J Cancer 2018; 9(5):778-783. doi:10.7150/jca.22282

Short Research Communication

FOXG1 Expression Is Elevated in Glioma and Inhibits Glioma Cell Apoptosis

Jingying Chen1#, Xinmin Wu2, Zhenkai Xing1, Chi Ma1, Wencheng Xiong3, Xiaojuan Zhu1, Xiaoxiao He1✉

1. Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, China
2. Department of Neurosurgery, First Hospital of Jilin University, Changchun, China;
3. Department of Neuroscience and Regenerative Medicine and Department of Neurology, Medical College of Georgia, Augusta University, USA.
# Current address: Henan university Joint national laboratory for antibody drug engineering, Henan University, Kaifeng, Henan, China

Abstract

FOXG1, a member of forkhead family transcriptional factor, is involved in telencephalon development. Recent studies showed FOXG1 was important for a variety of cellular events in cancer cells. In respect to glioma, FOXG1 has been shown to regulate cell proliferation and cell cycles. However, its impacts on other cellular events were not well studied. Here, we found FOXG1 had high expression in clinical glioma tissues, and its expression positively correlated with glioma malignancy. Moreover, we found FOXG1 played roles in glioma cell apoptosis. The expressions of caspase family members were significantly altered in response to change of FOXG1 expression, indicating a direct regulation of FOXG1 on caspase family members. These data strongly suggest FOXG1 is negative regulator of glioma cell apoptosis.

Keywords: FOXG1, Glioma, Cell proliferation, Cell apoptosis

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.
How to cite this article:
Chen J, Wu X, Xing Z, Ma C, Xiong W, Zhu X, He X. FOXG1 Expression Is Elevated in Glioma and Inhibits Glioma Cell Apoptosis. J Cancer 2018; 9(5):778-783. doi:10.7150/jca.22282. Available from http://www.jcancer.org/v09p0778.htm