.764 1.164
SMC4 0.102 0.522 0.824 0.083 0.606 0.803 0.000 0.001 0.630 0.000 0.001 0.618
SPARC 0.892 0.975 0.968 0.024 0.443 1.788 0.056 0.134 0.612 0.606 0.731 1.135
SQLE 0.000 0.004 1.661 0.145 0.693 0.774 0.000 0.002 1.507 0.023 0.062 0.705
STRIP1 0.380 0.780 0.943 0.560 0.917 0.947 0.074 0.165 1.147 0.055 0.124 1.160
STX12 0.471 0.835 0.946 0.551 0.914 1.060 0.863 0.916 1.012 0.148 0.267 1.140
UNC45A 0.045 0.390 1.165 0.212 0.753 1.184 0.977 0.987 1.003 0.760 0.845 1.028
XPC 0.288 0.722 0.899 0.131 0.677 1.186 0.001 0.003 1.407 0.000 0.000 1.869

We employed two complementary methods, . .

gPCR and RNA-seq. One of the 27 marker genes, HPN Discussion
(hepsin), was not detected in the RNA-seq data and The research pilot study examined gene

was excluded from analysis. Both qPCR and RNA-seq
gave similar results for 26 PROSTest genes in the
clinical samples (Pearson correlation: r=0.44, p=0.0012,
n=30 pairs). This identified that these biomarkers are
well and reproducibly detected irrespective of the
method used (Figure 4, Table 3). The 26 PROSTest
gene signature, was highly detectable in both
populations with 100% sensitivity for differentiating
PCa from healthy subjects (PROSTest genes and their
RNA quantifications are listed in Table 3).

expression patterns in peripheral whole blood
samples collected from PCa patients and healthy
donors from South Africa and the United States. The
cohorts were chosen to meet appropriate standards
for RNAseq studies (a minimum of 6 samples/cohort
[23]), had similar ages (median ~60 years), were not
being treated (either newly diagnosed or in active
surveillance) and had similar Gleason grades and
stages. This allowed us to minimize potential
confounders and focus on evaluating differences in
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biology related to ethnicity and the environment.

RNA-seq data in these patients with localized,
non-advanced  tumors  identified  differential
molecular variations between the two populations in
terms of global gene expression patterns, pathway
enrichment analysis and especially cell types involved
in immune responses. These findings highlight some
of the differences that genetic, environmental and
socio-economic factors may have on PCa biology.
They also suggest population-specific mechanisms
that may be related or associated with disease
(summarized in Table 3). We noted that PROSTest
gene expression was similar between US and RSA
PCa.

Authors have evaluated tumor samples for
ethnic-associated gene and molecular pathway
differences between Caucasia and Black PCa
populations [20-22]. Black men show increased
activity of inflammation, steroid hormone responses,
and cancer progression-related pathways. Ethnic-
based androgen and androgen receptor (AR) pathway
differences are known to occur. We evaluated
differences at a global level and then focused on some
of the previously identified genes and pathways
known to differ.

At a global level, increased expression of genes
in blood that were involved in biosynthesis of
ribosomes, splicing of RNA, and hematopoietic cell
lineages in the RSA cohort compared to US patients
was identified. These pathways have been extensively
studied in solid tumors. Alterations in ribosomal
biogenesis and splicing (at a tissue level) are known to
be correlated with tumor development including
aggressiveness and metastasis [42, 43]. PCa blood
samples showed enhanced activity of pathways
involved endoplasmic reticulum protein (ER) export
stress which may be a key player in supporting tumor
growth and treatment resistance [44]. The oxidative
phosphorylation and disease-specific pathways were
also distinguished as different between the RSA and
USA groups. These findings accord with research
work  showing  geographical and  genetic
heterogeneity in the function of the mitochondria and
its relationship to cancer metabolism [45, 46]. An ER
stress response leads to tumor cell activation which
produces exosomes that contain UPR proteins which
modify macrophage function and suppress T-cell
activity [47]. Our data demonstrates that elevated ER
stress/export pathways serve as biomarkers which
reveal proteostatic stress caused by tumors while
linking protein folding needs to cancer progression
levels.

We also observed striking differences in the
baseline gene expressions between the RSA-Controls
and USA-Controls further highlighting the

importance of population variation. RSA controls
demonstrated over-representation of cell cycle and
mRNA binding pathways whereas USA controls
showed enrichment in insulin response signaling.
Such divergence in baseline expression indicates the
differences in the basic molecular activity which could
be due to different genetic background and
environmental factors of the two populations. For
example, populations with higher prevalence of
metabolic syndrome or obesity (USA) may
demonstrate enhanced insulin signaling, while
subjects of African genetic heritage (RSA) may
preferentially express proliferative and translational
machinery activation [48-50]. These baseline
variations are similar to previously published large
scale studies demonstrating significant ethnic
variability in transcriptomes [51-54].

