J Cancer 2018; 9(2):389-399. doi:10.7150/jca.21347

Research Paper

Long noncoding RNA H19 derived miR-675 regulates cell proliferation by down-regulating E2F-1 in human pancreatic ductal adenocarcinoma

Ling Ma1,2*, Xiaodong Tian1*, Huahu Guo1, Zhengkui Zhang1, Chong Du1, Feng Wang1, Xuehai Xie1, Hongqiao Gao1, Yan Zhuang1, Marko Kornmann3, Hong Gao2✉, Yinmo Yang1✉

1. Department of General Surgery, Peking University First Hospital, Beijing 100034, People's Republic of China;
2. Department of Surgical Oncology, Peking University Ninth School of Clinical Medicine (Beijing Shijitan Hospital, Capital Medical University), Beijing 100038, People's Republic of China;
3. Clinic of General, Visceral and Transplantation Surgery, University of Ulm, Ulm 89081, Germany.
* Contributed equally


The long noncoding RNA (lncRNA) H19 has been proven to be overexpressed in human pancreatic ductal adenocarcinoma (PDAC). H19-induced PDAC cell proliferation is cell cycle-dependent by modulating E2F-1. However, the mechanism of how H19 regulates E2F-1 remains unclear. In this study, we investigated the expression of miR-675 in PDAC tumours and cells, the biological function of miR-675 in PDAC cell proliferation and the possible relationship among H19, miR-675 and E2F-1. As a transcript of the first exon of H19, the level of miR-675 was negatively correlated with H19 expression in microdissected PDAC tissues (r=-0.0646, P=0.001). The serum miR-675 expression was significantly down-regulated in patients with PDAC compared to those in healthy individuals. Moreover, an evaluation of five PDAC cases showed that there was a remarkable increase of serum miR-675 levels after resection of the primary tumours. Ectopic overexpression of miR-675 in AsPC-1 and PANC-1 cells decreased cell viability, the colony-forming ability and the percentage of cells in S phase; contrarily, miR-675 knockdown resulted in enhanced cell proliferation. Furthermore, the suppressed cell proliferation caused by H19 knockdown could be rescued by inhibiting miR-675 expression. Additionally, intratumoural injection of either miR-675 agomir or antagomir could significantly affect tumour growth in vivo. Both the bioinformatic prediction and luciferase activity assay confirmed that E2F-1 was a direct target of miR-675. And the decrease of E2F-1 protein expression caused by siH19 could be partially reversed by miR-675 knockdown. We concluded that there might be a H19/miR-675/E2F-1 regulatory loop in cell cycle modulation. Serum miR-675 might serve as a potential biomarker for not only early diagnosis but also outcome prediction in PDAC.

Keywords: long noncoding RNA H19, miR-675, E2F-1, pancreatic ductal adenocarcinoma, cell proliferation, cell cycle.

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.
How to cite this article:
Ma L, Tian X, Guo H, Zhang Z, Du C, Wang F, Xie X, Gao H, Zhuang Y, Kornmann M, Gao H, Yang Y. Long noncoding RNA H19 derived miR-675 regulates cell proliferation by down-regulating E2F-1 in human pancreatic ductal adenocarcinoma. J Cancer 2018; 9(2):389-399. doi:10.7150/jca.21347. Available from http://www.jcancer.org/v09p0389.htm