When we focused on specific genes and pathway
differences noted at a tumor tissue level [20-22], we
identified some intriguing overlaps between
tissue-based expression and what was detectable in
peripheral blood. Our study identified several
tissue-associated differences were recapitulated in
peripheral blood. For example, FABP5 was
over-expressed in RSA-PCa blood. This co-ordinates
lipid signaling to promote PCa metastasis [55].
Lipoprotein Lipase (LPL) is also linked to PCa by
facilitating the uptake of fatty acids, which fuel tumor
growth and proliferation [56]. This gene similarly was
upregulated in RSA blood compared to Caucasian
blood. The NF-xB pathway was also upregulated in
Black subjects; this controls progression of PCa to
androgen-independent growth [57]. Several genes
transcribing interleukins were similarly upregulated
in RSA-PCa samples. IL32 has a complex role in PCas,
acting as a pro-tumor factor in metastatic disease by
recruiting macrophages that promote tumor growth
and metastasis through the CTSZ-TRA2A/
IL-32/ITGA5 axis [58]. The IL7R (Interleukin-7
Receptor) was also upregulated and is implicated in
PCa progression and potential therapeutic resistance
[59]. Chemokine signaling plays a significant role in
PCa progression, metastasis, and the tumor
microenvironment by recruiting immune cells and
promoting tumor cell survival and growth. CCL4
signaling promotes tumorigenesis, invasion, and
recurrence by recruiting macrophages and
influencing the tumor microenvironment [60], while
CCL5 promotes tumor growth, metastasis,
angiogenesis (new blood vessel formation), drug
resistance, and the self-renewal of cancer stem cells
through its receptor CCR5 [60]. Both genes were
upregulated in Black subjects the expression and role
of Suppressor of Cytokine Signaling (SOCS) proteins
are complex and can be tumor-promoting or
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tumor-suppressive depending on the specific SOCS
protein and cellular context [61]. Genes encoding
proteins in this signaling pathway were upregulated
too. Signals produced by tumors may affect blood cell
development through mechanisms that lead to
increased myeloid-derived suppressor cell (MDSC)
numbers and altered lymphoid cell distribution [62,
63]. The process of immunologic reprogramming is a
key factor that drives cancer development and
determines treatment outcomes. The immune-
associated differences in peripheral blood suggest
some fundamental differences in hematopoietic
pathways between Caucasian and Black subjects; this
may potentially impact on PCa development and
progression.

PROSTest  Biomarker Validation: The
PROSTest biomarker panel containing 26 genes
showed consistent results between RSA and USA
cohorts identifying that these genes are reliable and
stable biomarkers across these two populations. Our
results also reveal the necessity of global population
validation since molecular differences do occur in
blood-based markers. Previous studies have
highlighted the issues in the biomarker validation
across the various populations with an emphasis on
the impact of genetics, environment and socio-
economic factors on biomarker performance [64-67].
gPCR is a sensitive method that allows for the
quantification of specific target genes, while RNA-seq
offers the ability to confirm the presence and quantify
the levels of expression of these genes in a global
transcriptome setting [68].

Geographical and Socio-Economic
Considerations: The differences in molecular
signatures and the immune response DEGs (which
likely translates to immune sub-population
differences) between the RSA and USA cohorts are
probably due to a genetically determined response to
environmental exposures modulated by socio-
economic factors. The fact that PCa has been noted to
have different presentations in different geographical
locations and ethnic groups has been well-established
[69]. This has been shown in the androgen receptor
signaling, metabolic pathways and the immune
response of the cancer varies between populations
[70-75]. Other factors that include diet (obesity,
cholesterol metabolism, cardiovascular disease),
infections and exposure to infectious agents and
access to health care may also play a role in
modulating gene expression and immunodynamics
[76-80].

Our pilot study does have some limitations. The
sample sizes are relatively small and uneven although
we have attempted to meet requirements for RN Aseq
studies. One additional limitation was recruiting

diverse ethnic groups, including RSA Caucasian and
USA Black patients, to participate in the pilot study.
Large-scale studies could further identify differences
between these two groups (USA vs. RSA) and diverse
racial pools, thereby enhancing generalizability and
broader applicability. There may be a potential
confounding by age, comorbidities, clinical stage
distribution or sample handling differences but we
have attempted to minimize these as far as possible.
While no functional experiments, e.g., interleukin
measurements in blood, were undertaken to confirm
transcriptomic  observations, these are being
undertaken as part of a separate study. The qPCR vs.
RNAseq expression of PROSTest genes, however, is a
strength, that identifies the validity of the approach
we used.

Conclusion

The present pilot study highlights the need to
perform  population-specific  analysis in any
blood-based molecular research in order to develop
biomarker and therapeutic strategies. This study also
demonstrates the heterogeneity of immunological and
cellular pathways among two different geographic
(and ethnic) populations highlighting the need to
consider these differences when evaluating PCa
pathobiology. For instance, RSA-PCa samples were
found to have characteristics suggestive of an
impaired antigen presentation which may impact the
effectiveness of the immune system in identifying and
eradicating cancerous cells. Conversely, USA-PCa
samples displayed an inflammatory immune
signature suggesting an overall immune activation
(monocyte, dendritic cells and macrophage DEGs).
These suggest that blood samples from PCa are
associated with different immune profiles, depending
on the population. Such differences should be
considered in studies as well as in clinical practice. In
biomarker development, inclusion of subjects from
different countries should be a principal focus in
future genomic studies. Increasing the participation of
different populations will help to increase the
transferability of biomarkers and the interventions
thus making them relevant to a wider population.
Such inclusivity is especially important for the
development of precision medicine which aims at
providing individualized treatment based on the
patient’s genetic background as well as socio-
economic environment.

Clinical Implications

The determination of population attributable
gene expression and immune signatures is important
in PCa diagnosis and management. The alterations
suggest different immune:cancer relationships that
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may have an impact on presentation, development
and treatment of PCa. The confirmation of the
PROSTest genes in both ethnic populations identifies
that this non-invasive liquid biopsy-based diagnostic
is a viable and effective tool for PCa.
Supplementary Material

Supplementary figures and tables.
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